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Abstract

The problem of learning a transduction, that is
a string-to-string mapping, is a common prob-
lem arising in natural language processing and
computational biology. Previous methods pro-
posed for learning such mappings are based on
classificationtechniques. This paper presents a
new and generakgressiontechnique for learn-
ing transductions and reports the results of ex-
periments showing its effectiveness. Our trans-
duction learning consists of two phases: the esti-
mation of a set of regression coefficients and the
computation of the pre-image corresponding to
this set of coefficients. A novel and conceptually
cleaner formulation of kernel dependency esti-
mation provides a simple framework for estimat-
ing the regression coefficients, and an efficient
algorithm for computing the pre-image from the
regression coefficients extends the applicability
of kernel dependency estimation to output se-
guences. We report the results of a series of ex-
periments illustrating the application of our re-
gression technique for learning transductions.

algorithms such as Support Vector Machines (SVMs) or
ridge regression can be applied in a straight-forward man-
ner. Still, the challenge remains as to how naturally extend
learning algorithms to handle structured output spaces and
accurately predict from structure to structure. This paper
presents a new and general method for addressing a com-
mon instance of that problem, that of learning string-to-
string mappings.

The problem of learning a mapping from strings to strings
arises in many areas of text and speech processing. As an
example, an important component of speech recognition or
speech synthesis systems is a pronunciation model, which
provides the possible phonemic transcriptions of a word, or
a sequence of words, e.glata— {d ey t ax, d ey dx ax,

d ae t ax, d ae dx gx An accurate pronunciation model

is crucial for the overall quality of such systems. Another
major task in natural language processing is part-of-dpeec
tagging, which consists of assigning a part-of-speech tag
to each word of a sentence as Mike spoke to the sales-
man— Mike N spoke V to P the D salesmanwhereN
stands for a nouny for a verb,P for a preposition, and

D for a determiner. Similarly, parsing can be viewed as a
string-to-string mapping where the target alphabet costai
parentheses as ilNlike spoke to the salesman (((Mike

N) NP) ((spoke V) (to P) ((the D) (salesman N) NP) VR) S)

1. Introduction A general framework for describing such problems is that

Machine learning has progressively extended its applicagf*l?sagq'rgg tr?gs?;ﬁ;;)(rlsté ttrsgnsgvvgﬁg)er?o;frgTBé(r S{g

tion domain by generalizing existing algorithms to cover 979). M pping ducti the p ¥ -
more complex spaces. Originally, it was centered arounc} ). Most transductions in natural language processing
classifying fixed-size vectors into two or more classes ofre eitheralgebraic or rational. Algebraic transductions
predicting one or several real-valued outputs. Kernel meth®'€ transductions related to context-free languages {Salo
ods revolutionized machine learning by providing elegan aa g‘ Soittola, 19;8, lech %Salomalla, |1986)' Ra’uorélal
extensions to structured input spaces: so long as a sui ransductions are those related to regular languages and ca

: ' e represented by finite-state transducers. Similar trans-
able kernel between two input elements can be define duction learning problems arise in computational biology

. . 4 ) (Durbin et al., 1998).
Appearing inProceedings of the2"¢ International Conference
on Machine LearningBonn, Germany, 2005. Copyright 2005 by Several large-margin classification techniques have been
the author(s)/owner(s). recently proposed for learning such mappings, in particu-
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lar: Maximum Margin Markov Networks (¥Ns) (Taskar f
et al., 2003; Bartlett et al., 2004) and SVMISOS (Tsochan- X* > Y>l< N
taridis et al., 2004). These techniques all treat the legrni AN '

problem just outlined as elassificationproblem over the ~.
pairs of input and output sequende$, V'), imposing that . g

the stringY” matchingX obtain a higher score than all other dx Ss. Oy
strings inY*. In contrast, this paper introduces a new and .

general technigue, Regression for Learning Transductions AR

(RLT), that addresses the problem of learning transdustion A
as aregressiorproblem. Fx 'Fy

S_ee_kln_g aregression solutionis natura_l SINce one can deflr}_e, ure 1.Diagram describing Kernel Dependency Estimation
similarity measures beMeen_tWO possible sequence targe DE). f represents the transduction fralii* to Y* learned by
Y7 andY; associated with an input sequente Such sim- KDE )

ilarities tend to be ignored by a classification loss that as-—
signs to each paifX,Y’) the value one or zero regardless

1
of the closeness betwedfs: image ofg(z) by ®y needs to be computed to determine

RLT consists of two phases: a regression of the input ory(z) = @;1(9@))_

an implicit or explicit feature space and the computation . :

of the output or pre-image from that space. A reformu-'V€ denote byN, the dimension of the feature spag&
lation of Kernel Dependency Estimation (KDE) (Weston @1d byNo that of Fy. When there is no risk of confusion,
et al., 2002) provides a clean framework for estimating'V€ US€ the same notation for a vector, &lgy,(x) or g(z),
the regression coefficients, and the pre-image is compute@d the column matrix representing that vector.

from these coefficients using a novel and efficient algo-n the original presentation of KDE, the first step consisted
rithm based on classical results from graph theory. A maof using K, with Kernel Principal Components Analysis
jor computational advantage of KDE over the classification(KpCA) to reduce the dimension of the feature spage
techniques mentioned is thus that it does not require an eXyveston et al., 2002). Here, we simplify the framework by
haustive pre-image searchBf during training. Our new  not requiring this prior dimensionality reduction anymore

pre-image algorithm extends the applicability of KDE to we now describe two general models for KDE.
output sequences.

This paper describes in detail the transduction regressiolodel 1. Hereg is modeled as a linear function defined
technique RLT and reports the results of experiments showdy .
ing its effectiveness. The paper is organized as follows. Vo € X*, g(z) = Wx(z), 1)

Section 2 describes a conceptually cleaner reformulatiogynereW is an N, x N, real-valued matrix. Different re-
of the KDE method and Section 3 discusses several teChyression algorithms can be used to legror equivalently
niques for faster training within this framework. Section 4 the matrixW, including kernel ridge regression (Saunders
presents our inverse pre-image function for strings. A comet g1, 1998), Support Vector Regression (SVR) (Vapnik,
parison of RLT and other classification-based techniques igggs), or Kernel Matching Pursuit (KMP) (Vincent & Ben-
given in Section 5, which is followed by a series of experi- gio, 2000). SVR and KMP offer the advantage of sparsity

mental results reported in Section 6. and fast training. But, a crucial advantage of kernel ridge
regression in this context is, as we shall see, that it requir
2. Reformulation of Kernel Dependency a single matrix inversion, independently 8%, the number
Estimation of features predicted. MatriX¥V is then the solution of:

Kernel Dependency Estimation (KDE) treats the problem . “ N N 2
of learning the mapping fronk* to Y* as a regression Wa;%]?;inm Zl IW®x (i) = @y ()" + [ W, (2)

problem (Figure 1). Input strings iX* are mapped via

®x to a high-dimensional Hilbert spadéx and similarly  where|| - || » denotes the Frobenius norm and where 0
output strings mapped 6y via the mappingdy. These s a regularization coefficientn is the number of training
mappings can be defined implicitly by the introduction of examples.

positive definite symmetric kernel&x and Ky associ-

ated with the mapping®x and®,. A regression algo- Proposition 2.1. The solutionW is given by:

rithm exploiting the kerneK x, e.g., standard kernel ridge W = Mv (K M7 3
regression (Saunders et al., 1998), can be used to learn v (Kx +91) X 3)
the mappingg from X* to Fy. For prediction, the pre- where My = [®y(y1),..., Py (ym)] iS the Ny x m

matrix whosejth column vector is® 2), similarl
IClassification techniques such as SVMISOS (Tsochantaridi J v () Y

et al., 2004) introduce a loss function to help correct the binary~ Y~ [(I)X(xl)’ Y (I))é(xm)}’h an|? Wg?re_KX IS trf
classification objective function, however. Gram matrix associated to the kerndly: Kx =

(Kx (@i, 75)1<ij<m)-
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Proof. Equation 2 can be rewritten as: subsetn < m of kernel functions in an incremental fash-
ion. This subset is then used to define the expansion. Con-
argﬁniHN WMy — My % +~||W|2. (4)  sider the case of a finite-dimensional output space:
WeRN2XN1
g(x) = (Z anKx(xi,x),..., Z ain, Kx (i, 1)),
Differentiating the expression and setting it to zero yseld icS icS @)
8
2A(WMx — My )ML +29W =0 whereS is the set of indices of the kernel functions used in
& W(MyML ++1) = MyM]. (5)  the expansion, initialized t. The algorithm then consists
X X of repeating the following steps so long|&8 < n:
Thus, W = MyM)T(T(MXM)T( +’{I): 1. Determine the training point; with the largest resid-
= My(MyMx ++1)""My  (6) ual:

= My(KX—i—’yI)_lM)T(,
j= argmax ||®y(y;)— g(z)||*; ()]

where we have used the fact tHal . M x + ~I)~! and €{l,mi\S
M; commute as can be seen for example from a series " .y
expansion of ML My + 71)~". L 2. Addz; to the set of "support vectors” and update

S%SU{Z‘j};

. m N . 2 10
Predictions are made by solving the pre-image problem: @ < argiin S @y (yi) — g2 (10)

f(z)=argmin |[Wdy (z) — ®y ()| The matrix inversion required in step 2 is done with=
yeys Ks 'Ks.Y whereK is the kernel matrix between input
=argmin @y (y) " @y (y) — 20y (y) W x (z) examples indexed by only, andK g .. is the kernel matrix
yeY™ betweenS and all other examples.
=argmin Ky (y,y) — 2(K%) " (Kx + 1) 7'K¥%, In practice, this can be computed incrementally via rank

one updates (Smola & Bartlett,2 2001), which results in a

. . . : running time complexity o) (nm?* N3 ) as with KMP (Vin-

whereKy is theom x 1 column matrix whoseth row is ot g Bengio, 2000) (but téeréﬁ :) 1). A further linear

Ky (y,y:), andK% the column matrix whoséth row is  gneaq_yp is possible by restricting the subset of the data

Kx (x;, ). Thus, remarkablyf(x) can be expressed using 5ints in step 1. Note that this approach differs from KMP

kernel functions alone. in that we select basis functions that approximate all the
output dimensions at once, resulting in faster evaluation

Model 2. In some cases, it may be preferable to learntimes. The union of the support vectors over all output di-

each componeny; of g, 7 = 1,..., No, independently, in  mensions is indeed smaller.

fact by using different input feature vectobsy ; for each

1. Eachg; is then modeled as a linear function defined by 4. Pre-image solution for strings

Ve € X*,1<i< Na,gi(r) = W;®xi(z). (7)  4.1. Ageneral problem: finding pre-images

In fact, more generally, one may wish to define different” Critical component of RLT is the pre-image computa-
subsets of the training data for learning egghA full de- ~ tion. This consists of determining the predicted output:
scription of these generalizations will be given in a longerdiVen z € Fy, the problem consists of finding € Y
version of the paper. As described for the first model, the?Uch thafy (y) = z, see Figure 1. Note that this is a gen-
component functions; can be learned using different re- €ral problem, common to all kernel-based structured output
gression algorithms such as SVR or kernel ridge regressiofproPlems, including Maximum Margin Markov Networks
In all cases, one still needs to solve the pre-image problenj,Jaskar et al., 2003) and SVMISOS (Tsochantaridis et al.,
2004) although it is not explicitly described and discussed
. L. by the authors (see Section 5).
3. Speeding-up training : .
Several instances of the pre-image problem have been stud-
There are several ways of speeding up training when used in the past in cases where the pre-images are fixed-size
ing kernel ridge regression. One solution is to apply in-vectors (Schlkopf & Smola, 2002). The pre-image prob-
complete Cholesky decomposition to the kernel makfix ~ lem is trivial when the feature mapping,- corresponds to
(Bach & Jordan, 2002). To shorten this presentation, we dgolynomial kernels of odd degree sindg- is then invert-
not detail the application of this technique here. Our experible. There also exists a fixed-point iteration approach for
iments have shown a greedy technique to be far more effedRBF kernels. In the next section, we describe a new pre-
tive (see Section 6.4). This consists, as with Kernel Matchimage technique for strings that works with a rather general
ing Pursuit (KMP) (Vincent & Bengio, 2000), of defining a class of string kernels.
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|abc| =2

A ®

4.2.n-gram Kernels

n-gram kernels form a general family of kernels between

strings, or more generally weighted automata, that measure abc]| @
the similarity between two strings using the counts of their @
commonn-gram sequences. Let|,, denote the number of @
occurrences of; in a stringz, then, then-gram kernek,, |abb| @
between two strings andy in Y*, n > 1, is defined by: |abb| = 3
(@) (b)
kn(2,y) = Z 2] Y] (11)
lu|=n Figure 2.(a) The De Bruijn grapldz, s associated with the vector

y in the case of trigramsy = 3). The weight carried by the edge
where the sum runs over all stringsof lengthn. These  from vertexab to vertexbc is the number of occurrences of the
kernels are instances @dtional kernelsand have been used trigramabc as specified by the vectgr (b) The expanded graph
successfully in a variety of difficult prediction tasks ixte H, 3 associated witlt, 5. An edge inG,, 3 is repeated as many
and speech processing (Cortes et al., 2004). times as there were occurrences of the corresponding trigram.

4.3. Pre-image problem forn-gram kernels

7
The pre-image problem fos-gram kernels can be formu- eo‘o
lated as follows. Lek be the alphabet of the strings con-
sidered. Givery = (y1,...,y), wherel = |X|" andy;
is the count for am-gram sequencey, find stringz such  Figyre 3Example of a pre-image computation. The graph
thatfork = 1,...,1, |z|u, = yx. Several standard prob- is”ssociated with the vectoy = (0,1,0,0,0,2,1,1,0)
lems arise in this context: the existenceiogiveny, itS  yhose coordinates indicate the counts of the bigrams
unigueness when it exists, and the need for an efficient al; , .o .c. ba. bb. be. ca. cb.ce.  The graph verifies the con-
gorithm to determine: when it exists. We will address all i > Jo '~ 7 2

. . . . ditions of theorem 4.6, thus it admits an Eulerian circuit, which
these questions in the following sections.

in this case corresponds to the pre-image- bcbca if we start

) ) _ from the vertexa which can serve here as both the start and end
4.4. Equivalent graph-theoretical formulation of the symbol.

problem

The pre-image problem fot-gram kernels can be formu- ) )

lated as a graph prob|em by Considering the De BruijnPrOOf._ The proof is a direct COﬂSquenCe of the graph for-

graph associated with and the vectoy. Indeed, leiG,, ,, mulation of the problem anq a classical result related to the

be the graph constructed in the following way: associate &roblem of Euler (1736) (Wilson, R. J., 1979). O

vertex to eachr(-1)-gram sequence and add an edge from

the vertex identified witlu as . . . a,,—1 to the vertex iden-  4.7. Compact algorithm

tified with asas . .. a, weighted with the count of the- ) . . . .

gramasas . ..a,. The De Bruijn graph can be expanded Th_ere exists a linear-time alg_orlthm for de_t_ermlnlng an Eu-

by replacing each edge carrying weightith ¢ identical lerian circuit of a graph verifying the c_ondltlc_)ns of theore

unweighted edges with the same original and destinatiof-8 (W”SO”.' R.J., 1979)' Here, we give a simple, compact,

vertices. Letf, ,, be the resulting unweighted graph. and recursive a!gorlthm that .produces the.same result as
v that algorithm with the same linear complexity:

The problem of finding the string is then equivalent to

that of finding an Euler circuit off,, ,,, that is a circuit on !

the graph in which each edge is traversed exactly one. Each O(|Hyn|) = OO i) = O(||). (12)

traversal of an edge betweeras, . .. a,_; andajas ... a, i=1

corresponds to the consumption of one instance ofithe

gramaias ...a,. Figure 2 illustrates the construction of

the graph<7, ,, andH, ,, in a special case.

Note that the complexity of the algorithm is optimal since
writing the output sequencetakes the same timé)(|z|)).
The following is the pseudocode of our algorithm.

4.5. Existence EULER(q)

- . L . path «— €
The problem of finding an Eulerian circuit of a graph is a for each unmarked edgdeavingg do
classical problem. Leti-degree(q) denote the number of MARK (¢)

path « e EULER(dest(e)) path

2
. X 3
incoming edges of vertexandout-degree(q) the number 4
5 return path

of outgoing edges. The following theorem characterizes
the cases where the pre-imagexists.

Theorem 4.6. The vectory admits a pre-image iff for any A call to the function EJLER with argumentg returns a
vertexq of Hy, ,,, in-degree(q) = out-degree(q). path corresponding to an Eulerian circuit fram Line 1
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) oYO=0
ORO=0 g
Figure 4.Case of non-unique pre-images. Babhbcca and  Figure 5.lllustration of the application of the generalized algo-
beebea are possible pre-images. OuuEER algorithm can pro-  rithm to the case of a graph that does not admit the Euler prop-
duce both solutions, depending on the order in which outgoingerty. The graph differs from that of Figure 3 by just one edge

edges of the vertexare examined. The graph differs from that of (edge in red). The possible pre-images returned by the algorithm
Figure 3 only by self-loop at the vertex identified with arebccbea andbebeca.

NN
initializes the path to the empty path. Then, each time ° o °
through the loop of lines 2-4, a new outgoing edgeyof

is examined. If it has not been previously marked (line 3),

thenpath is set to the concatenation of the edgaith the  Fjgyre 6 Further illustration of the application of the generalized
path returned by a call tolL ER with the destination verteX  4igorithm to the case of a graph that does not admit the Euler prop-
of ¢ and the old value opath. erty. The graph differs from that of Figure 3 by just one edge (the

While this is a very simple algorithm for generating an Eu- missing edge in red). The pre-image returned by the algorithm is
lerian circuit, the proof of its correctness is in fact non- bcba.

trivial and we leave it to a longer version of the paper. How-

ever, its compact form makes it easy to modify and analyze

the effect of the modifications. To deal with regression errors and the fact thatight not

) admit a pre-image, we can simply use the same algorithm.
4.8. Uniqueness To allow for cases where the graph is not connected, the

In general, when it exists, the pre-image sequence is ndtnction EULER is called at each vertexwhose outgoing

unique. Figure 4 gives a simple example of a graph with€dges are not all marked. The resulting path is the con-
two distinct Eulerian circuits and distinct pre-image se-catenation of the paths returned by different calls to this

quences. A recent result of Kontorovich (2004) gives alunction.

characterization of the set of strings that are unique preThe algorithm is guaranteed to return a stringvhose
images. Let®,, be the feature mapping corresponding 0|enath i ! .

: gthis|z| = >"._, y; since each edge of the gragf), ,,
n-gram sequences, that B, («) is the vector whose com- &' isited exactly once. Clearly, the result is a pre-image

ponents are the counts of thegrams appearing in. wheny admits one. But, how different is the output string

Theorem 4.9 ((Kontorovich, 2004)).The set of stringg ~ « from the original pre-image when we modify the count

such thatb(z) admits a unique pre-image is a regular lan- of one of the components gfby one, either by increasing
guage. or decreasing it? Figures 3 and 4 can serve to illustrate that

in a special case since the graph of Figure 4 differs from
In all cases, our algorithm can generate all possible prethat of Figure 3 by just one edge, which corresponds to the
images starting from a givem{1)-gram. Indeed, different €Xistence or not of the bigram.” The possible pre-images
pre-images simply correspond to different orders of exam@Utput by the algorithm given the presence of the bigeam
ining outgoing edges. In practice, for a given veajpthe only differ from the pre-image in the absence of the bigram
number of outgoing edges at each vertex is small (often 1¢¢ Dy one lettere. Their edit-distance is one. Furthermore,
rarely 2). Thus, the extra cost of generating all possibldén€ additional symbat cannot appear at any position in the

pre-images is very limited. string, its insertion is onljocally possible.
Figure 5 illustrates another case where the graph differs
4.10. Generalized algorithm from that of Figure 3 by one edge corresponding to the bi-

ﬁg;ram be. As in the case just discussed, the potential pre-

The algorithm we presented can be used to generate e images can only contain one additional symbolyhich is
ciently all possible pre-images corresponding to a vegtor ;< rteq locally

when it admits a pre-image. However, due to regression
errors, the vectoy might not admit a pre-image. Also, as Figure 6 illustrates yet another case where the graph differ
a result of regression, the componentsyafnay be non-  from that of Figure 3 by one edge missing which corre-
integer. sponds to the bigrare. The graph does not have the Euler
roperty. Yet, our algorithm can be applied and outputs the

One solution to this problem is to round the componentsgre_imagd)cba_

to obtain integer counts. As we shall see, incrementing o

Qecre_menting a component by one only leads to the local 2we can impose the same start and stop symbpfor all
insertion or deletion of one symbol. sequences.
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Thus, in summary, the algorithm we presented provides apired by support vector machines (Vapnik, 1995) they per-
simple and efficient solution to the pre-image problem forform classification with a large margin, and introduce soft
strings for the family ofn-gram kernels. It also has the margins to deal with the linearly inseparable case. Classifi
nice property that changing a coordinate in feature spaceation loss seems to be a poor choice for structured learning
has minimal impact on the actual pre-image found. as there is rarely one correct output, with all others being

equally incorrect. This is why a modification of the classi-

One can use addltlonal mformatl(_)n to further enhance_ th(ﬁcation loss function was proposed for these algorithms:
accuracy of the pre-image algorithm. For example, if a

large number of sequences over the target alphabet is avail- f (x;, y;) > f(zi,y) + L(yi,y), Yy € Y —{yi}, (14)
able, we can create a statistical model such as-gram . .

model based on those sequences. When the algorithifheref(z,y) = w - ®xy(z,y) and L(-, ) is a suitable
generates several pre-images, we can use that statistic@FS function. The is similar to a ranking constraint, seek-
model to rank these different pre-images by exploiting out-"9 to rank the correct output higher than all other outputs
put symbol correlations. In the casersfjram models, this for computation of thergmax. However, here the margin

can be done in linear time in the sum of the lengths of the?lays the role of controlling how relatively "wrong” an ex-
pre-image sequences output by the algorithm. ample is. This makes the loss function similar, though not

equivalent, to the objective function of a regression prob-
) . lem. We argue that minimizing the distance in the chosen
5. Relation to other algorithms output feature space, i.e., learning regression, is a maire n

Classification-based learning A kernel perceptron- ural way of learning the relevant structure.

based learning approach for structured' outputs was dFfimitations and pre-image computation Our algorithm
scribed by (Collins & Duffy, 2001). Since then, sev- P 9 P 9

eral similar classification-based techniques (Tsochatigar works with any problem where the outputs are strings. the
et al., 2004; Taskar et al., 2003) have been described fdi'&-iMage computation for strings that we presented in pre-

the same problem. In all these techniques, given an inpufiCuS Sections can be used with atgram kernels. We are
=, the output is calculated via: exploring several extensions of the algorithm presented to

deal with other families of kernels, but, in general, other
N P 1 string kernels lead to !ntractable pre-image problem§. The
y() aryg?yaxw xv (), (13) complexity of our pre-image algorithm is line&(|y|), in
the length of the pre-image stringt generates. It imposes
with w = 3" v @iy ®xy (z5,). Here, a joint em-  NO restriction on the type of regression technique used in
bedding spaZEe fo?ebotmputs and 'outputss employed the first phase of RLT, nor does it constrain the choice of
rather than two separate spaces. Nevertheless, in essenfi¥ features over the inpu€. To our knowledge, it is the

this is similar to the pre-image problem (Equation 7) that/Irst pre-image solution for a general family of string ker-
arises in KDE3 nels that does not require an exhaustive search.

The structured output perceptron is trained by iterativelyTN® computation of the pre-image in several of the
calculatingg(z; ) for the each element of the training data. classification-based techniques consists of applying the
When the prediction is incorre¢j(z;) # y;) the model is ylterb| algorlthm_, possibly combined with a heur|§t|c pfun
updated as followszv;; «— oy — 1, oy — oy + 1. Thus,  NGs to a dynamically expanded graph representing the set
in contrast to KDE, a pre-image search is required at ever{’ Possible candidate pre-images. The complexity of the
iteration. KDE requires pre-image calculations only in the@!gorithm is therO(|y|||) wherey is the string for which
test phase. Also, in the case of the perceptrois,a matrix & Pre-image is sought ar@ the graph expanded. The ap-
of sizem x |Y|, while in KDE, even without dimension- Plicability of such pre-image computations often hinges on
ality reduction, it is of sizen x m. In practice however, SOme specific constrains on the type of features used. As
the perceptron is sparse, whereas kernel ridge regressi@rg example, in the experiments described by (Taskar etal.,
may not be. The greedy incremental approach described {A003), @ Markovian assumption is madeiopand further-
Section 3 addresses this problem. On the other hand, tH80ré X andY” are assumed to be dependent only at the
use of a joint embedding space allows one to encode priof@Me Position in each sequence.

knowledge about the relationship between input and output

sequences, which is not possible in our method unless wg, Experiments

directly encode the input in the output space. See (Weston

et al., 2004) for an empirical analysis of the benefits oftjoin 6.1. Description of the dataset

feature spaces. To test the effectiveness of RLT, we used exactly the same

The main difference between the perceptron-based leartlataset as the one used in the experiments reported by

ing and the more recent classification-based method$askar et al. (2003) with the same specific cross-validation

(Tsochantaridis et al., 2004; Taskar et al., 2003) is that, i process and the same folds: the data is partitioned into ten

— _ S o _folds, and ten times one fold is used for training, and the
“In fact, the equations are identical if the joint feature space isemaining nine are used for testing.

defined viaK xv ((z, y), (z,y')) = Kx(z,2") Ky (y,y") when

the output feature space data has norm one (Weston et al., 2004Jhe dataset, including the partitioning, is available
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for download from http://ai.stanford.edu/ Technique | Accuracy

“btaskar/ocr/ . Itis a subset of the handwritten words RLT (n = 2) 86.1% +.7%
collected by Rob Kassel at the MIT Spoken Language RLT (n = 3) 98.2% +.3%
Systems Group for an optical character recognition (OCR) M3Ns (cubic kernel)| 87.0% +.4%

task. It contains 6,877 word instances with a total of

52,152 characters. The first character of each word hagapje 1. Experimental results with the perfect segmentation set-
been removed to keep only lowercase _characf’terﬂ'he _ting. The MPN results are read of the graph in (Taskar et al.,
image of each character has been rasterized and normalizegpgz)

into al16 x 8 = 128 binary-pixel representation.

The general handwriting recognition problem associate% 3. String-to-stri dicti
with this dataset is to determine a woydgiven the se- °-3- SUINg-lo-string prediction

quence of pixel-based images of its handwritten segmentedyr method generalizes indeed to the much harder and
characterss = z; - - - x. We report our experimental re- more realistic problem where the input and output strings

sults in this task with two different settings. may be of different length and where no prior segmenta-
tion or one-to-one mapping is given. For this setting, we
6.2. Perfect segmentation directly estimate the counts of all tlegrams of the output

' . . sequence from one set of input features and use our pre-
Our first experimental setting is exactly the one used meage algorithm to predict the output sequence.
Taskar et al. (2003), where the image segmentation is

known to be perfect and where there is a one-to-one mapgh our experiment, we chose the following polynomial ker-
ping of images to characters. Image segmentorre- nel Kx between two image sequences:

sponds exactly to one word character, the character of

in positions, and there is no correlation between input seg- Kx(z1,22) = Z (14 z1, xQJ)d , (15)
ment images. @157

Tp use th_e prior knowled_ge about the one-to-one Mapiyhere the sum runs over allgramsz; ; andx, ; of input
ping in this task, we applied our most general mOde“”.gsequences'l andz,. Then-gram order and the degree

by predicting the character associated to each image ins
dividually and using that to predict the final output Wordnﬂ;%g;_ tgrgr?]rﬁgﬁteﬁs of the kernel. For the kediel we

sequence. This resulted in a regression problem with a 26-
dimensional output space, amd ~ 5,000 examples in We obtained the best results using unigrams and second-
each fold. For the input images, we used a polynomial kerdegree polynomials in the input space and bigrams in the
nel of third degree. The best empirical value for the ridgeoutput space. For each of tR6" predicted features, the
regression coefficient wasy = 0.01. Since here the posi- output of the ridge regression is discretized so that, aver-
tion of each character predicted was already known, the usaged over all the training data, the correct number-of

of the pre-image algorithm based on the Euler circuits wagrams is predicted. (i.e., this amounts to choosing for each
not needed. We only needed, as mentioned in Section 4.10utput dimension the best threshold for rounding). For
to apply ann-gram statistical model based on the wordsthese experiments, we obtained a test accuraty.6t-1.5

of the training data to help discriminate between differentby combining predictions from severatgram order pre-
word sequence hypotheses. In this case we used the Viterlictions and computing an Euler tour from the pool of pre-
algorithm to compute the pre-image solution, agddNs.  dictedn-grams. Note that the word sequences are predicted
Where the two algorithms differ, however, is the way thedo not always have the same length as the target sequences.
model itself is learned. Table 1 reports the results of ouExtra or missing characters are counted as errors in our
experiments withn = 2 andn = 3 and compares them evaluation of the accuracy.

with the best result reported by Taskar et al. (2003) for the,

same problem and dataset. The accuracy is measured as @?gerformance degradation for this setting was naturally

ected, but we view it as relatively minor given the in-
reased difficulty of the task. Furthermore, our results can

be improved by combining a statistical model with our pre-

The high accuracy achieved with this setting can be viewedmage algorithm.

as reflecting the simplicity of this task. The experiment al-

lowed us to compare these results with those obtained using.4. Faster training

M3Ns. But we are interested in more complex string-to- ) ) ] o

string prediction problems with no prior knowledge suchAs pointed out in Section 3, faster training is needed when

as a one-to-one mapp|ng Our second set of experimentge size of the tl’alnlng data increases 5|gn|flcant|y. This

corresponds to a more realistic and challenging setting. Section compares the greedy incremental technique de-
scribed in that section with the partial Cholesky decompo-

“This decision was not made by us. We simply kept the datasesition technique and the baseline of randomly sub-sampling
unchanged to make the experiments comparable. n points from the data, which of course also results in re-
duced complexity, giving only a x n matrix to invert. The
different techniques are compared in the perfect segmenta-

percentage of the total number of word characters correctl
predicted.
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