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Abstract. We present a new disambiguation algorithm for finite au-
tomata and functional finite-state transducers. We give a full description
of the algorithm, including a detailed pseudocode and analysis, and sev-
eral illustrating examples. Our algorithm is often more efficient and the
result dramatically smaller than the one obtained using determinization
for finite automata or an existing disambiguation algorithm for trans-
ducers based on a construction of Schützenberger. In a variety of cases,
the size of the unambiguous transducer returned by our algorithm is
only linear in that of the input transducer while the transducer given
by the construction of Schützenberger is exponentially larger. Our algo-
rithm can be used effectively in many applications to make automata
and transducers more efficient to use.

1 Introduction

Finite automata and transducers are used in a variety of applications in text
and speech processing [10, 13], bioinformatics [8], image processing [1], optical
character recognition [6], and many others. In these applications, automata and
transducers are often the result of various complex operations and in general
are not efficient to use. Some optimization algorithms such as determinization
can make their use more time-efficient. However, the result of determinization is
sometimes prohibitively large and not all finite-state transducers are determiniz-
able [7, 11].

This paper presents and analyzes an alternative optimization algorithm, dis-
ambiguation, which in practice can have efficiency benefits similar to deter-
minization. Our disambiguation algorithm is novel and applies to finite au-
tomata, including automata with ε-transitions, and to functional finite-state
transducers, that is those representing a partial function. Disambiguation re-
turns an automaton or transducer equivalent to the input that is unambiguous,
that is one that admits no two accepting paths labeled with the same (input)
string. In many instances, the absence of ambiguity can be useful to make search
more efficient by reducing the number of paths to explore for very large automata
or transducers with several hundred thousand or millions of transitions in text
and speech processing or in bioinformatics, and there are many other critical
needs for the disambiguation of automata and transducers.



For finite automata, one way to proceed to obtain an unambiguous and equiv-
alent automaton is simply to apply the standard determinization algorithm. But,
as we shall see, for some input automata our algorithm can take exponentially
less time than determinization and return an equivalent unambiguous automaton
exponentially smaller than the one obtained by using determinization.

For finite-state transducers, disambiguation applies to a broader set of trans-
ducers than those that can be determinized using the algorithm described in
[11], it applies to any functional transducer. In contrast, it was shown by [3]
that a functional transducer is determinizable if and only if it additionally ver-
ifies the twins property [7, 11, 2]. Our disambiguation algorithm is also often
dramatically more efficient and results in substantially smaller transducers than
those obtained using a disambiguation algorithm based on a construction of
Schützenberger [16, 15], also described by E. Roche and Y. Schabes in the intro-
ductory chapter of [14]. In particular, when the input transducer is unambiguous,
our algorithm simply returns the same transducer, while the result of the algo-
rithm presented in [14] can be exponentially larger.

The remainder of this paper is organized as follows. In Section 2, we introduce
the notation and basic concepts needed for the presentation and analysis of
our algorithm. In Section 3, we present our disambiguation algorithm for finite
automata in detail, including the proof of its correctness and a brief description
of its extension to finite automata with ε-transitions. In Section 4, we show
how the algorithm can be be used to disambiguate functional transducers and
illustrate it with several examples.

2 Preliminaries

We will denote by ε the empty string. A finite automaton A with ε-transitions
is a system (Σ,Q, I, F, E) where Σ is a finite alphabet, Q a finite set of states,
I ⊆ Q the set of initial states, F ⊆ Q the set of final states, and E a finite
multiset of transitions, which are elements of Q× (Σ ∪ {ε})×Q. We denote by
|A| = |Q|+ |E| the size of an automaton A, that is the sum of the number states
and transitions defining A.

A path π of an automaton is an element of E∗ with consecutive transitions.
The label of a path is the string obtained by concatenation of the labels of its
constituent transitions. We denote by P (p, x, q) the set of paths from p to q
labeled with x or, more generally, by P (R, x,R′) the set of paths labeled with x
from some set of states R to some set of states R′. We also denote by P (R,R′)
the set of all paths from R to R′. An accepting path is an element of P (I, F ). The
language accepted by an automaton A is the set of strings labeling its accepting
paths and is denoted by L(A). Two automata A and B are said to be equivalent
when L(A) = L(B).

We will say that a state p can be reached by a string x when there exists a path
from an initial state to p labeled with x. When two states can be reached by the
same string, we say that they are co-reachable. We will also say that two states p
and q share a common future when they admit a common string x to reach a final



state, that is when there exists a string x such that P (p, x, F ) ∩ P (q, x, F ) 6= ∅.
For any subset s ⊆ Q and x ∈ Σ∗, we will denote by δ(s, x) the set of states
that can be reached from the states in s by a path labeled with x.

A finite-state transducer is a finite automaton in which each transition is
augmented with an output label, which is an element of (∆ ∪ {ε}), where ∆ is
a finite alphabet. For any transducer T , we denote by T−1 its inverse, that is
the transducer obtained from T by swapping the input and output label of each
transition.

We will use the standard algorithm to compute the intersection A∩A′ of two
automata A and A′ [12], whose states are pairs formed by a state of A and a state
of A′, and whose transitions are of the form ((p, q), a, (p′, q′)), where (p, a, q) is
a transition in A and (p′, a, q′) in A′.

An automaton A is said to be trim if all of its states lie on some accepting
path. It is said to be unambiguous if no string x ∈ Σ∗ labels two distinct accept-
ing paths, finitely ambiguous if there exists k ∈ N such that no string labels more
than k accepting paths, polynomially ambiguous if there exists a polynomial P
with coefficients in N such that no string x labels more than P (|x|) accepting
paths. The finite, polynomial, and exponential ambiguity of an automaton with
ε-transitions can be tested in polynomial time [4].

3 Disambiguation algorithm for finite automata

In this section, we describe in detail our disambiguation algorithm for finite
automata. The algorithm is first described for automata without ε-transitions.
The extension to the case of automata with ε-transitions is discussed later. Our
algorithm in general does not require a full determinization. In fact, in some cases
where the determinization creates 2n states where n is the number of states of
the input automaton, the cost of our new algorithm or the size of its output is
only in O(n).

3.1 Description

Figure 1 gives the pseudocode of the algorithm. The first step of the algorithm
consists of computing the automaton A ∩ A and of trimming it by removing
non-coaccessible states (line 1). The cost of this computation is in O(|A|2) since
the complexity of intersection is quadratic and since trimming can be done in
linear time. The automaton B thereby constructed can be used to determine
in constant time if two states q and r of A that can be reached from I via the
same string share a common future simply by checking if (q, r) is a state of B.
Indeed, by definition of intersection, this property holds iff (q, r) is a state of
B. As shown by the following proposition, the automaton B is in fact directly
related to the ambiguity of A.

Proposition 1 ([4]). Let A be a trim finite automaton with no ε-transition. A
is unambiguous iff no coaccessible state in A∩A is of the form (p, q) with p 6= q.



Disambiguation(A)

1 B ← Trim(A ∩A)
2 for each i ∈ I do
3 s← {i′ : i′ ∈ I ∧ (i, i′) ∈ B}
4 I ′ ← Q′ ← Q′ ∪ {(i, s)}
5 Enqueue(Q, (i, s))
6 for each (u, u′) ∈ I ′2 do
7 R← R ∪ {(u, u′)}
8 while Q 6= ∅ do
9 (p, s)← Head(Q)

10 Dequeue(Q)
11 if

`
(p ∈ F ) and (6 ∃(p′, s′) ∈ F ′ with (p′, s′) R (p, s))

´
then

12 F ′ ← F ′ ∪ {(p, s)}
13 for each (p, a, q) ∈ E do
14 t← {r ∈ δ(s, a) : (q, r) ∈ B}
15 if 6̀ ∃((p′, s′), a, (q, t)) ∈ E′ with (p′, s′) R (p, s)

´
then

16 if ((q, t) 6∈ Q′) then
17 Q′ ← Q′ ∪ {(q, t)}
18 Enqueue(Q, (q, t))
19 E′ ← E′ ∪

˘`
(p, s), a, (q, t)

´¯
20 for each (p′, s′) such that

`
(p′, s′)R (p, s)

´
and

`
(p′, s′), a, (q′, t′)

´
∈ E′ do

21 R← R ∪ {(q, t), (q′, t′))}
22 return A′

Fig. 1. New disambiguation algorithm for finite automata.

Proof. Since A is trim, the states of A ∩ A are all accessible by construction.
Thus, a state (p, q) in A ∩ A is coaccessible iff it lies on an accepting path,
that is by definition of intersection, iff there are two paths π = π1π2 ∈ P (I, F )
and π′ = π′1π

′
2 ∈ P (I, F ) with π1 ∈ P (I, p) and π′1 ∈ P (I, q), with π1 and π′1

sharing the same label and π2 and π′2 also sharing the same label. Thus, A is
unambiguous iff p = q. ut

The algorithm constructs an unambiguous automaton A′ = (Q′, E′, I ′, F ′). The
set of states Q′ are of the form (p, s) where p is a state of A and s a subset of the
states of A. Line 2 defines the initial states which are of the form (i, s) with i ∈ I
and s a subset of the states in I sharing a common future with i. The algorithm
maintains a relation R such that two states of A′ are in relation via R iff they
can be reached by the same string from the initial states. In particular, since all
initial states are reachable by ε, any two pair of initial states are in relation via
R (lines 6-7).

The algorithm also maintains a queue Q containing the set of states (p, s) of
Q′ left to examine and for which the outgoing transitions are to be determined.
The queue discipline, that is the order in which states are added or extracted
from Q is arbitrary and does not affect the correctness of the algorithm. However,
different orderings can result in different but equivalent resulting automata.

At each execution of the loop of lines 8-21, a new state (p, s) is extracted
from Q (lines 9-10). To avoid an ambiguity due to finality, state (p, s) is made
final only if there is no final state (p′, s′) ∈ F ′ in relation with (p, s) (lines 11-12).
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Fig. 2. Illustration of the disambiguation algorithm. (a) Automaton A. (b) Result of
disambiguation algorithm applied to A. One of the two dashed transitions is disallowed
by the algorithm. (c) Result of determinization applied to A.

Each outgoing transition (p, a, q) of p is then examined. Line 14 defines t to
be the subset of the states of A that can be reached from a state of s by reading x
but excludes states q′ that do not share a common future with q. This is because
the subsets are used to detect ambiguities. If q and q′ do not share a common
future even though there are paths with the same label x reaching them, these
paths cannot be completed to reach a final state with the same label. Thus, if X
is the set of strings leading to a state (p, s) of Q′, the subset s contains exactly
the set of states r of A that can be reached via X from I and that share a
common future with p.

To avoid creating two paths from I ′ to (q, t) with the same labels, the tran-
sition from (p, s) to (q, t) with label q is not created if there exists already one
from (p′, s′) to (q, t) for a state (p′, s′) that can reached by a string also reaching
(p, s) (condition of line 15). Note that if (p, s) is extracted from Q before a state
(p′, s′) with (p′, s′)R(p, s), then the transition from (p, s) to (q, t) is created first
and the one from (p′, s′) to (q, t) not created. This is how the queue discipline
directs the choice of the transitions created.

Lines 16-18 add (q, t) to Q′ when it is not already in Q′ and line 19 adds the
new transition defined to E′. After creation of this transition, the destination
state (q, t) is then put in relation with all states (q′, t′) reached by a transition
labeled with a ∈ Σ from a state (p′, s′) that is in relation with (p, s).

Figure 2 illustrates the application of the algorithm in a simple case. Observe
that states 1 or 2 are not included in the subset of (0, {0}) in the automaton
of Figure 2(b) since 0 does not share a common future with 1 or 2. Figure 2
also shows the result of the application of determinization to the same example.
As can be seen from this example, in some instances, determinization creates
more transitions than disambiguation. Some states created by the disambigua-
tion algorithm may be non-coaccessible, that is, they may admit no transition
to a final state because their output transitions were not constructed to avoid
generating ambiguity. These states and the transitions leading to them can be
removed in linear time using a standard trimming algorithm. In the case of the
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Fig. 3. Examples of automata A for which determinization returns an exponentially
larger automaton while our algorithm returns A (for (a)) or an automaton whose size is
linear in A (for (b)). (a) Automaton representing the regular expression (a+b)∗a(a+b)n,
whose minimal deterministic equivalent has size Ω(2n). (b) Automaton representing
the regular expression (a + b)∗(a(a + b)n + ban), whose determinization results in an
automaton with Ω(2n) states.

automaton of Figure 2(b), the state whose dashed transition is not constructed
can be trimmed.

More generally, note that when the input automaton is unambiguous, the
subsets created by our algorithm are reduced to singletons: by Proposition 1, a
subset cannot contain two distinct states in that case. In such cases, our algo-
rithm simply returns the same automaton A. The work done after computation
of B is also linear in |A|. In contrast, the determinization of A may lead to a
blow-up, even when the automaton is unambiguous. In particular, for the stan-
dard case of the non-deterministic automaton of Figure 3(a) representing the
regular expression (a + b)∗a(a + b)n, it is known that determinization creates
2n+1 − 1 states. However, this automaton is unambiguous and our algorithm
returns the same automaton unchanged. The automaton of Figure 3(b) is sim-
ilar but is ambiguous. Nevertheless, it is not hard to see that again the size of
the automaton returned by determinization is exponential and that that of the
automaton output by our algorithm is only linear.

3.2 Analysis

The termination of the algorithm is guaranteed by the fact that the number
of states and transitions created must be finite. This is because the number of
possible subsets s of states of A is finite, thereby also the number of pairs (p, s)
created by the algorithm where p is a state of A and s a subset. Also, the number
of transitions created at a state (p, s) is at most equal to the number of states
leaving p in A. In the worst case, the algorithm may create exponentially many
subsets and thus the computational complexity of the algorithm is exponential.
In many practical cases, however, this worst case behavior is not observed. In
particular, the automaton returned by our disambiguation algorithm is substan-
tially smaller than the one obtained by application of determinization.

We will now show that the automaton returned by the algorithm is unam-
biguous using the following lemma.

Lemma 1. Let (q, t) and (q′, t′) be two states constructed by algorithm Disam-
biguation run on input automaton A, then (q, t) R (q′, t′) iff (q, t) and (q′, t′)
are co-reachable.



Proof. We will show by induction on the length of strings x that if two states
(q, t) and (q′, t′) are both reachable by x, then (p, s) R (q′, t′). The steps of lines
6-7 ensure that (q, t) R (q′, t′) when both states are initial, that is, when they
are reachable by ε. Assume that it holds for all strings x of length less than or
equal to n. Let x = x′a be a string of length n + 1 with x′ ∈ Σ∗ and a ∈ Σ
and assume that (q, t) and (q′, t′) are both reachable by x. Then, there exists
a state (p, s) reachable by x′ and admitting a transition labeled with a leading
to (q, t) and similarly a state (p′, s′) reachable by x′ and admitting a transition
labeled with a leading to (q′, t′). Then, by the induction hypothesis, we have
(p, s) R (p′, s′), thus (q, t) R (q′, t′) is guaranteed by execution of the steps of
lines 20-21. This proves the implication corresponding to one side. The converse
holds straightforwardly by construction (lines 6-7 and 20-21). ut

Proposition 2. The automaton A′ returned by algorithm Disambiguation
run on input automaton A is unambiguous.

Proof. Let π1 and π2 be two paths in A′ from I ′ to F ′ with the same label x ∈ Σ∗.
If x = ε, π1 is a path from some initial state (i1, s1) to (i1, s1) and similarly π2

a path from some initial state (i2, s2) to (i2, s2). All initial states are in relation
(lines 6-7), therefore at most one can be made final (lines 11-12). This implies
that (i1, s1) = (i2, s2) and π1 = π2. Let (q1, t1) be the destination state of π1 and
(q2, t2) the destination state of π2. Since (q1, t1) and (q2, t2) are both reachable
by x, by Lemma 1, we have (q1, t1) R (q2, t2). Since no two distinct equivalent
states can be made final (lines 11-12), we must have (q1, t1) = (q2, t2).

If x = ε, this implies that the two paths π1 and π2 coincide. If x 6= ε, x can
be written as x = x′a with x′ ∈ Σ∗ and a ∈ Σ and π1 and π2 can be decomposed
as π1 = π′1e1 and π2 = π′2e2 with e1 and e2 transitions labeled with a leading
to (q1, t1). Let (p1, s1) be the destination state of π′1 and (p2, s2) the destination
state of π′2. Since π′1 and π′2 are both labeled with x′, by Lemma 1, we have
(p1, s1) R (p′1, s

′
1). By the condition of line 15, if (p1, s1) 6= (p′1, s

′
1), (p1, s1) and

(p′1, s
′
1) cannot both admit a transition labeled with a and leading to the same

state (q1, t1). Thus, we must have (p1, s1) = (p′1, s
′
1). Proceeding in the same

way with π′1 and π′2 and so on shows that the paths π1 and π2 coincide, which
concludes the proof. ut

The following lemmas will be used to show the equivalence between the
automaton returned by the algorithm and the input automaton.

Lemma 2. Let (p, s) be a state constructed by algorithm Disambiguation run
on input automaton A. If (p, s) is reachable by the strings u and v in A′, then the
set of states reachable by u in A and sharing a common future with p coincides
with the set of states reachable by v in A and sharing a common future with p .

Proof. We show by recurrence on the length of u that if state (p, s) is reachable
by u in A′, then s is the set of states reachable by u and sharing a common future
with p. This property holds straightforwardly for u = ε by the construction of
lines 2-5. Assume now that it holds for all u of length less than or equal to n.



Let u = u′a with u′ ∈ Σ∗ of length n and a ∈ Σ. If (p, s) is reachable by u,
there must exist some state (p′, s′) reachable by u′ and admitting a transition
labeled with a leading to (p, s). By the induction hypothesis, s′ is the set of
states reachable by u′ and sharing a common future with p′. By definition of s
(line 14), s = {q ∈ δ(s′, a) : (q, p) ∈ B}, thus the states in s are all reachable
by u and share a common future with p. Conversely, let q be a state reachable
by u and sharing future with p. There is a transition labeled with a from some
state q′ reachable by u′. Since q′ admits a transition to q labeled with a and p′

admits a transition labeled with a to p, and p and q share a common future, p′

and q′ must also share a common future. By the induction hypothesis, s′ is the
set of states reachable by u′ and sharing a common future with p′, therefore q′

is in s′. Since q ∈ δ(q′, a) and q shares a common future with p, this implies that
q is in s. This shows that the states in s are those reachable by u and sharing a
common future with p. ut

Lemma 3. Let A′ be the automaton returned by algorithm Disambiguation
run on input automaton A. Let q be a state reachable in A by string x. Then,
there exists a state (q, t) in A′ for some subset t such that (q, t) is reachable by
x in A′.

Proof. We will prove the property by induction on the length of x. The property
straightforwardly holds for x = ε by the construction steps of lines 2-5. Assume
now that it holds for all strings of length less than or equal to n and let x = ua
with u a string of length n and a ∈ Σ. If q is reachable by string x in A,
then there exists a state p0 in A reachable by u and admitting a transition
labeled with a leading to q. By the induction hypothesis, there exists a state
(p0, s0) in A′ reachable by u. Now, the property clearly holds for (q, t0) if the
transition labeled with a leaving (p0, s0) is constructed at lines 15-19, with t0
defined at line 14. Otherwise, by the test of line 15, there must exist in A′ a
distinct state (p1, s

′
0) admitting a transition labeled with a leading to (q, t0)

with (p1, s
′
0) R (p0, s0). Note that we cannot have p1 = p0, since the same string

cannot reach two distinct states (p0, s0) and (p0, s1). Now, since (p1, s
′
0) admits

a transition labeled with a leading to (q, t0), p1 must admit a transition labeled
with a and leading to q. Thus, p1 and p0 share a common future in A. Since
(p1, s

′
0) R (p0, s0), by Lemma 1, they are reachable by a common string v. Thus,

both u and v reach (p0, s0). By Lemma 2, this implies that the set of states in A
reachable by u and v and sharing a common future with p0 are the same. Since
p1 and p0 share a common future in A and v reaches both p0 and p1, u must
also reach p1 in A.

If u reaches (p1, s
′
0), then (q, t0) can be reached by x since (p1, s

′
0) admits a

transition labeled with a leading to (q, t). Otherwise, by the induction hypothesis,
there must exist a distinct state (p1, s1) in A′ reachable by u, with p1 admitting
a transition labeled with a to q. Reapplying the argument already presented for
(p0, s0) to (p1, s1), either we find a path in A′ labeled with x to a state (q, t1),
or there exists a state (p2, s2) in A′ with the same property as (p0, s0) with
p2 distinct from p1 and p0. Since the number of distinct such states is finite,



reiterating this process guarantees finding a path in A′ labeled with x to a state
(q, tk) after some finite number of times k. Thus, the property holds in all cases.

ut

Lemma 4. Let A′ be the automaton returned by algorithm Disambiguation
run on input automaton A, then L(A′) ⊆ L(A).

Proof. The proof argument is similar to that of Lemma 3. Let x be a string
reaching a final state q0 ∈ F in A. By Lemma 3, there exists a state (q0, t0)
in A′ reachable by x. If state (q0, t0) is made final (lines 11-12), this shows
that x is accepted by A′. Otherwise, there must exist a final state (q1, t

′
0) with

(q1, t
′
0) R (q0, t0). Note that this implies that q1 is final. Note also that we have

q1 6= q0 since two states (q0, t0) and (q0, t
′
0) cannot be co-reachable with t′0 6= t0.

Since (q1, t
′
0) R (q0, t0), there exists a string x1 reaching both states. Since (q0, t0)

is reachable by both x and x1, by Lemma 2, the set of states in A reachable by
x and sharing a common future with q0 and those reachable by x1 and sharing
a common future with q0 are the same. q1 shares a common future with q0 since
both states are final and q1 is reachable by x1, therefore q1 is reachable by x.

Now, if x reaches (q1, t
′
0), this shows that x is accepted by A′. Otherwise,

by Lemma 3, there exists a state (q1, t1) in A′ reachable by x. We can reapply
to (q1, t1) the same argument as for (q0, t0) since q1 is a final state. Doing so,
we either find a final state in A′ reachable by x or a state (q2, t2) in A′ with
the same properties as (q0, t0) with q0, q1, and q2 all distinct. Since the number
of states of A′ is finite, reiterating this process guarantees finding a final state
reachable by x. This concludes the proof. ut

Proposition 3. The automaton A′ returned by algorithm Disambiguation
run on input automaton A is equivalent to A.

Proof. By construction, a path ((p1, s1), a1, (p2, s2)) · · · ((pk, sk), ak, (pk+1, sk+1))
is created in A′ only if the path (p1, a1, p2) · · · (pk, ak, pk+1) exists in A, and a
state (p, s) is made final in A′ only if p is final in A. Thus, if a string x = a1 · · · ak

is accepted by A′ it is also accepted by A, which shows that L(A′) ⊆ L(A). the
reverse inclusion holds by Lemma 4.

The following theorem follows directly by Propositions 2 and 3.

Theorem 1. The automaton A′ returned by algorithm Disambiguation run
on input automaton A is an unambiguous automaton equivalent to A.

Note that the states disallowed via the condition of our algorithm are the
minimal ones that can be safely removed from the subsets to check the presence
of ambiguities.

3.3 Disambiguation of automata with ε-transitions

Our algorithm can also be extended to the case of automata with ε-transitions.
We briefly describe that extension. Let A be an input automaton with ε-transitions.
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Fig. 4. (a) Automaton A with ε-transitions. (b) Unambiguous automaton equivalent
to A returned by our disambiguation algorithm. The dashed transition is disallowed
by the algorithm.

Here, the automaton B used to determine pairs of states sharing the same future
is obtained similarly by computing the intersection A∩A by using an ε-filter [12]
and by trimming the result by removing non-coaccessible states and transitions.
For any set R of states of A, let ε[R] denote the ε-closure of R, that is the set of
states reachable from states of R via paths labeled with ε.

To extend the algorithm to cover the case of automata with ε-transitions, it
suffices to proceed as follows. The initial states are defined by the set of (i, s)
with i ∈ I and s = {q ∈ ε[I] : (i, q) ∈ B}. At line 14, δ(s, a) is defined as the
set of states reachable from s by reading a, including via ε-transitions. Finally,
the relation R is extended to ε-transitions as follows: for each (p′, s′) such that
(p′, s′) R (p, s) and ((p, s), ε, (q′, t′)) ∈ E′, (p′, s′) is put in relation with (q′, t′).
Figure 4 illustrates the application of our algorithm in that case.

4 Disambiguation of finite-state transducers

In this section, we consider the problem of determining an unambiguous trans-
ducer equivalent to a given functional finite-state transducer, that is a finite-state
transducer representing a (partial) rational function, or equivalently one asso-
ciating at most one output string to any input string. The functionality of a
finite-state transducer T can be tested efficiently from the transducer T ◦ T−1

as shown by [2].

Theorem 2 ([2]). There exists an algorithm for testing the functionality of a
finite-state transducer T with output alphabet ∆ in time O(|E|2 + |∆| |Q|2).

One possible algorithm for finding an unambiguous transducer equivalent
to a functional transducer is determinization [11], however, as discussed ear-
lier, not all functional transducers admit an equivalent deterministic transducer.
Figure 5(a) shows an example of such a functional transducer which in fact is
unambiguous. A trim functional transducer is determinizable iff it admits the
twins property [3].

We will describe instead a disambiguation algorithm does not require that ad-
ditional property. It is known that any functional transducer can be represented
by an unambiguous transducer [9, 5]. For a functional transducer, by definition,
two accepting paths with the same input label have the same output labels.
Thus, for disambiguating a functional transducer, only input labels matter and
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Fig. 5. (a) Unambiguous finite-state transducer admitting no sequential or determin-
istic equivalent. (a) Functional transducer T . (b) Disambiguated transducer equivalent
to T returned by our algorithm. One of the two dashed transitions is disallowed by the
algorithm.

our automata disambiguation can be readily applied to create an unambiguous
transducer equivalent to an input functional transducer. Our disambiguation
algorithm gives a constructive proof of the existence of an equivalent unambigu-
ous transducer for a rational function. The different possible cross-sections of the
construction of [9] correspond to different orders in which transitions are visited
and disallowed by our algorithm. Figure 5(b)-(c) illustrates the application of
the algorithm in the case of a simple functional transducer.

As already pointed out, our algorithm compares favorably with the existing
disambiguation algorithm for finite-state transducers of Schützenberger [16, 15].
That construction can be concisely described as follows. Let D be a determin-
istic automaton obtained by determinization of the input automaton A of the
functional transducer T , that is the automaton obtained by removing the output
labels of T . Then, the algorithm consists of composing D with T using the stan-
dard composition algorithm for finite-state transducers while disallowing finality
of two composition states (p, s) and (q, s) with the same determinization subset
s and distinct states p and q of T , and similarly disallowing all but one transition
labeled with a from two states (p, s) and (q, s) to the same state, to avoid gener-
ating ambiguities. As can be seen from this description, the algorithm requires
the determinization of A. This is implicit in the description of this construction
in [14].

In contrast, our disambiguation algorithm that does not require the deter-
minization of A and as seen in the previous sections can return exponentially
smaller automata than those returned by determinization is some cases. Consider
for example the finite-state transducers defined as the automata of Figure 3 with
each transition augmented with an output label identical to its output label. The
construction of Schützenberger requires for those transducers the determiniza-
tion of the input automata, thus its cost as well as the size of the result are
exponential with respect to the size of the output as already discussed in Sec-
tion 3. Unlike that construction, as in the automata case, our algorithm returns
the same transducer or returns one whose size is only linear in that of the input.

The subsets defined by our disambiguation algorithm are never larger than
those defined in the subset construction of determinization. This is because for
a state (p, s) constructed in the algorithm, only states sharing a common future
with p are kept in the subset s. In addition to making the size of the subsets
shorter, this also reduces the number of states created: two possible states (p, s′)
and (p, s”) in the construction of Schützenberger are reduced to the same (p, s)
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Fig. 6. Disambiguation of functional transducers. (a) Functional transducer T . (b)
Unambiguous transducer equivalent to T returned by our algorithm. The dashed tran-
sitions are disallowed by the algorithm. (c) Unambiguous transducer returned by the
disambiguation construction of Schützenberger [16, 15].

after removal from s′ and s” of the states not sharing a common future with
p. This leads in many cases to transducers exponentially smaller than those
generated by the construction of Schützenberger and similar improvements in
time efficiency.

The observation just emphasized can be illustrated by the simple example of
Figure 6. The transducer T of Figure 6(a) is functional but is not unambiguous.
Figure 6(b) shows the result of our disambiguation algorithm which is an unam-
biguous transducer equivalent to T with the same number of states. In contrast,
the transducer created by the construction of Schützenberger (Figure 6(c)) has
several more states and transitions and some larger subsets.

5 Conclusion

We presented a new and often more efficient algorithm for the disambiguation
of finite automata and functional transducers. This algorithm is of great prac-
tical importance in a variety of applications including text and speech process-
ing, bioinformatics, and in many other applications where they can be used to
increase search efficiency. We have also designed a natural extension of these
algorithms to some broad families of weighted automata and transducers de-
fined over different semirings. We will present these extensions as well as their
theoretical analysis in a longer version of this paper.
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