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Abstract

In many modern large-scale learning applications, the arnotiunlabeled data
far exceeds that of labeled data. A common instance of tlislem is thetrans-
ductivesetting where the unlabeled test points are known to thailegralgo-
rithm. This paper presents a study of regression problenthansetting. It
presentexplicit VC-dimension error bounds for transductive regressionhb&l
for all bounded loss functions and coincide with the tiglissification bounds of
Vapnik when applied to classification. It also presents a mansductive regres-
sion algorithm inspired by our bound that admits a primal k&helized closed-
form solution and deals efficiently with large amounts ofaldled data. The
algorithm exploits the position of unlabeled points to Ibcastimate their labels
and then uses a global optimization to ensure robust predsct Our study also
includes the results of experiments with several publighilable regression data
sets with up t®0,000 unlabeled examples. The comparison with other transduc-
'([jive regression algorithms shows that it performs well dvad it can scale to large
ata sets.

1 Introduction

In many modern large-scale learning applications, the arnofuunlabeled data far exceeds that of
labeled data. Large amounts of digitized data are widelylava but the cost of labeling is often
prohibitive since it typically requires human assistanSemi-supervised learning or transductive
inference leverage unlabeled data to achieve better pi@uscand are thus particularly relevant to
modern applications. Semi-supervised learning consfstsiag both labeled and unlabeled data
to find a hypothesis that accurately labels unseen examptassductive inference uses the same
information but only aims at predicting the labels of the knainlabeled examples.

This paper deals with regression problems in the transerisgtting, which arise in a variety of
contexts. This may be to predict the real-valued labels efrthdes of a known graph in compu-
tational biology, or the scores associated to known docugriarinformation extraction problems.
The problem of transduction inference was originally fotated and analyzed by Vapnik [1982]
who described it as a simpler task than the traditional itidadreated in machine learning. A
number of recent publications have dealt with the topic ahs$ductive inference [Vapnik, 1998,
Joachims, 1999, Bennett and Demiriz, 1998, Chapelle et399, Graepel et al., 1999, Schuurmans
and Southey, 2002, Corduneanu and Jaakkola, 2003, Zhy 2084, Lanckriet et al., 2004, Der-
beko et al., 2004, Belkin et al., 2004, Zhou et al., 2005]., Biith the exception of [Chapelle et al.,
1999], [Schuurmans and Southey, 2002], and [Belkin et @042, this work has primarily dealt
with classification problems.

We present a specific study of transductive regression. Wergw error bounds for transductive
regression that hold for all bounded loss functions andaid@with the tight classification bounds of
Vapnik [1998] when applied to classification. Our resulspahclude explicit VC-dimension bounds
for transductive regression. This contrasts with the aabiegression bound given by Vapnik [1998]
which assumes a specific condition of global regularity andlass of functions and is based on a
complicated and implicit function of the samples sizes dreddonfidence parameter. As stated by
Vapnik [1998], this function must be “tabulated by a compute



We also present a new algorithm for transductive regresagpired by our bound which first ex-
ploits the position of unlabeled points to locally estimtteir labels, and then uses a global opti-
mization to ensure robust predictions. We show that ourrdlga admits both a primal and a ker-
nelized closed-form solution. Existing algorithms for th@nsductive setting require the inversion
of a matrix whose dimension is either the total number of lelled and labeled examples [Belkin
et al., 2004], or the total number of unlabeled examples peha et al., 1999]. This may be pro-
hibitive for many real-world applications with very largmaunts of unlabeled examples. One of the
original motivations for our work was to design algorithneating precisely with such situations.
When the dimension of the feature spd¢es not too large, our algorithm provides a very efficient
solution whose cost is dominated by the construction anergion of anV x N-matrix. Similarly,
when the number of training points is small compared to the number of unlabeled points, using
an empirical kernel map, our algorithm requires only carging and inverting am x m-matrix.

Our study also includes the results of our experiments vetieial publicly available regression data
sets with up t®0,000 unlabeled examples, limited only by the size of the data s&scompared
our algorithm with those of Belkin et al. [2004] and Chapedteal. [1999], which are among the
very few algorithms described in the literature dealingc#fipsally with the problem of transductive
regression. The results show that our algorithm perfornisiwseveral data sets compared to these
algorithms and that it can scale to large data sets.

The paper is organized as follows. Section 2 describes irerdetail the transductive regression
setting we are studying. New generalization error boundsrémsductive regression are presented
in Section 3. Section 4 describes and analyzes both the lpaimladual versions of our algorithm
and the experimental results of our study are reported itic3eB.

2 Definition of the Problem

Assume that a full sampl& of m + » examples is given. The learning algorithm further receives
the labels of a random subset&fof sizem which serves as a training sample:

(x11y1)7"'7(xm7ym)€XXR' (1)
The remainingu unlabeled examples;,,y1,...,2m4w € A, Serve as test data. The learning
problem that we consider consists of predicting accurétedylabelsy,, 1, .. ., ym+. Of the test

examples. No other test examples will ever be considereid.ig htransduction regressioproblem

[Vapnik, 1998]! It differs from the standardrfduction) regression estimation problem by the fact
that the learning algorithm is given the unlabeled test edambeforehand. Thus, it may exploit
that information and achieve a better result than via thedsted induction.

In what follows, we consider a hypothesis spdt®f real-valued functions for regression estima-
tion. For a hypothesid € H, we denote byR () its mean squared error on the full sample, by

~

R(h) its error on the training data, and I&(/) the error ofh on the test examples:

m-+tu m m-+u
Rolh) = —— >~ (h(a) =) Bk = = S (hw) =) R =1 > (hleo)—u)*
=1 i=1 i=m+1

)

For convenience, we will sometimes denotehy= y; the label of a point: = z; € X.

3 Transductive Regression Generalization Error

This section presents explicit generalization error baUodtransductive regression.

Vapnik [1998] introduced and analyzed the problem of traesdn and presented transductive in-
ference bounds for both classification and regression. étisession bound assumes however a
specific regularity condition on the hypothesis functiogeding in particular to a surprising bound
where no error on the training data implies zero generatizarror. The bound has the multiplica-

tive form: R(h) < Q(m,u,d,d)R(h), whered is the VC-dimension of the class of hypotheses used
ando is the confidence parameter. Furthermore, for certain sadfi¢he parameters, for example
largerds or smalleis, €2 becomes infinite and the bound is ineffective [Vapnik, 1988)e 349]2

is also based on a complicated and implicit functiomgfu, andd, which makes its interpretation
difficult. For example, it is hard to analyze the asymptogbavior of the bound for large.

1This is in fact one of the two transduction settings discdgse[Vapnik, 1998], but, under some general
conditions, the results proved with this setting carry deethe other.



Instead, our bounds simply hold for general bounded losstimms and, when applied to classifica-
tion, coincide with the tight classification bounds of Vap[1i998]. Our results also include explicit

VC-dimension bounds for transductive regression. To tts¢ bour knowledge, these are the first
general explicit bounds for transductive regression.

Our first bound uses the functidhdefined as follows. Lel (¢, k) be defined by:

k\ (rm+u—k
Ve >0,Vk e Nyue <k <m(l—e€)+u, TI(ek)= Z %, 3)
rel(m,u,e) m

wherel(m,u,k,e) is the set of integers such that: ’“;’” — = > eandmax(0,k —u) < r <

min(m, k). I'(¢, k) represents the probability of observing a difference inrerate of more tham
between the training and test set when the total number ofsisk (see Appendix A). Thel' is

defined ag'(¢) = maxy I'(4/ mLJrue, k). T is used in the transductive classification bound of Vapnik
[1998] (see Theorem 2, Appendix A). Corollary 2 (Appendixgd)es an upper bound dn

For any subset’ C X, any non-negative real numhel 0, and hypothesid € H, let©(h,t, X’)
denote the fraction of the points € &7, i = 1,...,k, such thath(x;) — y;)? — ¢ > 0. Thus,
O(h,t, X") represents the error rate over the samplef the classifier that associates to a paint
the value zero ifh(x) — vy, )? < t, one otherwise.

Two classifiers associated in this way&gh, ¢, X') andO (R, ¢', X) can be viewed as equivalent if
they labelX in an identical way. Sincg’ is finite, there is a finite number of equivalence classes of
such classifiers, we will denote that numberXdsym + u).

Theorem 1 Letd > 0, and letep > 0 be the minimum value efsuch that\V'(m + u)T'(e) < §, and
assume that the loss function is bounded: forfalt H andz € X, (h(z) — y.)* < B2, where
B € R,. Then, with probability at least — ¢, for all h € H,
212 2
~ ueOB ~ ueg B
< — 0 — .
R(h)_R(h)+2(m+u) —I—eoB\/R(h)—i— (2(m+u)> (4)

Proof. Foranyh € H, let R;(h) be defined by:

B2
Ry(h) = /0 VO, t, X) dt. (5)

By the Cauchy-Schwarz inequality,

2 1/2 2 1/2 2 1/2
Ri(h) < (/OB ®(h,t,)()dt> </OB 1dt> _B</OB ®(h,t,)()dt> . (6)

Let D denote the uniform probability distribution associateth® sampleY. Thus,D(z) = —

m-+u
forall z € X. Let PrmND[&C# denote the probability of everl, whenz is randomly drawn
according toD. By definition of Ry and the Lebesgue integral, for &lle H,

0o B?
Ro(h) = [ (@)~ .)*D@ydo = [ Prf(hla) o > e = [ O(ta)de (1)
X 0o 0
Similarly, settingt,,, = {z; € X : i € [1,m]} andX,, = {z; € X : i € [m + 1,m + u|}, we have
- B? B?
R(h) = O(h,t,Xy)dt and R(h)= O(h,t,X,) dt. ®)
0 0

In view of Equation 7, Inequality 6 can be rewritten aB;(h) < B+\/Ry(h). By Theorem 2
Appendix A, for alle > 0 and for anyt > 0,

pr{sup Q&) — O 1, )
heH O(h,t, X)

> ¢ <N(m+u)l(e). 9)



Fix ¢ > 0. Then, with probability at least — A/ (m + u)T'(e), for all integers: > 1 andi > 0,
O(h, B x,)—O(h,Z x,)
<e

Y 0 Y 0 < (10)
O(h, B2 x)
Then, the convergence of the Riemann sums to the integratmthat
R(h) - R(h) = lim — Z O(h —— Z o(h (11)

IN

zB
enlingo - Z \/©(h, — = eRy(h) < eBy/Ry(h). (12)

Let§ > 0 and select = ¢, as the minimum value of such that\'(m + u)T'(¢) < 6, then with
probability at least — 6,

R(h) — R(h) < eoB~\/Ro(h). (13)
Plugging in the following expression @, (%) with respect taR(h) andf{(h)
m -~ u
Ro(h) = m—MR(h) + m—+uR(h)’ (14)

and solving the second-degree equatioRih) yields directly the statement of the theorem. [

Theorem 1 provides a general bound on the regression ertbinvthe transduction setting. The
theorem can also be used to derive a bound in the classificedi®e by simply settingg = 1. The
resulting bound coincides with the tight classification bdwgiven by Vapnik [1998]. The bound
given by Theorem 1 depends on the funcfiband is implicit. The following provides a general and
explicit error bound for transduction regression directly expréssaerms of the empirical error,
the number of equivalenc®(m + w) or the VC-dimensiow/, and the sample sizes andu.

Corollary 1 Let H be a set of hypotheses with VC-dimensiorAssume that the loss function is

bounded: for allh € H andx € X, (h(z) — y.)? < B?, whereB € R, . Then, with probability at
leastl — o, forall h € H,

=)

R(h) <

ua?B? ~ uaB 2
(h) + m + OéB\/R(h) + (m) ; (15)

with o = \/W (log N (m +u) +log 3) < \/% (dlog (m+u)€ + 1og%).

Proof. By Theorem 1, Inequality 15 holds for ail > 0 such that\V'(m +u)T'(«) < 6. By Corol-
lary 2,log (N (m +u) [(a)) <log N (m+u)— 5% a?. Settinglog § to match this upper bound
yields the expression @f given above. Slncﬁ/(m + u) is bounded by the shattering coefficient of

H of orderm + u, by Sauer's lemmdpg N (m + u) < dlog (m“)e . This gives the upper bound
onc in terms of the VC-dimension. U

The bound is explicit and can be readily used within the $tmat Risk Minimization (SRM) frame-
work, either by using the expression @fin terms of the VC-dimension, or the tighter expression
with respect to the number of equivalence clas§eslin the latter case, a structure of increasing
number of equivalence classes can be constructed as iniRyd@98, page 360]. A more practical
algorithm inspired by these concepts is described in thésestion.

4 Transductive Regression Algorithm

This section presents an algorithm for the transductivesssgon problem.

Before presenting this algorithm, let us first emphasizetth@algorithms introduced for transduc-
tive classification problems, e.g., transductive SVMs [Map1998, Joachims, 1999], cannot be
readily used for regression. These algorithms typicallgctehe hypothesis, out of a hypothesis
spaceH, that minimizes the following optimization function

mln h)+C— ZL (i), y4) +Cl ZL xm-ﬁ-i)ay:z—ﬁ-i)v (16)
i=1

y7n+1



whereQ(h) is a capacity measure terthjs the loss function used; > 0 andC’ > 0 regularization
parameters, and where the minimum is taken over all posiibsy, . ,,...,y;, ., for the test
points. In regression, this scheme would lead to a trividhtsm not exploiting the transduction
setting. Indeed, leky be the hypothesis minimizing the first two terms, that is tbkitson of
the induction problem. For the particular choigg ,; = ho(zm4i), @ = 1,...,u, the third term
vanishes. Thushg is also minimizing the sum of all three terms. In two-groupssification,
the trivial solution is typically not the solution of the nimization problem because in general
ho(@m+4) is notin{0, 1}.

The main idea behind the design of our algorithm is to expihatadditional information provided in
transduction, that is the position of the unlabeled exampbrir algorithm has two stages. The first
stage is based on the position of unlabeled points. For edabeled point:;,i = m+1, ..., m+u,

a local estimate labeg}; is determined using the labeled points in the neighborhdad .olIn the
second stage, a global hypothekis found that best matches all labels, those of the trainatg d
and the estimate labels.

This second stage is critical and distinguishes our metrard bther suggested ones. While using
local information to determine labels is important (seesfcample the discussion of Vapnik [1998]),
it is not sufficient for a robust prediction. A global estiraf all labels is needed to make predictions
less vulnerable to noise.

4.1 Local Estimates

Let & be a feature mapping fro¥’ to a vector spacé’ provided with a norm. We fix a radius
r > 0 and consider for alt’ € X,,, the ball of radius- centered inP(z’), denoted b)B(fl)(x’?, ).
This defines the neighborhood of the image of each unlabelied. (A single radius: is used for all
neighborhoods to limit the number of parameters for theritlym. Labeled points: € X,,, whose
images®(z) fall within the neighborhood o®(2'), 2’ € X,,, help determine an estimate labehof

With a very large radius, the labels of all training examples contribute to the dééiniof the local
estimates. But, with smaller radii, only a limited numbecomputations are needed. When no such
labeled point exists in the neighborhoodidfe X,, which depends on the radiuselectedy’ is
disregarded in both training stages of the algorithm.

There are many possible ways to define the estimate label of X, based on the neigh-
borhood points. One simple way consists of defining it as tegkted average of the neigh-
borhood labelsy,., where the weights may be defined as the inverse of distarfcdga9 to

®(2'), or as similarity measurek (z, z') when a positive definite kerndl” is associated te.
Thus, when the set of labeled points with images in the neiditnd of ®(2’) is not empty,
I'={ie[l,m]: ®(x;) € B(®(z'),r)} # 0, the estimate label,, of 2’ € X, can be given by:

_ W;Y; X _
ot = ) s Wit v Lo ||@(e) — ®(z)|| <+ or w =K, z).  (17)
icl g

The estimate labels can also be obtained as the solutionoabélinear or kernel ridge regression,
which is what we used in most of our experiments.

In practice, with a relatively small radius the computation of an estimated lalggldepends only
on a limited number of labeled points and their labels, arliite efficient.

4.2 Global Optimization

The second stage of our algorithm consists of selecting athggish that fits best the labels of
the training points and the estimate labels provided in tis¢ §iage. As suggested by Corollary 1,
hypothesis spaces with a smaller number of equivalenceadaguarantee a better generalization
error. The bound also suggests reducing the empirical.€rlos leads us to consider the following
objective function

m m—4u
G = [wl[>+C> (h(z:) —y)* +C" > (hlx:) — 5:)*, (18)
1=1 1=m-+1

whereh is as a linear function with weight vectar € F: Vx € X, h(z) = w - ®(z), and where

C > 0andC’ > 0 are regularization parameters. The first two terms of theailvje function
coincide with those used in standard (kernel) ridge regwassThe third term, which restricts the
estimate error, can be viewed as imposing a smaller numieepavalence classes on the hypothesis
space as suggested by the error bound of Corollary 1. Theraeaniexplicitly exploits knowledge



about the location of all the test points, and limits the mnfjthe hypothesis at these locations,
thereby reducing the number of equivalence classes. Oarritdgn can be viewed as a generalization
of (kernel) ridge regression to the transductive setting.the following, we will show that this

generalized optimization problem admits a closed-formtsmh and a natural kernel-based solution.

4.2.1 Primal solution

Let N be the dimension of the feature space andietc RY*! denote the column matrix whose
components are the coordinatesugf Y € R™*! the column matrix whose components are the
labelsy; of the training examples, and’ € R“*! the column-matrix whose components are the

estimated labelg; of the test examples. L& = [®(x1), ..., ®(z,,)] € RY*™ denote the matrix
whose columns are the components of the image® lof the training examples, and similarly

X' = [®@ms1)s- -, P(Timiu)] € RV*® the matrix corresponding to the test exampléscan
then be rewritten as:
G=[W]P+CIX W -Y|? +CX""W - Y| (19)
G is convex and differentiable and its gradient is given by
VG =2W +20X(XTW - Y) + 20’ X' (X""W - Y'). (20)

The matrixW minimizing G is the unique solution 07G = 0. Since(Iy +C XX T +C’' X'X’T)
is invertible, it is given by the following expression

W= (Iy+CXX" + ' X'X' )" H(CXY +C'X'Y). (21)
This gives a closed-form solution in the primal space basethe inversion of a matrix ilRY >
Let T'(N) be the time complexity of computing the inverse of a matriR <. T(N) = O(N?)
using standard methods®(N) = O(N?-37%) with the method of Coppersmith and Winograd. The
time complexity of the computation 3 from X, X', Y, andY” is thus inO(T(N) + (m+u) N?).
When the dimensiotV of the feature space is small compared to the number of examph- «,
which is typical in modern learning applications wheris large, this method remains practical and

leads to a very efficient computation. The use of the so-g¢alepirical kernel mapScholkopfand
Smola, 2002] also makes this method very attractive. Givariael K, the empirical kernel feature

vector associated te is them-dimensional vecto®(z) = [K (z, 1), ..., K(z,7,,)]". Thus, the
dimension of the feature space is th&€n= m. For relatively smalin, even for very large values of
u with respect ton, the solution is efficiently computable and yet benefits ftbmuse of kernels.

This computational advantage is not shared by other methocts as the manifold regularization
techniques [Belkin et al., 2004], or even by the regressichrtique described by [Chapelle et al.,
1999], despite it is based on a primal method (we have deakdl version of that method as well,

see Section 5) since it requires among other things thesioreof a matrix inR***.

OnceW is computed, prediction can be done by compulig W in time O(uN).

4.2.2 Dual solution

The computation can also be done in the dual space, whichefsilus the case of very high-
dimensional feature spaces. ety € RV*(m+4) gndMy € R(m+T4)x1 pe the matrices defined
by:

CY
M= (VX VX)) My = (VEY ). 22)
Then, Equation 21 can be rewritten 8& = (Ix + MXM;)‘lMXMy. To determine the dual
solution, observe that
My (MxMy +9Ix) "' = (MxMx +7Lnia) "My, (23)

wherel,,_ ., denotes the identity matrix @& ("+%*(m+v)  This can be derived without difficulty
from a series expansion M xyM | + vIy)~!. Thus,W can also be computed via:

W =Mx (Lo + K) "My, (24)
where K is the Gram matrixK = M}MX. Let Koy € R“*™ and Koy € R¥X% be

XU, LTS

(K (Zmtis Tmai)1<ij<u) and letKy € RUX(m+4) pe the matrix defined by:
Ks = (VOKy VO Ky)=X"Mx. (25)



No. of unlab. Relative improvement in MSE (%)

Dataset points Our algorithm Chapelle et al. [1999] Belkin et al. [2004]
Boston Housing [13] 25 20.2E14.7 43113 24554
500 8.4£6.9 2.7£3.0 3.9£12.3
California Housing [8] 2,500 25.9+8.3 0.2+0.3 0.0+0.0
5,000 17.24:8.7 0.0+£0.0 0.0+0.0
20,000 22.0+11.0 — —
kin-32th [32] 2,500 9.4£3.7 22126 2.7E31
8,000 18.4+5.9 0.5+0.5 0.9+0.7
500 14.4£10.4 1.5£2.7 26E7.7
Elevators [18] 2500 9.0+6.9 22429 0+0.0
15,000 9.7+5.8 — —

Table 1: Transductive regression experiments. The number in btacieer the name indicates the input
dimensionality of the data set. The number of training exemprasm = 481 for the Boston Housing data
set,m = 25 for the other tasks. The number of unlabeled exampleswas25 for the Boston Housing data
set and varied fromw = 500 to the maximum oR0,000 examples for the California Housing data set. For
u > 10,000, the algorithms of Chapelle et al. [1999] and Belkin et abd2] did not terminate within the time
period of our experiments.

Then, predictions can be made using kernel functions almee X' W can be computed by:
X' TW = X""Mx (Lo + K) "My = Ko(I 10 + K) " 'My.. (26)

When the dimension of the feature spaées very large with respect to the total number of exam-
ples, this can lead to a faster computation of the solutidp..., + K)~'My can be computed in
O(T(m + u) + (m + u)?tx) and predictions are computed in ti@&u (m + u)), wheret x is the
time complexity of the computation df (z, x), z, 2’ € X. As already pointed in the description of
the local estimates, in practice, some unlabeled pointdiaregarded in the training phases because
no labeled point falls in their neighborhood. Thus, instead, a smaller number of unlabeled
examples, < u determines the computational cost.

5 Experimental Results

This section reports the results of our experiments withttaesductive regression algorithm just
presented with several data sets. For comparison, we afdenmented the algorithm of Chapelle
et al. [1999] and that of Belkin et al. [2004], which are amdhg very few algorithms described
in the literature dealing specifically with the problem a@rtsductive regression. For the algorithm
of Chapelle et al. [1999], we in fact derived and implemergetlal solution not described in the
original paper. With the notation used in that paper, it caustioown that

C=I-KK'(KK" +~I)"". (27)

Our comparisons were made using several publicly availageession data setBoston Housing
kin-32fha data set in thKinematicsamily with high unpredictability or noiseCalifornia Housing
andElevatorg[Torgo, 2006]. For the Boston Housing data set, we used time gartitioning of the
training and test sets as in [Chapelle et al., 1998]: training examples angb test examples. The
input variables were normalized to have mean zero and ana@iane. For the kin-32fh, California
Housing, and Elevators data sel§,training examples were used with varying (large) amounts of
test examples2,500 and 8,000 for kin-32fh; from 500 up to 20,000 for California Housing; and
from 500 to 15,000 for Elevators. The experiments were repeated for 100 ranpantitions of
training and test sets.

The kernels used with all algorithms were Gaussian kerifelsneasure the improvement produced
by the transductive inference algorithms, we used kerdgkrregression as a baseline. The optimal
values for the width of the Gaussianand the ridge% were determined using cross-validation.
These parameters were then fixed at these values. The ragaaiameters for our algorithm,
andC’, were determined using a grid search and cross-validafioa parameters of the algorithms
of Chapelle et al. [1999] and Belkin et al. [2004] were det@ed in the same way. Alternatively, the
parameters could be selected using the explicit VC-dinmengeneralization bound of Corollary 1.
For our algorithm, we found the best values-db be typically among the.5% smallest distances
between training and test points. Thus, each estimate edetietermined by only a small number
of labeled points.

For our algorithm, we experimented both with the dual solutising Gaussian kernels, and the
primal solution with an empirical Gaussian kernel map azillesd in Section 4.2.1. The results



obtained were very similar, however the primal method wasndtically faster since it required the
inversion of relatively small-dimensional matrices evend large number of unlabeled examples.
For consistency, all the results reported for our methaatedb the dual solution, except from those
with very largeu, e.g.u < 10,000, where the dual method was too time-consuming.

Table 1 shows the results of our experiments. For each da@nsgeeach algorithm, the relative

improvement in mean squared error (MSE) with respect to #seline averaged over the random
partitions is indicated, followed by its standard deviatiGGome improvements were small or not
statistically significant. In general, we observed no gigant performance improvement over the
baseline on any of these data sets using the Laplacian rempddeast squares method of Belkin
et al. [2004]. We note that, while positive classificatiosuis have been previously reported for this
algorithm, no transductive regression experimental tesdms to have been published for it. Our
results for the method of Chapelle et al. [1999] match thepented by the authors for the Boston
Housing data set (both absolute and relative MSE).

Our algorithm achieved a significant improvement of the M8Eali data sets and for different
amounts of unlabeled data and was shown to be practicalrfyr tata sets ¢f0,000 test examples.
This matches many real-world situations where amount cdheled data is orders of magnitude
larger than that of labeled data.

6 Conclusion

We presented a general study of transductive regressiongaiie new and general explicit error
bounds for transductive regression and described a sinmaleganeral algorithm inspired by our
bound that can scale to relatively large data sets. Thetsasfudxperiments show that our algorithm
achieves a smaller error in several tasks compared to otlegiopsly published algorithms for
transductive regression.

The problem of transductive regression arises in a variétgarning contexts, in particular for
learning node labels of a very large graphs such as the wegihgrahis leads to computational
problems that may require approximations or new algorithiis hope that our study will be useful
for dealing with these and other similar transduction regjen problems.
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A Transductive Classification Generalization Error

This section proves a version of the theorem of Vapnik [19@8th provides a generalization bound
for transductive classification. The only difference witle toriginal theorem and proof is that we
need only a one-sided bound, as also pointed out by Derbekto[2004].

Let C be a set of hypotheses (classifiers) over the full sampl@wo hypotheses that lab&l in an
identical way can be viewed as equivalent. SiAt&s finite, there is a finite number of equivalence
classes of hypotheses, we will denote that numbeYy: + ). We also denote bgrr(c) the error
rate of a hypothesis € C over the training setrr(c) its error rate over the test set, and-(h) its
error rate over the full sampl&. By definition:

erro(h) = mTZ ue/r\r(h) + e

err(h). (28)

Then, the following theorem holds.

Theorem 2 Letd > 0, and letey be the minimum value efsuch that\V'(m + u)T'(e) < 4. Then,
with probability at leastl — ¢, forall ¢ € C,

err(c) —err(c) < €. (29)

erro(c)
Proof. Fixc € C. Letk be the number of errors efover X'. The probability that makes exactly
. L)) - .
r errors on the training sample is* (mf’;u)T . Thus, by definition of” (Equation 3), for alk > 0

and allk € N such thatue < k < m(1 — €) 4 u,

Prlerr(c) — érr(c) > €] = Pr[k I €] =T(e, k). (30)
u m
By definition,errq(c) = m’iu. Thus, substituting/errq(c)e for e in Equation 30 yields:
Prlerr(c) — érr(c) > ev/erro(c)] = I'( ]j_ e, k) < T(e), (31)
m+u

andPr[sup e err(c) — érr(c) > ey/erro(c)] < N(m + u)T(e€), which proves the theorem. [J

B Explicit Bound for T

Proposition 1 The following bound holds for atl and & such thatue < k < (1 — ¢)m + w:

1 (m+u+2)
2(k+1)(m+u—k+ 1)mue2' (32)

logT(e, k) < —

Proof. The proofis a generalization of a proof given by Vapnik [1P@8 the specific case where
m = u. Instead off", it turns out to be more convenient to work with the functitie, k) defined
by:

kY (m+u—Fk
(e, k) = Z M (33)

reJ(m,u,e) (mﬂtu) ’



whereJ (m, u, k, €) is the set of integers such thatmax(0, k — u) < r < min(m, k) and2== —
" : . ok

- < —e. The last conditions can be written equivalently as- 2°> > “2=. The change of

variabler’ = k — r leads to:

k\ (m+u—Fk
D(ek)= > LIS, (34)

k—r’€l(m,u,e) (m’rj;u)

Observe that:

k—r"€lI(m,ue) k-1 — mk —ume g hu ume

r
u-+m u-+m u-+m u-+m

<’ e J(u,m,e).

(35)
Thus, we can obtaif from I’ simply by swappingn andu. In view of that, we can focus on
deriving a bound fotog I/ (¢, k). Letu = —2—. Note thatr € J(u, m, ) impliesr > pk + pue.

m~+tu’

Let
_ Q0% _prt)  (k=r)m—r)
Plr) = ey and ) =y T Dkt O

Letv = max(0, k — m) andw = min(k, m), and defined(r) = 31" p(i).

This brings us to study the functiafir). Lett = r— u(k—1), theng(r) can be written as a function

of ¢, F(t):

(Q—pwk+pl—t [m—pk-1)]—t

r)=F(t)= ,
W)= FO = (T =]t - (- (k- D] 1 ¢

for 0 < ¢ < min((1 — p)k + p,m — p(k — 1)). Form < u, or equivalentlyy < 3, F(t) can be

upper-bounded by the functid@k(¢) defined as follows (the case > u can be treated in a similar
way):

37)

A=)+ =t m—pk-1)]—-t  a -t b —t
FO<GO="703 0+t u-a-wh-0+t crtari=" ©9

For0 <t < min(a’, ), letg(t) =log G(t). Note thatfj—,/ = ‘;—,/ anda’ +b' +c+d =m+u+2.
Thus,g(0) = 0 and the derivative of at0 is given by:
11 1 1 m+u+ 2 (m + u)?
")=—(=+=-+—-+=)=— . 39
g(0) (a’+b’+c’+d’) (k+1D)(m+u—k+1) mu (39)
Using these properties of the functignand the following expression af in terms ofp and g:
dir+1) = Zq‘.u;lp(i)q(i) (the remaining details of the calculation are left to a j@inersion),

i=

one can prove that:

log I" (e, k) = log d([uk + jue]) < =g/ (0) (suue)™. (40)

N =

(m+u+2)

_1 2
2 (FF D) (mtu—kt1) THUE O

Plugging in the expression pf= = leads togg'(0) (pue)? =
Our bound generalizes the bound of Vapnik [1998] given fa plarticular case ofn = u. It

coincides with Vapnik’s bound for these values of the patanse Hush and Scovel [2005] also gave
a bound on this same hypergeometric functivfor use in a slightly different context. It can be
shown that our bound is tighter than that of Hush and Sco@%2for all values of the parameters
and that it is substantially tighter for smaller values ofthich is the range of interest in our context.

Corollary 2 For anye > 0, the following bound holds fdr (¢):

- 1 mu 1 1 mu
< —= - Zx-= 2,
logT'(e) < 2m—|—u1—|—i€ e (41)
Proof. By Proposition 1, for alt > 0 and allk € N such thatuie < k < m(1 —¢€) + u,
k 2)muke?
o T( k) < (m + u + 2)muke (42)

m+u = 2k+D)(m+u)(mtu—k+1)



Let g(k) denote the factor in this bound that varies with
k

k) = . 43
9B = T DT u kT D) (43)

Forue < k < m + u, the derivative of; is given by:
g,(k):k(k—l-l)—i—(m—i—u—k—l-l)>O. (a4)

(k+12(m+u—k+1)2 —

Thus, the maximum of the bound of Proposition 1 is achieved fe ue. Plugging in that value of
k in the right-hand side of the Inequality 42 leads to (forealt 0):

_ 1 m+u—+2 mu?
logI’ < —= 3 45
ogl(e) = 2(ue—i—1)(m—|—u—ue—|—l)m—i—u6 (45)
_ 1 mu m+u+ 2 ue (46)

2m+um+u—ue+1 ue+1
< —l ma —1 T ezz—l mu €. 47

2m—+u 1+E 2m+u
O

We have in fact derived significantly tighter bounds witlgstly more complicated expressions for
the functionl” that we will report elsewhere.



