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Abstract

In many modern large-scale learning applications, the amount of unlabeled data
far exceeds that of labeled data. A common instance of this problem is thetrans-
ductivesetting where the unlabeled test points are known to the learning algo-
rithm. This paper presents a study of regression problems inthat setting. It
presentsexplicit VC-dimension error bounds for transductive regression that hold
for all bounded loss functions and coincide with the tight classification bounds of
Vapnik when applied to classification. It also presents a newtransductive regres-
sion algorithm inspired by our bound that admits a primal andkernelized closed-
form solution and deals efficiently with large amounts of unlabeled data. The
algorithm exploits the position of unlabeled points to locally estimate their labels
and then uses a global optimization to ensure robust predictions. Our study also
includes the results of experiments with several publicly available regression data
sets with up to20,000 unlabeled examples. The comparison with other transduc-
tive regression algorithms shows that it performs well and that it can scale to large
data sets.

1 Introduction

In many modern large-scale learning applications, the amount of unlabeled data far exceeds that of
labeled data. Large amounts of digitized data are widely available but the cost of labeling is often
prohibitive since it typically requires human assistance.Semi-supervised learning or transductive
inference leverage unlabeled data to achieve better predictions and are thus particularly relevant to
modern applications. Semi-supervised learning consists of using both labeled and unlabeled data
to find a hypothesis that accurately labels unseen examples.Transductive inference uses the same
information but only aims at predicting the labels of the known unlabeled examples.

This paper deals with regression problems in the transductive setting, which arise in a variety of
contexts. This may be to predict the real-valued labels of the nodes of a known graph in compu-
tational biology, or the scores associated to known documents in information extraction problems.
The problem of transduction inference was originally formulated and analyzed by Vapnik [1982]
who described it as a simpler task than the traditional induction treated in machine learning. A
number of recent publications have dealt with the topic of transductive inference [Vapnik, 1998,
Joachims, 1999, Bennett and Demiriz, 1998, Chapelle et al.,1999, Graepel et al., 1999, Schuurmans
and Southey, 2002, Corduneanu and Jaakkola, 2003, Zhu et al., 2004, Lanckriet et al., 2004, Der-
beko et al., 2004, Belkin et al., 2004, Zhou et al., 2005]. But, with the exception of [Chapelle et al.,
1999], [Schuurmans and Southey, 2002], and [Belkin et al., 2004], this work has primarily dealt
with classification problems.

We present a specific study of transductive regression. We give new error bounds for transductive
regression that hold for all bounded loss functions and coincide with the tight classification bounds of
Vapnik [1998] when applied to classification. Our results also include explicit VC-dimension bounds
for transductive regression. This contrasts with the original regression bound given by Vapnik [1998]
which assumes a specific condition of global regularity on the class of functions and is based on a
complicated and implicit function of the samples sizes and the confidence parameter. As stated by
Vapnik [1998], this function must be “tabulated by a computer”.



We also present a new algorithm for transductive regressioninspired by our bound which first ex-
ploits the position of unlabeled points to locally estimatetheir labels, and then uses a global opti-
mization to ensure robust predictions. We show that our algorithm admits both a primal and a ker-
nelized closed-form solution. Existing algorithms for thetransductive setting require the inversion
of a matrix whose dimension is either the total number of unlabeled and labeled examples [Belkin
et al., 2004], or the total number of unlabeled examples [Chapelle et al., 1999]. This may be pro-
hibitive for many real-world applications with very large amounts of unlabeled examples. One of the
original motivations for our work was to design algorithms dealing precisely with such situations.
When the dimension of the feature spaceN is not too large, our algorithm provides a very efficient
solution whose cost is dominated by the construction and inversion of anN × N -matrix. Similarly,
when the number of training pointsm is small compared to the number of unlabeled points, using
an empirical kernel map, our algorithm requires only constructing and inverting anm × m-matrix.

Our study also includes the results of our experiments with several publicly available regression data
sets with up to20,000 unlabeled examples, limited only by the size of the data sets. We compared
our algorithm with those of Belkin et al. [2004] and Chapelleet al. [1999], which are among the
very few algorithms described in the literature dealing specifically with the problem of transductive
regression. The results show that our algorithm performs well in several data sets compared to these
algorithms and that it can scale to large data sets.

The paper is organized as follows. Section 2 describes in more detail the transductive regression
setting we are studying. New generalization error bounds for transductive regression are presented
in Section 3. Section 4 describes and analyzes both the primal and dual versions of our algorithm
and the experimental results of our study are reported in Section 5.

2 Definition of the Problem

Assume that a full sampleX of m + u examples is given. The learning algorithm further receives
the labels of a random subset ofX of sizem which serves as a training sample:

(x1, y1), . . . , (xm, ym) ∈ X × R. (1)

The remainingu unlabeled examples,xm+1, . . . , xm+u ∈ X , serve as test data. The learning
problem that we consider consists of predicting accuratelythe labelsym+1, . . . , ym+u of the test
examples. No other test examples will ever be considered. This is atransduction regressionproblem
[Vapnik, 1998].1 It differs from the standard (induction) regression estimation problem by the fact
that the learning algorithm is given the unlabeled test examples beforehand. Thus, it may exploit
that information and achieve a better result than via the standard induction.

In what follows, we consider a hypothesis spaceH of real-valued functions for regression estima-
tion. For a hypothesish ∈ H , we denote byR0(h) its mean squared error on the full sample, by
R̂(h) its error on the training data, and byR(h) the error ofh on the test examples:

R0(h) =
1

m + u

m+u∑

i=1

(h(xi)−yi)
2 R̂(h) =

1

m

m∑

i=1

(h(xi)−yi)
2 R(h) =

1

u

m+u∑

i=m+1

(h(xi)−yi)
2.

(2)
For convenience, we will sometimes denote byyx = yi the label of a pointx = xi ∈ X .

3 Transductive Regression Generalization Error

This section presents explicit generalization error bounds for transductive regression.

Vapnik [1998] introduced and analyzed the problem of transduction and presented transductive in-
ference bounds for both classification and regression. His regression bound assumes however a
specific regularity condition on the hypothesis functions leading in particular to a surprising bound
where no error on the training data implies zero generalization error. The bound has the multiplica-
tive form: R(h) ≤ Ω(m, u, d, δ)R̂(h), whered is the VC-dimension of the class of hypotheses used
andδ is the confidence parameter. Furthermore, for certain values of the parameters, for example
largerds or smallerδs,Ω becomes infinite and the bound is ineffective [Vapnik, 1998,page 349].Ω
is also based on a complicated and implicit function ofm, u, andδ, which makes its interpretation
difficult. For example, it is hard to analyze the asymptotic behavior of the bound for largeu.

1This is in fact one of the two transduction settings discussed by [Vapnik, 1998], but, under some general
conditions, the results proved with this setting carry overto the other.



Instead, our bounds simply hold for general bounded loss functions and, when applied to classifica-
tion, coincide with the tight classification bounds of Vapnik [1998]. Our results also include explicit
VC-dimension bounds for transductive regression. To the best of our knowledge, these are the first
general explicit bounds for transductive regression.

Our first bound uses the function̄Γ defined as follows. LetΓ(ǫ, k) be defined by:

∀ǫ ≥ 0, ∀k ∈ N, uǫ ≤ k ≤ m(1 − ǫ) + u, Γ(ǫ, k) =
∑

r∈I(m,u,ǫ)

(
k
r

)(
m+u−k

m−r

)
(
m+u

m

) , (3)

whereI(m, u, k, ǫ) is the set of integersr such that: k−r
u − r

m > ǫ andmax(0, k − u) ≤ r ≤
min(m, k). Γ(ǫ, k) represents the probability of observing a difference in error rate of more thanǫ
between the training and test set when the total number of errors isk (see Appendix A). Then̄Γ is

defined as̄Γ(ǫ) = maxk Γ(
√

k
m+uǫ, k). Γ̄ is used in the transductive classification bound of Vapnik

[1998] (see Theorem 2, Appendix A). Corollary 2 (Appendix B)gives an upper bound on̄Γ.

For any subsetX ′ ⊆ X , any non-negative real numbert ≥ 0, and hypothesish ∈ H , let Θ(h, t,X ′)
denote the fraction of the pointsxi ∈ X ′, i = 1, . . . , k, such that(h(xi) − yi)

2 − t > 0. Thus,
Θ(h, t,X ′) represents the error rate over the sampleX ′ of the classifier that associates to a pointx

the value zero if(h(x) − yx)2 ≤ t, one otherwise.

Two classifiers associated in this way toΘ(h, t,X ) andΘ(h′, t′,X ) can be viewed as equivalent if
they labelX in an identical way. SinceX is finite, there is a finite number of equivalence classes of
such classifiers, we will denote that number byN (m + u).

Theorem 1 Letδ > 0, and letǫ0 > 0 be the minimum value ofǫ such thatN (m +u)Γ̄(ǫ) ≤ δ, and
assume that the loss function is bounded: for allh ∈ H andx ∈ X , (h(x) − yx)2 ≤ B2, where
B ∈ R+. Then, with probability at least1 − δ, for all h ∈ H ,

R(h) ≤ R̂(h) +
uǫ20B

2

2(m + u)
+ ǫ0B

√

R̂(h) +

(
uǫ0B

2(m + u)

)2

. (4)

Proof. For anyh ∈ H , let R1(h) be defined by:

R1(h) =

∫ B2

0

√
Θ(h, t,X ) dt. (5)

By the Cauchy-Schwarz inequality,

R1(h) ≤
(∫ B2

0

Θ(h, t,X ) dt

)1/2(∫ B2

0

1dt

)1/2

= B

(∫ B2

0

Θ(h, t,X ) dt

)1/2

. (6)

Let D denote the uniform probability distribution associated tothe sampleX . Thus,D(x) = 1
m+u

for all x ∈ X . Let Prx∼D[Ex] denote the probability of eventEx when x is randomly drawn
according toD. By definition ofR0 and the Lebesgue integral, for allh ∈ H ,

R0(h) =

∫

X

(h(x)−yx)2D(x) dx =

∫ ∞

0

Pr
x∼D

[(h(x)−yx)2 > t] dt =

∫ B2

0

Θ(h, t,X ) dt. (7)

Similarly, settingXm = {xi ∈ X : i ∈ [1, m]} andXu = {xi ∈ X : i ∈ [m + 1, m + u]}, we have

R̂(h) =

∫ B2

0

Θ(h, t,Xm) dt and R(h) =

∫ B2

0

Θ(h, t,Xu) dt. (8)

In view of Equation 7, Inequality 6 can be rewritten as:R1(h) ≤ B
√

R0(h). By Theorem 2
Appendix A, for allǫ > 0 and for anyt ≥ 0,

Pr[sup
h∈H

Θ(h, t,Xu) − Θ(h, t,Xm)√
Θ(h, t,X )

> ǫ] ≤ N (m + u)Γ̄(ǫ). (9)



Fix ǫ > 0. Then, with probability at least1 −N (m + u)Γ̄(ǫ), for all integersn > 1 andi ≥ 0,

Θ(h, iB2

n ,Xu) − Θ(h, iB2

n ,Xm)√
Θ(h, iB2

n ,X )
≤ ǫ. (10)

Then, the convergence of the Riemann sums to the integral ensures that

R(h) − R̂(h) = lim
n→∞

1

n

n∑

i=0

Θ(h,
iB2

n
,Xu) − 1

n

n∑

i=0

Θ(h,
iB2

n
,Xm) (11)

≤ ǫ lim
n→∞

1

n

n∑

i=0

√
Θ(h,

iB2

n
,X ) = ǫR1(h) ≤ ǫB

√
R0(h). (12)

Let δ > 0 and selectǫ = ǫ0 as the minimum value ofǫ such thatN (m + u)Γ̄(ǫ) ≤ δ, then with
probability at least1 − δ,

R(h) − R̂(h) ≤ ǫ0B
√

R0(h). (13)

Plugging in the following expression ofR0(h) with respect toR(h) andR̂(h)

R0(h) =
m

m + u
R̂(h) +

u

m + u
R(h), (14)

and solving the second-degree equation inR(h) yields directly the statement of the theorem.

Theorem 1 provides a general bound on the regression error within the transduction setting. The
theorem can also be used to derive a bound in the classification case by simply settingB = 1. The
resulting bound coincides with the tight classification bound given by Vapnik [1998]. The bound
given by Theorem 1 depends on the functionΓ̄ and is implicit. The following provides a general and
explicit error bound for transduction regression directly expressed in terms of the empirical error,
the number of equivalenceN (m + u) or the VC-dimensiond, and the sample sizesm andu.

Corollary 1 Let H be a set of hypotheses with VC-dimensiond. Assume that the loss function is
bounded: for allh ∈ H andx ∈ X , (h(x) − yx)2 ≤ B2, whereB ∈ R+. Then, with probability at
least1 − δ, for all h ∈ H ,

R(h) ≤ R̂(h) +
uα2B2

2(m + u)
+ αB

√

R̂(h) +

(
uαB

2(m + u)

)2

, (15)

with α =
√

2(m+u)
mu

(
logN (m + u) + log 1

δ

)
≤
√

2(m+u)
mu

(
d log (m+u)e

d + log 1
δ

)
.

Proof. By Theorem 1, Inequality 15 holds for allα > 0 such thatN (m+u)Γ̄(α) ≤ δ. By Corol-
lary 2,log

(
N (m + u) Γ̄(α)

)
≤ logN (m+u)− 1

2
mu

m+uα2. Settinglog δ to match this upper bound
yields the expression ofα given above. SinceN (m + u) is bounded by the shattering coefficient of
H of orderm + u, by Sauer’s lemma,logN (m + u) ≤ d log (m+u)e

d . This gives the upper bound
onα in terms of the VC-dimension.

The bound is explicit and can be readily used within the Structural Risk Minimization (SRM) frame-
work, either by using the expression ofα in terms of the VC-dimension, or the tighter expression
with respect to the number of equivalence classesN . In the latter case, a structure of increasing
number of equivalence classes can be constructed as in [Vapnik, 1998, page 360]. A more practical
algorithm inspired by these concepts is described in the next section.

4 Transductive Regression Algorithm

This section presents an algorithm for the transductive regression problem.

Before presenting this algorithm, let us first emphasize that the algorithms introduced for transduc-
tive classification problems, e.g., transductive SVMs [Vapnik, 1998, Joachims, 1999], cannot be
readily used for regression. These algorithms typically select the hypothesish, out of a hypothesis
spaceH , that minimizes the following optimization function

min
y∗

m+i
,i=1,...,u

Ω(h) + C
1

m

m∑

i=1

L (h(xi), yi) + C′ 1

u

u∑

i=1

L
(
h(xm+i), y

∗
m+i

)
, (16)



whereΩ(h) is a capacity measure term,L is the loss function used,C ≥ 0 andC′ ≥ 0 regularization
parameters, and where the minimum is taken over all possiblelabelsy∗

m+1, . . . , y
∗
m+u for the test

points. In regression, this scheme would lead to a trivial solution not exploiting the transduction
setting. Indeed, leth0 be the hypothesis minimizing the first two terms, that is the solution of
the induction problem. For the particular choicey∗

m+i = h0(xm+i), i = 1, . . . , u, the third term
vanishes. Thus,h0 is also minimizing the sum of all three terms. In two-group classification,
the trivial solution is typically not the solution of the minimization problem because in general
h0(xm+i) is not in{0, 1}.

The main idea behind the design of our algorithm is to exploitthe additional information provided in
transduction, that is the position of the unlabeled examples. Our algorithm has two stages. The first
stage is based on the position of unlabeled points. For each unlabeled pointxi, i = m+1, . . . , m+u,
a local estimate label̄yi is determined using the labeled points in the neighborhood of xi. In the
second stage, a global hypothesish is found that best matches all labels, those of the training data
and the estimate labels̄yi.

This second stage is critical and distinguishes our method from other suggested ones. While using
local information to determine labels is important (see forexample the discussion of Vapnik [1998]),
it is not sufficient for a robust prediction. A global estimate of all labels is needed to make predictions
less vulnerable to noise.

4.1 Local Estimates

Let Φ be a feature mapping fromX to a vector spaceF provided with a norm. We fix a radius
r ≥ 0 and consider for allx′ ∈ Xu, the ball of radiusr centered inΦ(x′), denoted byB(Φ(x′), r).
This defines the neighborhood of the image of each unlabeled point. A single radiusr is used for all
neighborhoods to limit the number of parameters for the algorithm. Labeled pointsx ∈ Xm whose
imagesΦ(x) fall within the neighborhood ofΦ(x′), x′∈Xu, help determine an estimate label ofx′.

With a very large radiusr, the labels of all training examples contribute to the definition of the local
estimates. But, with smaller radii, only a limited number ofcomputations are needed. When no such
labeled point exists in the neighborhood ofx′ ∈ Xu, which depends on the radiusr selected,x′ is
disregarded in both training stages of the algorithm.

There are many possible ways to define the estimate label ofx′ ∈ Xu based on the neigh-
borhood points. One simple way consists of defining it as the weighted average of the neigh-
borhood labelsyx, where the weights may be defined as the inverse of distances of Φ(x) to
Φ(x′), or as similarity measuresK(x, x′) when a positive definite kernelK is associated toΦ.
Thus, when the set of labeled points with images in the neighborhood ofΦ(x′) is not empty,
I = {i ∈ [1, m] : Φ(xi) ∈ B(Φ(x′), r)} 6= ∅, the estimate label̄yx′ of x′ ∈ Xu can be given by:

ȳx′ =
∑

i∈I

wiȳi∑
i wi

with w−1
i = ‖Φ(x′) − Φ(xi)‖ ≤ r or wi = K(x′, xi). (17)

The estimate labels can also be obtained as the solution of a local linear or kernel ridge regression,
which is what we used in most of our experiments.

In practice, with a relatively small radiusr, the computation of an estimated labelȳi depends only
on a limited number of labeled points and their labels, and isquite efficient.

4.2 Global Optimization

The second stage of our algorithm consists of selecting a hypothesish that fits best the labels of
the training points and the estimate labels provided in the first stage. As suggested by Corollary 1,
hypothesis spaces with a smaller number of equivalence classes guarantee a better generalization
error. The bound also suggests reducing the empirical error. This leads us to consider the following
objective function

G = ||w||2 + C

m∑

i=1

(h(xi) − yi)
2 + C′

m+u∑

i=m+1

(h(xi) − ȳi)
2, (18)

whereh is as a linear function with weight vectorw ∈ F : ∀x ∈ X , h(x) = w · Φ(x), and where
C ≥ 0 andC′ ≥ 0 are regularization parameters. The first two terms of the objective function
coincide with those used in standard (kernel) ridge regression. The third term, which restricts the
estimate error, can be viewed as imposing a smaller number ofequivalence classes on the hypothesis
space as suggested by the error bound of Corollary 1. The constraint explicitly exploits knowledge



about the location of all the test points, and limits the range of the hypothesis at these locations,
thereby reducing the number of equivalence classes. Our algorithm can be viewed as a generalization
of (kernel) ridge regression to the transductive setting. In the following, we will show that this
generalized optimization problem admits a closed-form solution and a natural kernel-based solution.

4.2.1 Primal solution

Let N be the dimension of the feature space and letW ∈ R
N×1 denote the column matrix whose

components are the coordinates ofw, Y ∈ R
m×1 the column matrix whose components are the

labelsyi of the training examples, andY′ ∈ R
u×1 the column-matrix whose components are the

estimated labels̄yi of the test examples. LetX = [Φ(x1), . . . , Φ(xm)] ∈ R
N×m denote the matrix

whose columns are the components of the images byΦ of the training examples, and similarly
X

′ = [Φ(xm+1), . . . , Φ(xm+u)] ∈ R
N×u the matrix corresponding to the test examples.G can

then be rewritten as:

G = ‖W‖2 + C‖X⊤
W − Y‖2 + C′‖X′⊤

W − Y
′‖2. (19)

G is convex and differentiable and its gradient is given by

∇G = 2W + 2C X(X⊤
W − Y) + 2C′

X
′(X′⊤

W − Y
′). (20)

The matrixW minimizingG is the unique solution of∇G = 0. Since(IN +C XX
⊤ +C′

X
′
X

′⊤)
is invertible, it is given by the following expression

W = (IN + C XX
⊤ + C′

X
′
X

′⊤)−1(C XY + C′
X

′
Y

′). (21)

This gives a closed-form solution in the primal space based on the inversion of a matrix inRN×N .
Let T (N) be the time complexity of computing the inverse of a matrix inR

N×N . T (N) = O(N3)
using standard methods orT (N) = O(N2.376) with the method of Coppersmith and Winograd. The
time complexity of the computation ofW fromX,X′,Y, andY′ is thus inO(T (N)+(m+u)N2).

When the dimensionN of the feature space is small compared to the number of examplesm + u,
which is typical in modern learning applications whereu is large, this method remains practical and
leads to a very efficient computation. The use of the so-called empirical kernel map[Schölkopf and
Smola, 2002] also makes this method very attractive. Given akernelK, the empirical kernel feature
vector associated tox is them-dimensional vectorΦ(x) = [K(x, x1), . . . , K(x, xm)]⊤. Thus, the
dimension of the feature space is thenN = m. For relatively smallm, even for very large values of
u with respect tom, the solution is efficiently computable and yet benefits fromthe use of kernels.

This computational advantage is not shared by other methodssuch as the manifold regularization
techniques [Belkin et al., 2004], or even by the regression technique described by [Chapelle et al.,
1999], despite it is based on a primal method (we have deriveda dual version of that method as well,
see Section 5) since it requires among other things the inversion of a matrix inRu×u.

OnceW is computed, prediction can be done by computingX
′⊤

W in timeO(uN).

4.2.2 Dual solution

The computation can also be done in the dual space, which is useful in the case of very high-
dimensional feature spaces. LetMX ∈ R

N×(m+u) andMY ∈ R
(m+u)×1 be the matrices defined

by:

MX =
(√

C X
√

C′ X
′
)

MY =

( √
C Y√
C′ Y

′

)
. (22)

Then, Equation 21 can be rewritten as:W = (IN + MXM
⊤
X)−1

MXMY . To determine the dual
solution, observe that

M
⊤
X(MXM

⊤
X + γIN )−1 = (M⊤

XMX + γIm+u)−1
M

⊤
X , (23)

whereIm+u denotes the identity matrix ofR(m+u)×(m+u). This can be derived without difficulty
from a series expansion of(MXM

⊤
X + γIN )−1. Thus,W can also be computed via:

W = MX(Im+u + K)−1
MY , (24)

where K is the Gram matrixK = M
⊤
XMX . Let K21 ∈ R

u×m and K22 ∈ R
u×u be

the sub-matrices of the GramK defined by: K21 = (K(xm+i, xj)1≤i≤u,1≤j≤m) and K22 =

(K(xm+i, xm+j)1≤i,j≤u) and letK2 ∈ R
u×(m+u) be the matrix defined by:

K2 =
(√

C K21

√
C′ K22

)
= X

′⊤
MX . (25)



No. of unlab. Relative improvement in MSE (%)
Dataset points Our algorithm Chapelle et al. [1999] Belkin et al. [2004]
Boston Housing [13] 25 20.2±14.7 4.3±11.3 2.4±5.4

500 8.4±6.9 2.7±3.0 3.9±12.3
California Housing [8] 2,500 25.9±8.3 0.2±0.3 0.0±0.0

5,000 17.2±8.7 0.0±0.0 0.0±0.0
20,000 22.0±11.0 — —

kin-32fh [32] 2,500 9.4±3.7 2.2±2.6 2.7±3.1
8,000 18.4±5.9 0.5±0.5 0.9±0.7
500 14.4±10.4 1.5±2.7 2.6±7.7

Elevators [18] 2500 9.0±6.9 2.2±2.9 0.0±0.0
15,000 9.7±5.8 — —

Table 1: Transductive regression experiments. The number in brackets after the name indicates the input
dimensionality of the data set. The number of training examples wasm = 481 for the Boston Housing data
set,m = 25 for the other tasks. The number of unlabeled examples wasu = 25 for the Boston Housing data
set and varied fromu = 500 to the maximum of20,000 examples for the California Housing data set. For
u ≥ 10,000, the algorithms of Chapelle et al. [1999] and Belkin et al. [2004] did not terminate within the time
period of our experiments.

Then, predictions can be made using kernel functions alone sinceX ′⊤W can be computed by:

X
′⊤

W = X
′⊤

MX(Im+u + K)−1
MY = K2(Im+u + K)−1

MY . (26)

When the dimension of the feature spaceN is very large with respect to the total number of exam-
ples, this can lead to a faster computation of the solution.(Im+u + K)−1

MY can be computed in
O(T (m + u) + (m + u)2tK) and predictions are computed in timeO(u (m + u)), wheretK is the
time complexity of the computation ofK(x, x), x, x′ ∈ X . As already pointed in the description of
the local estimates, in practice, some unlabeled points aredisregarded in the training phases because
no labeled point falls in their neighborhood. Thus, insteadof u, a smaller number of unlabeled
examplesu′ ≤ u determines the computational cost.

5 Experimental Results

This section reports the results of our experiments with thetransductive regression algorithm just
presented with several data sets. For comparison, we also implemented the algorithm of Chapelle
et al. [1999] and that of Belkin et al. [2004], which are amongthe very few algorithms described
in the literature dealing specifically with the problem of transductive regression. For the algorithm
of Chapelle et al. [1999], we in fact derived and implementeda dual solution not described in the
original paper. With the notation used in that paper, it can be shown that

C = I − K̂K̂
⊤(K̂K̂

⊤ + γI)−1. (27)

Our comparisons were made using several publicly availableregression data sets:Boston Housing,
kin-32fha data set in theKinematicsfamily with high unpredictability or noise,California Housing,
andElevators[Torgo, 2006]. For the Boston Housing data set, we used the same partitioning of the
training and test sets as in [Chapelle et al., 1999]:481 training examples and25 test examples. The
input variables were normalized to have mean zero and a variance one. For the kin-32fh, California
Housing, and Elevators data sets,25 training examples were used with varying (large) amounts of
test examples:2,500 and8,000 for kin-32fh; from500 up to 20,000 for California Housing; and
from 500 to 15,000 for Elevators. The experiments were repeated for 100 randompartitions of
training and test sets.

The kernels used with all algorithms were Gaussian kernels.To measure the improvement produced
by the transductive inference algorithms, we used kernel ridge regression as a baseline. The optimal
values for the width of the Gaussianσ and the ridge1

C were determined using cross-validation.
These parameters were then fixed at these values. The remaining parameters for our algorithm,r
andC′, were determined using a grid search and cross-validation.The parameters of the algorithms
of Chapelle et al. [1999] and Belkin et al. [2004] were determined in the same way. Alternatively, the
parameters could be selected using the explicit VC-dimension generalization bound of Corollary 1.
For our algorithm, we found the best values ofr to be typically among the2.5% smallest distances
between training and test points. Thus, each estimate labelwas determined by only a small number
of labeled points.

For our algorithm, we experimented both with the dual solution using Gaussian kernels, and the
primal solution with an empirical Gaussian kernel map as described in Section 4.2.1. The results



obtained were very similar, however the primal method was dramatically faster since it required the
inversion of relatively small-dimensional matrices even for a large number of unlabeled examples.
For consistency, all the results reported for our method relate to the dual solution, except from those
with very largeu, e.g.u ≤ 10,000, where the dual method was too time-consuming.

Table 1 shows the results of our experiments. For each data set and each algorithm, the relative
improvement in mean squared error (MSE) with respect to the baseline averaged over the random
partitions is indicated, followed by its standard deviation. Some improvements were small or not
statistically significant. In general, we observed no significant performance improvement over the
baseline on any of these data sets using the Laplacian regularized least squares method of Belkin
et al. [2004]. We note that, while positive classification results have been previously reported for this
algorithm, no transductive regression experimental result seems to have been published for it. Our
results for the method of Chapelle et al. [1999] match those reported by the authors for the Boston
Housing data set (both absolute and relative MSE).

Our algorithm achieved a significant improvement of the MSE in all data sets and for different
amounts of unlabeled data and was shown to be practical for large data sets of20,000 test examples.
This matches many real-world situations where amount of unlabeled data is orders of magnitude
larger than that of labeled data.

6 Conclusion

We presented a general study of transductive regression. Wegave new and general explicit error
bounds for transductive regression and described a simple and general algorithm inspired by our
bound that can scale to relatively large data sets. The results of experiments show that our algorithm
achieves a smaller error in several tasks compared to other previously published algorithms for
transductive regression.

The problem of transductive regression arises in a variety of learning contexts, in particular for
learning node labels of a very large graphs such as the web graph. This leads to computational
problems that may require approximations or new algorithms. We hope that our study will be useful
for dealing with these and other similar transduction regression problems.
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A Transductive Classification Generalization Error

This section proves a version of the theorem of Vapnik [1998]which provides a generalization bound
for transductive classification. The only difference with the original theorem and proof is that we
need only a one-sided bound, as also pointed out by Derbeko etal. [2004].

Let C be a set of hypotheses (classifiers) over the full sampleX . Two hypotheses that labelX in an
identical way can be viewed as equivalent. SinceX is finite, there is a finite number of equivalence
classes of hypotheses, we will denote that number byN (m+u). We also denote bŷerr(c) the error
rate of a hypothesisc ∈ C over the training set,err(c) its error rate over the test set, anderr0(h) its
error rate over the full sampleX . By definition:

err0(h) =
m

m + u
êrr(h) +

u

m + u
err(h). (28)

Then, the following theorem holds.

Theorem 2 Let δ > 0, and letǫ0 be the minimum value ofǫ such thatN (m + u)Γ̄(ǫ) ≤ δ. Then,
with probability at least1 − δ, for all c ∈ C,

err(c) − êrr(c)√
err0(c)

≤ ǫ0. (29)

Proof. Fix c ∈ C. Letk be the number of errors ofc overX . The probability thatc makes exactly

r errors on the training sample is:(
k

r)(
m+u−k

m−r )
(m+u

m )
. Thus, by definition ofΓ (Equation 3), for allǫ ≥ 0

and allk ∈ N such thatuǫ ≤ k ≤ m(1 − ǫ) + u,

Pr[err(c) − êrr(c) > ǫ] = Pr[
k − r

u
− r

m
> ǫ] = Γ(ǫ, k). (30)

By definition,err0(c) = k
m+u . Thus, substituting

√
err0(c)ǫ for ǫ in Equation 30 yields:

Pr[err(c) − êrr(c) > ǫ
√

err0(c)] = Γ(

√
k

m + u
ǫ, k) ≤ Γ̄(ǫ), (31)

andPr[supc∈C err(c) − êrr(c) > ǫ
√

err0(c)] ≤ N (m + u)Γ̄(ǫ), which proves the theorem.

B Explicit Bound for Γ̄

Proposition 1 The following bound holds for allǫ andk such thatuǫ ≤ k ≤ (1 − ǫ)m + u:

log Γ(ǫ, k) ≤ −1

2

(m + u + 2)

(k + 1)(m + u − k + 1)
muǫ2. (32)

Proof. The proof is a generalization of a proof given by Vapnik [1998] for the specific case where
m = u. Instead ofΓ, it turns out to be more convenient to work with the functionΓ′(ǫ, k) defined
by:

Γ′(ǫ, k) =
∑

r∈J(m,u,ǫ)

(
k
r

)(
m+u−k

m−r

)
(
m+u

m

) , (33)



whereJ(m, u, k, ǫ) is the set of integersr such that:max(0, k − u) ≤ r ≤ min(m, k) and k−r
u −

r
m < −ǫ. The last conditions can be written equivalently as:r − mk

u+m > umǫ
u+m . The change of

variabler′ = k − r leads to:

Γ(ǫ, k) =
∑

k−r′∈I(m,u,ǫ)

(
k
r′

)(
m+u−k

u−r′

)
(
m+u

m

) . (34)

Observe that:

k − r′ ∈ I(m, u, ǫ) ⇔ k − r′ − mk

u + m
<

−umǫ

u + m
⇔ r′ − ku

u + m
>

umǫ

u + m
⇔ r′ ∈ J(u, m, ǫ).

(35)
Thus, we can obtainΓ from Γ′ simply by swappingm andu. In view of that, we can focus on
deriving a bound forlog Γ′(ǫ, k). Let µ = m

m+u . Note thatr ∈ J(u, m, ǫ) impliesr > µk + µuǫ.
Let

p(r) =

(
k
r

)(
m+u−k

m−r

)
(
m+u

m

) and q(r) =
p(r + 1)

p(r)
=

(k − r)(m − r)

(r + 1)(u − k + r + 1)
. (36)

Let v = max(0, k − m) andw = min(k, m), and define:d(r) =
∑w

i=r p(i).

This brings us to study the functionq(r). Let t = r−µ(k−1), thenq(r) can be written as a function
of t, F (t):

q(r) = F (t) =
[(1 − µ)k + µ] − t

[µk + (1 − µ)] + t

[m − µ(k − 1)] − t

[u − (1 − µ)(k − 1)] + t
, (37)

for 0 ≤ t ≤ min((1 − µ)k + µ, m − µ(k − 1)). Form ≤ u, or equivalentlyµ ≤ 1
2 , F (t) can be

upper-bounded by the functionG(t) defined as follows (the casem ≥ u can be treated in a similar
way):

F (t) ≤ G(t) =
[(1 − µ)(k + 1)] − t

[µ(k + 1)] + t

[m − µ(k − 1)] − t

[u − (1 − µ)(k − 1)] + t
=

a′ − t

c′ + t

b′ − t

d′ + t
≥ 0. (38)

For0 ≤ t ≤ min(a′, b′), let g(t) = log G(t). Note thata
′

c′ = d′

b′ anda′ + b′ + c′ + d′ = m + u + 2.
Thus,g(0) = 0 and the derivative ofg at0 is given by:

g′(0) = −(
1

a′
+

1

b′
+

1

c′
+

1

d′
) = − m + u + 2

(k + 1)(m + u − k + 1)

(m + u)2

mu
. (39)

Using these properties of the functiong and the following expression ofd in terms ofp and q:
d(r + 1) =

∑w−1
i=r p(i)q(i) (the remaining details of the calculation are left to a journal version),

one can prove that:

log Γ′(ǫ, k) = log d(⌈µk + µuǫ⌉) ≤ 1

2
g′(0)(µuǫ)2. (40)

Plugging in the expression ofµ = m
m+u leads to1

2g′(0)(µuǫ)2 = − 1
2

(m+u+2)
(k+1)(m+u−k+1)muǫ2.

Our bound generalizes the bound of Vapnik [1998] given for the particular case ofm = u. It
coincides with Vapnik’s bound for these values of the parameters. Hush and Scovel [2005] also gave
a bound on this same hypergeometric functionΓ for use in a slightly different context. It can be
shown that our bound is tighter than that of Hush and Scovel [2005] for all values of the parameters
and that it is substantially tighter for smaller values ofǫ, which is the range of interest in our context.

Corollary 2 For anyǫ > 0, the following bound holds for̄Γ(ǫ):

log Γ̄(ǫ) ≤ −1

2

mu

m + u

1

1 + 1
uǫ

ǫ2 ≈ −1

2

mu

m + u
ǫ2. (41)

Proof. By Proposition 1, for allǫ ≥ 0 and allk ∈ N such thatuǫ ≤ k ≤ m(1 − ǫ) + u,

log Γ(

√
k

m + u
ǫ, k) ≤ − (m + u + 2)mukǫ2

2(k + 1)(m + u)(m + u − k + 1)
. (42)



Let g(k) denote the factor in this bound that varies withk:

g(k) =
k

(k + 1)(m + u − k + 1)
. (43)

Foruǫ ≤ k ≤ m + u, the derivative ofg is given by:

g′(k) =
k(k + 1) + (m + u − k + 1)

(k + 1)2(m + u − k + 1)2
≥ 0. (44)

Thus, the maximum of the bound of Proposition 1 is achieved for k = uǫ. Plugging in that value of
k in the right-hand side of the Inequality 42 leads to (for allǫ > 0):

log Γ̄(ǫ) ≤ −1

2

m + u + 2

(uǫ + 1)(m + u − uǫ + 1)

mu2

m + u
ǫ3 (45)

= −1

2

mu

m + u

m + u + 2

m + u − uǫ + 1

uǫ

uǫ + 1
ǫ2 (46)

≤ −1

2

mu

m + u

1

1 + 1
uǫ

ǫ2 ≈ −1

2

mu

m + u
ǫ2. (47)

We have in fact derived significantly tighter bounds with slightly more complicated expressions for
the functionΓ̄ that we will report elsewhere.


