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Abstract
The problem of learning a transduction, that is
a string-to-string mapping, is a common prob-
lem arising in natural language processing and
computational biology. Previous methods pro-
posed for learning such mappings are based on
classificationtechniques. This paper presents a
new and generalregressiontechnique for learn-
ing transductions and reports the results of ex-
periments showing its effectiveness. Our trans-
duction learning consists of two phases: the esti-
mation of a set of regression coefficients and the
computation of the pre-image corresponding to
this set of coefficients. A novel and conceptually
cleaner formulation of kernel dependency esti-
mation provides a simple framework for estimat-
ing the regression coefficients, and an efficient
algorithm for computing the pre-image from the
regression coefficients extends the applicability
of kernel dependency estimation to output se-
quences. We report the results of a series of ex-
periments illustrating the application of our re-
gression technique for learning transductions.

1. Introduction

Machine learning has progressively extended its applica-
tion domain by generalizing existing algorithms to cover
more complex spaces. Originally, it was centered around
classifying fixed-size vectors into two or more classes, or
predicting one or several real-valued outputs. Kernel meth-
ods revolutionized machine learning by providing elegant
extensions to structured input spaces: so long as a suit-
able kernel between two input elements can be defined,
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algorithms such as Support Vector Machines (SVMs) or
ridge regression can be applied in a straight-forward man-
ner. Still, the challenge remains as to how naturally extend
learning algorithms to handle structured output spaces and
accurately predict from structure to structure. This paper
presents a new and general method for addressing a com-
mon instance of that problem, that of learning string-to-
string mappings.

The problem of learning a mapping from strings to strings
arises in many areas of text and speech processing. As an
example, an important component of speech recognition or
speech synthesis systems is a pronunciation model, which
provides the possible phonemic transcriptions of a word, or
a sequence of words, e.g.,data→ {d ey t ax, d ey dx ax,
d ae t ax, d ae dx ax}. An accurate pronunciation model
is crucial for the overall quality of such systems. Another
major task in natural language processing is part-of-speech
tagging, which consists of assigning a part-of-speech tag
to each word of a sentence as in:Mike spoke to the sales-
man→ Mike N spoke V to P the D salesman N, whereN
stands for a noun,V for a verb,P for a preposition, and
D for a determiner. Similarly, parsing can be viewed as a
string-to-string mapping where the target alphabet contains
parentheses as in:Mike spoke to the salesman→ (((Mike
N) NP) ((spoke V) (to P) ((the D) (salesman N) NP) VP) S).

A general framework for describing such problems is that
of learning transductions. A transductionT from X∗ to
Y ∗ is a mapping fromX∗ to the powerset ofY ∗ (Berstel,
1979). Most transductions in natural language processing
are eitheralgebraic or rational. Algebraic transductions
are transductions related to context-free languages (Salo-
maa & Soittola, 1978; Kuich & Salomaa, 1986). Rational
transductions are those related to regular languages and can
be represented by finite-state transducers. Similar trans-
duction learning problems arise in computational biology
(Durbin et al., 1998).

Several large-margin classification techniques have been
recently proposed for learning such mappings, in particu-
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lar: Maximum Margin Markov Networks (M3Ns) (Taskar
et al., 2003; Bartlett et al., 2004) and SVMISOS (Tsochan-
taridis et al., 2004). These techniques all treat the learning
problem just outlined as aclassificationproblem over the
pairs of input and output sequences(X,Y ), imposing that
the stringY matchingX obtain a higher score than all other
strings inY ∗. In contrast, this paper introduces a new and
general technique, Regression for Learning Transductions,
(RLT), that addresses the problem of learning transductions
as aregressionproblem.

Seeking a regression solution is natural since one can define
similarity measures between two possible sequence targets
Y1 andY2 associated with an input sequenceX. Such sim-
ilarities tend to be ignored by a classification loss that as-
signs to each pair(X,Y ) the value one or zero regardless
of the closeness betweenY s.1

RLT consists of two phases: a regression of the input on
an implicit or explicit feature space and the computation
of the output or pre-image from that space. A reformu-
lation of Kernel Dependency Estimation (KDE) (Weston
et al., 2002) provides a clean framework for estimating
the regression coefficients, and the pre-image is computed
from these coefficients using a novel and efficient algo-
rithm based on classical results from graph theory. A ma-
jor computational advantage of KDE over the classification
techniques mentioned is thus that it does not require an ex-
haustive pre-image search ofY ∗ during training. Our new
pre-image algorithm extends the applicability of KDE to
output sequences.

This paper describes in detail the transduction regression
technique RLT and reports the results of experiments show-
ing its effectiveness. The paper is organized as follows.
Section 2 describes a conceptually cleaner reformulation
of the KDE method and Section 3 discusses several tech-
niques for faster training within this framework. Section 4
presents our inverse pre-image function for strings. A com-
parison of RLT and other classification-based techniques is
given in Section 5, which is followed by a series of experi-
mental results reported in Section 6.

2. Reformulation of Kernel Dependency
Estimation

Kernel Dependency Estimation (KDE) treats the problem
of learning the mapping fromX∗ to Y ∗ as a regression
problem (Figure 1). Input strings inX∗ are mapped via
ΦX to a high-dimensional Hilbert spaceFX and similarly
output strings mapped toFY via the mappingΦY . These
mappings can be defined implicitly by the introduction of
positive definite symmetric kernelsKX and KY associ-
ated with the mappingsΦX andΦY . A regression algo-
rithm exploiting the kernelKX , e.g., standard kernel ridge
regression (Saunders et al., 1998), can be used to learn
the mappingg from X∗ to FY . For prediction, the pre-

1Classification techniques such as SVMISOS (Tsochantaridis
et al., 2004) introduce a loss function to help correct the binary
classification objective function, however.

Figure 1.Diagram describing Kernel Dependency Estimation
(KDE). f represents the transduction fromX∗ to Y ∗ learned by
KDE.

image ofg(x) by ΦY needs to be computed to determine
f(x) = Φ−1

Y (g(x)).

We denote byN1 the dimension of the feature spaceFX

and byN2 that ofFY . When there is no risk of confusion,
we use the same notation for a vector, e.g.,ΦX(x) or g(x),
and the column matrix representing that vector.

In the original presentation of KDE, the first step consisted
of usingKY with Kernel Principal Components Analysis
(KPCA) to reduce the dimension of the feature spaceFY

(Weston et al., 2002). Here, we simplify the framework by
not requiring this prior dimensionality reduction anymore.
We now describe two general models for KDE.

Model 1. Hereg is modeled as a linear function defined
by

∀x ∈ X∗, g(x) = WΦX(x), (1)

whereW is anN2 × N1 real-valued matrix. Different re-
gression algorithms can be used to learng, or equivalently
the matrixW, including kernel ridge regression (Saunders
et al., 1998), Support Vector Regression (SVR) (Vapnik,
1995), or Kernel Matching Pursuit (KMP) (Vincent & Ben-
gio, 2000). SVR and KMP offer the advantage of sparsity
and fast training. But, a crucial advantage of kernel ridge
regression in this context is, as we shall see, that it requires
a single matrix inversion, independently ofN2, the number
of features predicted. MatrixW is then the solution of:

argmin
W∈

�
N2×N1

m∑

i=1

‖WΦX(xi)− ΦY (yi)‖
2 + γ‖W‖2F , (2)

where‖ · ‖F denotes the Frobenius norm and whereγ > 0
is a regularization coefficient.m is the number of training
examples.

Proposition 2.1. The solutionW is given by:

W = MY (KX + γI)−1
M

>
X . (3)

where MY = [ΦY (y1), . . . ,ΦY (ym)] is the N2 × m
matrix whosejth column vector isΦY (yj), similarly
MY = [ΦX(x1), . . . ,ΦX(xm)], and whereKX is the
Gram matrix associated to the kernelKX : KX =
(KX(xi, xj)1≤i,j≤m).
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Proof. Equation 2 can be rewritten as:

argmin
W∈

�
N2×N1

‖WMX −MY ‖
2

F + γ‖W‖2F . (4)

Differentiating the expression and setting it to zero yields:

2(WMX −MY )M>
X + 2γW = 0

⇔ W(MXM
>
X + γI) = MY M

>
X .

(5)

Thus, W = MY M
>
X(MXM

>
X + γI)−1

= MY (M>
XMX + γI)−1

M
>
X

= MY (KX + γI)−1
M

>
X ,

(6)

where we have used the fact that(M>
XMX + γI)−1 and

M
>
X commute as can be seen for example from a series

expansion of(M>
XMX + γI)−1.

Predictions are made by solving the pre-image problem:

f(x)=argmin
y∈Y ∗

‖WΦX(x)− ΦY (y)‖2

=argmin
y∈Y ∗

ΦY (y)>ΦY (y)− 2ΦY (y)>WΦX(x)

=argmin
y∈Y ∗

KY (y, y)− 2(Ky
Y )>(KX + γI)−1

K
x
X ,

whereK
y
Y is them × 1 column matrix whoseith row is

KY (y, yi), andK
x
X the column matrix whoseith row is

KX(xi, x). Thus, remarkably,f(x) can be expressed using
kernel functions alone.

Model 2. In some cases, it may be preferable to learn
each componentgi of g, i = 1, . . . , N2, independently, in
fact by using different input feature vectorsΦX,i for each
i. Eachgi is then modeled as a linear function defined by

∀x ∈ X∗, 1 ≤ i ≤ N2, gi(x) = WiΦX,i(x). (7)

In fact, more generally, one may wish to define different
subsets of the training data for learning eachgi. A full de-
scription of these generalizations will be given in a longer
version of the paper. As described for the first model, the
component functionsgi can be learned using different re-
gression algorithms such as SVR or kernel ridge regression.
In all cases, one still needs to solve the pre-image problem.

3. Speeding-up training

There are several ways of speeding up training when us-
ing kernel ridge regression. One solution is to apply in-
complete Cholesky decomposition to the kernel matrixKX

(Bach & Jordan, 2002). To shorten this presentation, we do
not detail the application of this technique here. Our exper-
iments have shown a greedy technique to be far more effec-
tive (see Section 6.4). This consists, as with Kernel Match-
ing Pursuit (KMP) (Vincent & Bengio, 2000), of defining a

subsetn � m of kernel functions in an incremental fash-
ion. This subset is then used to define the expansion. Con-
sider the case of a finite-dimensional output space:

g(x) = (
∑

i∈S

αi1KX(xi, x), . . . ,
∑

i∈S

αiN2
KX(xi, x)),

(8)
whereS is the set of indices of the kernel functions used in
the expansion, initialized to∅. The algorithm then consists
of repeating the following steps so long as|S| < n:

1. Determine the training pointxj with the largest resid-
ual:

j = argmax
i∈{1,...,m}\S

||ΦY (yi)− g(xi)||
2; (9)

2. Addxj to the set of ”support vectors” and updateα:

S ← S ∪ {xj};
α← argmin

α̂

∑m

i=1
||ΦY (yi)− g(xi)||

2. (10)

The matrix inversion required in step 2 is done withα =
KS

−1
KS,∗Y whereKS is the kernel matrix between input

examples indexed byS only, andKS,∗ is the kernel matrix
betweenS and all other examples.

In practice, this can be computed incrementally via rank
one updates (Smola & Bartlett, 2001), which results in a
running time complexity ofO(nm2N2) as with KMP (Vin-
cent & Bengio, 2000) (but there,N2 = 1). A further linear
speed-up is possible by restricting the subset of the data
points in step 1. Note that this approach differs from KMP
in that we select basis functions that approximate all the
output dimensions at once, resulting in faster evaluation
times. The union of the support vectors over all output di-
mensions is indeed smaller.

4. Pre-image solution for strings

4.1. A general problem: finding pre-images

A critical component of RLT is the pre-image computa-
tion. This consists of determining the predicted output:
given z ∈ FY , the problem consists of findingy ∈ Y ∗

such thatΦY (y) = z, see Figure 1. Note that this is a gen-
eral problem, common to all kernel-based structured output
problems, including Maximum Margin Markov Networks
(Taskar et al., 2003) and SVMISOS (Tsochantaridis et al.,
2004) although it is not explicitly described and discussed
by the authors (see Section 5).

Several instances of the pre-image problem have been stud-
ied in the past in cases where the pre-images are fixed-size
vectors (Scḧolkopf & Smola, 2002). The pre-image prob-
lem is trivial when the feature mappingΦY corresponds to
polynomial kernels of odd degree sinceΦY is then invert-
ible. There also exists a fixed-point iteration approach for
RBF kernels. In the next section, we describe a new pre-
image technique for strings that works with a rather general
class of string kernels.
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4.2.n-gram Kernels

n-gram kernels form a general family of kernels between
strings, or more generally weighted automata, that measure
the similarity between two strings using the counts of their
commonn-gram sequences. Let|x|u denote the number of
occurrences ofu in a stringx, then, then-gram kernelkn

between two stringsx andy in Y ∗, n ≥ 1, is defined by:

kn(x, y) =
∑

|u|=n

|x|u |y|u, (11)

where the sum runs over all stringsu of lengthn. These
kernels are instances ofrational kernelsand have been used
successfully in a variety of difficult prediction tasks in text
and speech processing (Cortes et al., 2004).

4.3. Pre-image problem forn-gram kernels

The pre-image problem forn-gram kernels can be formu-
lated as follows. LetΣ be the alphabet of the strings con-
sidered. Giveny = (y1, . . . , yl), wherel = |Σ|n andyk

is the count for ann-gram sequenceuk, find stringx such
that fork = 1, . . . , l, |x|uk

= yk. Several standard prob-
lems arise in this context: the existence ofx given y, its
uniqueness when it exists, and the need for an efficient al-
gorithm to determinex when it exists. We will address all
these questions in the following sections.

4.4. Equivalent graph-theoretical formulation of the
problem

The pre-image problem forn-gram kernels can be formu-
lated as a graph problem by considering the De Bruijn
graph associated withn and the vectory. Indeed, letGy,n

be the graph constructed in the following way: associate a
vertex to each (n-1)-gram sequence and add an edge from
the vertex identified witha1a2 . . . an−1 to the vertex iden-
tified with a2a3 . . . an weighted with the count of then-
grama1a2 . . . an. The De Bruijn graph can be expanded
by replacing each edge carrying weightc with c identical
unweighted edges with the same original and destination
vertices. LetHy,n be the resulting unweighted graph.

The problem of finding the stringx is then equivalent to
that of finding an Euler circuit ofHy,n, that is a circuit on
the graph in which each edge is traversed exactly one. Each
traversal of an edge betweena1a2 . . . an−1 anda1a2 . . . an

corresponds to the consumption of one instance of then-
grama1a2 . . . an. Figure 2 illustrates the construction of
the graphsGy,n andHy,n in a special case.

4.5. Existence

The problem of finding an Eulerian circuit of a graph is a
classical problem. Letin-degree(q) denote the number of
incoming edges of vertexq andout-degree(q) the number
of outgoing edges. The following theorem characterizes
the cases where the pre-imagex exists.

Theorem 4.6. The vectory admits a pre-image iff for any
vertexq of Hy,n, in-degree(q) = out-degree(q).

(a) (b)

Figure 2.(a) The De Bruijn graphGy,3 associated with the vector
y in the case of trigrams (n = 3). The weight carried by the edge
from vertexab to vertexbc is the number of occurrences of the
trigramabc as specified by the vectory. (b) The expanded graph
Hy,3 associated withGy,3. An edge inGy,3 is repeated as many
times as there were occurrences of the corresponding trigram.

a b c

Figure 3.Example of a pre-image computation. The graph
is associated with the vectory = (0, 1, 0, 0, 0, 2, 1, 1, 0)
whose coordinates indicate the counts of the bigrams
aa, ab, ac, ba, bb, bc, ca, cb, cc. The graph verifies the con-
ditions of theorem 4.6, thus it admits an Eulerian circuit, which
in this case corresponds to the pre-imagex = bcbca if we start
from the vertexa which can serve here as both the start and end
symbol.

Proof. The proof is a direct consequence of the graph for-
mulation of the problem and a classical result related to the
problem of Euler (1736) (Wilson, R. J., 1979).

4.7. Compact algorithm

There exists a linear-time algorithm for determining an Eu-
lerian circuit of a graph verifying the conditions of theorem
4.6 (Wilson, R. J., 1979). Here, we give a simple, compact,
and recursive algorithm that produces the same result as
that algorithm with the same linear complexity:

O(|Hy,n|) = O(

l∑

i=1

yi) = O(|x|). (12)

Note that the complexity of the algorithm is optimal since
writing the output sequencex takes the same time (O(|x|)).
The following is the pseudocode of our algorithm.

EULER(q)

1 path← ε
2 for each unmarked edgee leavingq do
3 MARK(e)
4 path← e EULER(dest(e)) path
5 return path

A call to the function EULER with argumentq returns a
path corresponding to an Eulerian circuit fromq. Line 1
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a b c

Figure 4.Case of non-unique pre-images. Bothbcbcca and
bccbca are possible pre-images. Our EULER algorithm can pro-
duce both solutions, depending on the order in which outgoing
edges of the vertexc are examined. The graph differs from that of
Figure 3 only by self-loop at the vertex identified withc.

initializes the path to the empty path. Then, each time
through the loop of lines 2-4, a new outgoing edge ofq
is examined. If it has not been previously marked (line 3),
thenpath is set to the concatenation of the edgee with the
path returned by a call to EULER with the destination vertex
of e and the old value ofpath.

While this is a very simple algorithm for generating an Eu-
lerian circuit, the proof of its correctness is in fact non-
trivial and we leave it to a longer version of the paper. How-
ever, its compact form makes it easy to modify and analyze
the effect of the modifications.

4.8. Uniqueness

In general, when it exists, the pre-image sequence is not
unique. Figure 4 gives a simple example of a graph with
two distinct Eulerian circuits and distinct pre-image se-
quences. A recent result of Kontorovich (2004) gives a
characterization of the set of strings that are unique pre-
images. LetΦn be the feature mapping corresponding to
n-gram sequences, that is,Φn(x) is the vector whose com-
ponents are the counts of then-grams appearing inx.

Theorem 4.9 ((Kontorovich, 2004)).The set of stringsx
such thatΦ(x) admits a unique pre-image is a regular lan-
guage.

In all cases, our algorithm can generate all possible pre-
images starting from a given (n-1)-gram. Indeed, different
pre-images simply correspond to different orders of exam-
ining outgoing edges. In practice, for a given vectory, the
number of outgoing edges at each vertex is small (often 1,
rarely 2). Thus, the extra cost of generating all possible
pre-images is very limited.

4.10. Generalized algorithm

The algorithm we presented can be used to generate effi-
ciently all possible pre-images corresponding to a vectory
when it admits a pre-image. However, due to regression
errors, the vectory might not admit a pre-image. Also, as
a result of regression, the components ofy may be non-
integer.

One solution to this problem is to round the components
to obtain integer counts. As we shall see, incrementing or
decrementing a component by one only leads to the local
insertion or deletion of one symbol.

Figure 5.Illustration of the application of the generalized algo-
rithm to the case of a graph that does not admit the Euler prop-
erty. The graph differs from that of Figure 3 by just one edge
(edge in red). The possible pre-images returned by the algorithm
arebccbca andbcbcca.

Figure 6.Further illustration of the application of the generalized
algorithm to the case of a graph that does not admit the Euler prop-
erty. The graph differs from that of Figure 3 by just one edge (the
missing edge in red). The pre-image returned by the algorithm is
bcba.

To deal with regression errors and the fact thaty might not
admit a pre-image, we can simply use the same algorithm.
To allow for cases where the graph is not connected, the
function EULER is called at each vertexq whose outgoing
edges are not all marked. The resulting path is the con-
catenation of the paths returned by different calls to this
function.

The algorithm is guaranteed to return a stringx whose
length is|x| =

∑l

i=1
yi since each edge of the graphHy,n

is visited exactly once. Clearly, the result is a pre-image
wheny admits one. But, how different is the output string
x from the original pre-image when we modify the count
of one of the components ofy by one, either by increasing
or decreasing it? Figures 3 and 4 can serve to illustrate that
in a special case since the graph of Figure 4 differs from
that of Figure 3 by just one edge, which corresponds to the
existence or not of the bigramcc.2 The possible pre-images
output by the algorithm given the presence of the bigramcc
only differ from the pre-image in the absence of the bigram
cc by one letter,c. Their edit-distance is one. Furthermore,
the additional symbolc cannot appear at any position in the
string, its insertion is onlylocally possible.

Figure 5 illustrates another case where the graph differs
from that of Figure 3 by one edge corresponding to the bi-
grambc. As in the case just discussed, the potential pre-
images can only contain one additional symbol,c, which is
inserted locally.

Figure 6 illustrates yet another case where the graph differs
from that of Figure 3 by one edge missing which corre-
sponds to the bigrambc. The graph does not have the Euler
property. Yet, our algorithm can be applied and outputs the
pre-imagebcba.

2We can impose the same start and stop symbol,a, for all
sequences.
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Thus, in summary, the algorithm we presented provides a
simple and efficient solution to the pre-image problem for
strings for the family ofn-gram kernels. It also has the
nice property that changing a coordinate in feature space
has minimal impact on the actual pre-image found.

One can use additional information to further enhance the
accuracy of the pre-image algorithm. For example, if a
large number of sequences over the target alphabet is avail-
able, we can create a statistical model such as ann-gram
model based on those sequences. When the algorithm
generates several pre-images, we can use that statistical
model to rank these different pre-images by exploiting out-
put symbol correlations. In the case ofn-gram models, this
can be done in linear time in the sum of the lengths of the
pre-image sequences output by the algorithm.

5. Relation to other algorithms

Classification-based learning A kernel perceptron-
based learning approach for structured outputs was de-
scribed by (Collins & Duffy, 2001). Since then, sev-
eral similar classification-based techniques (Tsochantaridis
et al., 2004; Taskar et al., 2003) have been described for
the same problem. In all these techniques, given an input
x, the output is calculated via:

ŷ(x) = argmax
y∈Y

w · ΦXY (x, y), (13)

with w =
∑m

i=1

∑
y∈Y αiyΦXY (xi, y). Here, a joint em-

bedding space for bothinputs and outputsis employed,
rather than two separate spaces. Nevertheless, in essence,
this is similar to the pre-image problem (Equation 7) that
arises in KDE.3

The structured output perceptron is trained by iteratively
calculatingŷ(xi) for the each element of the training data.
When the prediction is incorrect(ŷ(xi) 6= yi) the model is
updated as follows:αiŷ ← αiŷ − 1, αiy ← αiy + 1. Thus,
in contrast to KDE, a pre-image search is required at every
iteration. KDE requires pre-image calculations only in the
test phase. Also, in the case of the perceptron,α is a matrix
of sizem × |Y |, while in KDE, even without dimension-
ality reduction, it is of sizem × m. In practice however,
the perceptron is sparse, whereas kernel ridge regression
may not be. The greedy incremental approach described in
Section 3 addresses this problem. On the other hand, the
use of a joint embedding space allows one to encode prior
knowledge about the relationship between input and output
sequences, which is not possible in our method unless we
directly encode the input in the output space. See (Weston
et al., 2004) for an empirical analysis of the benefits of joint
feature spaces.

The main difference between the perceptron-based learn-
ing and the more recent classification-based methods
(Tsochantaridis et al., 2004; Taskar et al., 2003) is that, in-

3In fact, the equations are identical if the joint feature space is
defined viaKXY ((x, y), (x′, y′)) = KX(x, x′)KY (y, y′) when
the output feature space data has norm one (Weston et al., 2004).

spired by support vector machines (Vapnik, 1995) they per-
form classification with a large margin, and introduce soft
margins to deal with the linearly inseparable case. Classifi-
cation loss seems to be a poor choice for structured learning
as there is rarely one correct output, with all others being
equally incorrect. This is why a modification of the classi-
fication loss function was proposed for these algorithms:

f(xi, yi) > f(xi, y) + L(yi, y), ∀y ∈ Y − {yi}, (14)

wheref(x, y) = w · ΦXY (x, y) andL(·, ·) is a suitable
loss function. The is similar to a ranking constraint, seek-
ing to rank the correct output higher than all other outputs
for computation of theargmax. However, here the margin
plays the role of controlling how relatively ”wrong” an ex-
ample is. This makes the loss function similar, though not
equivalent, to the objective function of a regression prob-
lem. We argue that minimizing the distance in the chosen
output feature space, i.e., learning regression, is a more nat-
ural way of learning the relevant structure.

Limitations and pre-image computation Our algorithm
works with any problem where the outputs are strings. the
pre-image computation for strings that we presented in pre-
vious sections can be used with alln-gram kernels. We are
exploring several extensions of the algorithm presented to
deal with other families of kernels, but, in general, other
string kernels lead to intractable pre-image problems. The
complexity of our pre-image algorithm is linear,O(|y|), in
the length of the pre-image stringy it generates. It imposes
no restriction on the type of regression technique used in
the first phase of RLT, nor does it constrain the choice of
the features over the inputX. To our knowledge, it is the
first pre-image solution for a general family of string ker-
nels that does not require an exhaustive search.

The computation of the pre-image in several of the
classification-based techniques consists of applying the
Viterbi algorithm, possibly combined with a heuristic prun-
ing, to a dynamically expanded graph representing the set
of possible candidate pre-images. The complexity of the
algorithm is thenO(|y||G|) wherey is the string for which
a pre-image is sought andG the graph expanded. The ap-
plicability of such pre-image computations often hinges on
some specific constrains on the type of features used. As
an example, in the experiments described by (Taskar et al.,
2003), a Markovian assumption is made onY , and further-
moreX andY are assumed to be dependent only at the
same position in each sequence.

6. Experiments

6.1. Description of the dataset

To test the effectiveness of RLT, we used exactly the same
dataset as the one used in the experiments reported by
Taskar et al. (2003) with the same specific cross-validation
process and the same folds: the data is partitioned into ten
folds, and ten times one fold is used for training, and the
remaining nine are used for testing.

The dataset, including the partitioning, is available
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for download from http://ai.stanford.edu/
˜btaskar/ocr/ . It is a subset of the handwritten words
collected by Rob Kassel at the MIT Spoken Language
Systems Group for an optical character recognition (OCR)
task. It contains 6,877 word instances with a total of
52,152 characters. The first character of each word has
been removed to keep only lowercase characters4. The
image of each character has been rasterized and normalized
into a16× 8 = 128 binary-pixel representation.

The general handwriting recognition problem associated
with this dataset is to determine a wordy given the se-
quence of pixel-based images of its handwritten segmented
charactersx = x1 · · ·xk. We report our experimental re-
sults in this task with two different settings.

6.2. Perfect segmentation

Our first experimental setting is exactly the one used by
Taskar et al. (2003), where the image segmentation is
known to be perfect and where there is a one-to-one map-
ping of images to characters. Image segmentxi corre-
sponds exactly to one word character, the character ofy
in positioni, and there is no correlation between input seg-
ment images.

To use the prior knowledge about the one-to-one map-
ping in this task, we applied our most general modeling
by predicting the character associated to each image in-
dividually and using that to predict the final output word
sequence. This resulted in a regression problem with a 26-
dimensional output space, andm ≈ 5, 000 examples in
each fold. For the input images, we used a polynomial ker-
nel of third degree. The best empirical value for the ridge
regression coefficientγ wasγ = 0.01. Since here the posi-
tion of each character predicted was already known, the use
of the pre-image algorithm based on the Euler circuits was
not needed. We only needed, as mentioned in Section 4.10,
to apply ann-gram statistical model based on the words
of the training data to help discriminate between different
word sequence hypotheses. In this case we used the Viterbi
algorithm to compute the pre-image solution, as inM3Ns.
Where the two algorithms differ, however, is the way the
model itself is learned. Table 1 reports the results of our
experiments withn = 2 andn = 3 and compares them
with the best result reported by Taskar et al. (2003) for the
same problem and dataset. The accuracy is measured as the
percentage of the total number of word characters correctly
predicted.

The high accuracy achieved with this setting can be viewed
as reflecting the simplicity of this task. The experiment al-
lowed us to compare these results with those obtained using
M3Ns. But we are interested in more complex string-to-
string prediction problems with no prior knowledge such
as a one-to-one mapping. Our second set of experiments
corresponds to a more realistic and challenging setting.

4This decision was not made by us. We simply kept the dataset
unchanged to make the experiments comparable.

Technique Accuracy
RLT (n = 2) 86.1% ±.7%
RLT (n = 3) 98.2% ±.3%
M3Ns (cubic kernel) 87.0% ±.4%

Table 1.Experimental results with the perfect segmentation set-
ting. The M3N results are read of the graph in (Taskar et al.,
2003)

6.3. String-to-string prediction

Our method generalizes indeed to the much harder and
more realistic problem where the input and output strings
may be of different length and where no prior segmenta-
tion or one-to-one mapping is given. For this setting, we
directly estimate the counts of all then-grams of the output
sequence from one set of input features and use our pre-
image algorithm to predict the output sequence.

In our experiment, we chose the following polynomial ker-
nelKX between two image sequences:

KX(x1, x2) =
∑

x1,i,x2,j

(1 + x1,i x2,j)
d
, (15)

where the sum runs over alln-gramsx1,i andx2,j of input
sequencesx1 andx2. Then-gram order and the degreed
are both parameters of the kernel. For the kernelKY we
usedn-gram kernels.

We obtained the best results using unigrams and second-
degree polynomials in the input space and bigrams in the
output space. For each of the26n predicted features, the
output of the ridge regression is discretized so that, aver-
aged over all the training data, the correct number ofn-
grams is predicted. (i.e., this amounts to choosing for each
output dimension the best threshold for rounding). For
these experiments, we obtained a test accuracy of75.6±1.5
by combining predictions from severaln-gram order pre-
dictions and computing an Euler tour from the pool of pre-
dictedn-grams. Note that the word sequences are predicted
do not always have the same length as the target sequences.
Extra or missing characters are counted as errors in our
evaluation of the accuracy.

A performance degradation for this setting was naturally
expected, but we view it as relatively minor given the in-
creased difficulty of the task. Furthermore, our results can
be improved by combining a statistical model with our pre-
image algorithm.

6.4. Faster training

As pointed out in Section 3, faster training is needed when
the size of the training data increases significantly. This
section compares the greedy incremental technique de-
scribed in that section with the partial Cholesky decompo-
sition technique and the baseline of randomly sub-sampling
n points from the data, which of course also results in re-
duced complexity, giving only an×n matrix to invert. The
different techniques are compared in the perfect segmenta-
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Figure 7. Comparison of random sub-sampling ofn points from
the OCR dataset, incomplete Cholesky decomposition aftern it-
erations and greedy incremental learning withn basis functions.
The main bottleneck for all of these algorithms is the matrix in-
version where the size of the matrix isn × n, we therefore plot
test error againstn. The furthest right point is the test error rate
of training on the full training set ofn = 4, 617 examples.

tion setting on the first fold of the data. The results should
be indicative of the performance gain in other folds.

In both partial Cholesky decomposition and greedy incre-
mental learning,n iterations are run and then ann × n
matrix is inverted, which may be viewed as the bottleneck.
Thus, to determine the learning speed we plot the test er-
ror for the regressions problem versusn. The results are
shown in Figure 7. The greedy learning technique leads to
a considerable reduction in the number of kernel compu-
tations required and the matrix inversion size for the same
error rate as the full dataset. Furthermore, in greedy incre-
mental learning we are left with onlyn kernels to compute
for a given test point, independently of the number of out-
puts. These reasons combined make the greedy incremen-
tal method an attractive approximation technique for RLT.

7. Conclusion

We presented a novel and general regression technique for
learning transductions. Several methods can be explored
to further speed-up training and the applicability of RLT to
very large tasks. We also described an efficient pre-image
algorithm for strings that can be used for a general family
of string kernels in other contexts.
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sented at Snowbird’00.

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., &
Vapnik, V. (2002). Kernel Dependency Estimation.Neu-
ral Processing Information Systems 15.
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