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Abstract. We present a general weighted grammar software library,
the GRM Library, that can be used in a variety of applications in text,
speech, and biosequence processing. The underlying algorithms were de-
signed to support a wide variety of semirings and the representation and
use of very large grammars and automata of several hundred million rules
or transitions. We describe several algorithms and utilities of this library
and point out in each case their application to several text and speech
processing tasks.

1 Introduction

The statistical methods used in text and speech processing [19] or in bioinformat-
ics [10] require the representation and use of models that are given as weighted
automata either directly or as a result of the approximation and compilation
of more powerful grammars such as probabilistic context-free grammars. In all
cases, the weights play a crucial role in their definition and use, in particular
because they can be used to rank alternative sequences.

This constituted our original motivation for the creation of a general weighted

grammar library and the design of essential algorithms for creating, modifying,
compiling, and approximating large weighted statistical or rule-based grammars.
The algorithms of our software library, GRM Library, were designed to support
a wide variety of semirings, thus weight sets. While keeping a high degree of
generality, the algorithms were also designed to be very efficient to support the
representation and use of grammars and automata of several hundred million
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rules or transitions. The representations and functions of a general weighted-
transducer library (the FSM library [18]), served as the basis for the design of
the GRM library.

Another motivation for the design of the GRM library was the need for gen-
eral text and automata processing algorithms, which, in many cases, constitute
the first step of the creation of a statistical grammar. An example is the require-
ment to compute from the input, the counts of some fixed sequences to create
statistical language models. When the input is not just text, but a collection of
weighted automata output by a speech recognizer or an information extraction
system, novel algorithms and utilities are needed.

In the following, we describe several algorithms and utilities of the GRM
library and point out in each case their application to several text and speech
processing tasks. Some of the algorithms and utilities of an older version of
this library, e.g., the algorithms and utilities for the compilation of weighted
context-dependent rules, were presented elsewhere [16]. Here we describe three
categories of algorithms and utilities of the library: local grammar and text
processing utilities, context-free grammar compilation and approximation, and
statistical language modeling algorithms and tools.

2 Design

The core foundation of the GRM library is the FSM library [18]. Both libraries
are implemented in C and share the same data representations, the same binary
file format and the same command-line interface style. In the FSM library, the
memory representation of a weighted automaton or transducer is determined by
the use of an FSM class that defines methods for accessing and modifying it.
The efficient implementation of several algorithms required the definition of new
FSM classes in the GRM library: the edit, replace and failure classes. The latter
will be described in this article, the reader can refer to the documentation for
the other classes.

3 Local Grammars and Text Processing

The GRM library includes several utilities for text processing. This section briefly
reviews the relevant utilities.

3.1 Failure transitions

There exists a general technique for representing the transitions of automata in
an implicit manner, which can lead to substantial savings in space. The method
is based on the use of failure transitions. A failure transition is a specific type of
transitions with the semantic of ’otherwise’: it is taken when no regular transition
with the desired input label is found. Failure transitions were popularized by [1]
and are used to represent local grammars (see section 3.2) and backoff language
models (see section 5.3).
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Fig. 1. (a) A deterministic finite automaton A and (b) a deterministic automaton
recognizing Σ∗L(A) where transitions labeled with φ are failure transitions.

The use of failure transitions is made possible in the GRM library through
a dedicated FSM class, the failure class. The utility grmfailure can convert
a regular FSM representation to a failure class representation by interpreting
transitions labeled with the symbol phi specified by the option -p as failure
transitions:

grmfailure -p phi A.fsm > A.failure.fsm

3.2 Local Grammars

Algorithm. Let A be a deterministic finite automaton and let L(A) be the
regular language accepted by A. An algorithm constructing a compact represen-
tation of the deterministic automaton representing Σ∗L(A) using failure transi-
tions was given by [15]. This algorithm can be seen as an extension to the case
of an arbitrary deterministic automaton A of the classical algorithms of [13, 1]
which were designed for a string or a tree. When A is a tree, its complexity
coincides with that of [1]: it is linear in the sum of the lengths of the strings
accepted by A.

Utility. The algorithm of [15] was implemented in the GRM Library. The utility
grmlocalgrammar takes as input a deterministic finite automaton A and returns
a deterministic finite automaton recognizing Σ∗L(A) represented with failure
transitions. The symbol used to label the failure transitions can be specified
through the option -p:

grmlocalgrammar -p phi A.fsm > sigma-star.A.fsm

Examples and Applications. A deterministic finite automaton A is given by
Figure 1(a) and the corresponding automaton recognizing Σ∗L(A) is given by
Figure 1(b), the failure transitions being labeled with φ. The main applications
of local grammars are string-matching [1, 15] and disambiguation as a first step
before part-of-speech tagging or parsing [14].



3.3 Weighted Suffix Automata

Algorithms. The suffix automaton of a string u is the minimal deterministic
finite automaton recognizing the set of suffixes of u [5, 8]. Its size is linear in
the length of u, n. More precisely, its number of states is between n and 2n− 1
and its number of transitions between n + 1 and 3n − 2. This automaton can
be obtained by minimizing the suffix trie of u. A crucial advantage of suffix
automata is that, unlike suffix trees, they do not require the use of ’compact’
transitions (transitions labeled with strings) for the size to be linear in |u|. In
[8], the notion of weighted suffix automaton was introduced. It is defined over the
tropical semiring and has the same topology as the suffix automaton. Let SA(u)
be the weighted suffix automaton of a string u and let x be a suffix of u. The
weight associated by SA(u) to x is the position of the suffix x in u. A string x is
a factor of u iff it is the label of a path π in SA(u) starting from the initial state.
The weight of π gives the position of the first occurrence of x in u. A weighted
suffix automaton can be built by an on-line algorithm deriving SA(uσ) from
SA(u) for σ ∈ Σ. This algorithm is based on the definition of failure transitions
similar to the suffix links defined in a suffix tree. The complexity of the on-line
construction algorithm is O(log(|Σ|)|u|) in time and O(|u|) in space.

The weighted suffix oracle SO(u) of a string u is an approximation of the
suffix automaton recognizing a superset of the set of suffixes of u [2]. It has
exactly |u|+ 1 states and at most 2|u| − 1 transitions. The weight associated by
SO(u) to a string x is the position in u where x would occurs if x was a suffix of
u. The construction algorithm is a simplified version of the on-line construction
algorithm of the suffix automaton, its complexity is O(log(|Σ|)|u|) in time and
O(|u|) in space.

Utilities. The on-line construction algorithms of the weighted suffix automaton
and oracle have been implemented in the GRM library and can be invoked
through the grmsuffix command-line utility:

grmsuffix A.fsm > suffix.fsm

grmsuffix -o A.fsm > oracle suffix.fsm

This utility takes as input a string represented by a finite automaton and returns
the weighted suffix automaton of that string. When the -o option is used, the
weighted suffix oracle is returned instead.

Examples and Applications. The weighted suffix automaton SA(abbab) of
the string abbab is given by Figure 2(b). The weight associated by SA(abbab) to
ab is 3, which is the position in abbab where ab occurs as a suffix, and the weight of
the path starting from the initial state and labeled with ab is 0, which is indeed
the position of the first occurrence of ab in abbab. The weighted suffix oracle
SO(abbab) of abbab is given Figure 2(c). Note that the string abab is recognized
by SO(abbab) although it is not a suffix of abbab.
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Fig. 2. (a) A string u represented by a finite automaton. (b) The weighted suffix
automaton of u. (c) The weighted suffix oracle of u.

The (weighted) suffix automaton can be used for indexing [6, 8], string-
matching [9, 4] and compression [8]. The main application of the suffix oracle
is string-matching [2].

4 Context-Free Grammars

The GRM library includes several utilities for reading, compiling, and approxi-
mating context-free grammars (CFGs) into finite automata. This section briefly
reviews the relevant utilities of the GRM library.

4.1 Textual and Binary Representations

A textual representation of a weighted context-free grammar can be used directly
as input to the GRM utilities. The following illustrates that representation in
the case of a simple CFG.

CFG rules cfg.txt

Z .1 → XY

X .2 → aY

Y .3 → bX | .4 c

Z .1 X Y

X .2 a Y

Y .3 b X | .4 c

The textual representation is a straightforward translation of the classical
way a CFG is written. Since, by definition, the first symbol of each rule is a
non-terminal, there is no need to keep the arrow symbol for indicating the rule
derivation. The second symbol of each line is the weight associated to the rule
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Fig. 3. (a) Binary representation of the context-free grammar G. (b) Compilation of
G into a weighted automaton.

(in the case of weighted CFGs). The weights can be elements of an arbitrary
semiring.

For efficiency purposes, this textual representation can be turned into a bi-
nary format using the utility grmread. The following is a command line sequence
that generates the binary representation cfg.bin of the CFG cfg.txt where the
file labels is a user-defined association between the symbols (terminal and non-
terminal) and some numbers associated with them.

grmread -i labels -w cfg.txt >cfg.bin

The flag -w indicates that the input CFG is weighted. In the GRM library,
the current binary representation is in fact that of a weighted transducer, see
Figure 3(a). There are several reasons that motivated that choice. First, this
representation makes it natural to apply grammar operations such as union or
concatenation directly at the binary level. Secondly, and perhaps more impor-
tantly, the use of general determinization and minimization algorithms with this
representation increase the sharing (factoring) among grammar rules that start
or end the same way, which improves dramatically the time and space needed
for the grammar compilation.

4.2 Compilation and Regular Approximation

When the input weighted context-free grammar is strongly regular, it can be
compiled by the GRM library into an equivalent weighted automaton using the
utility grmcfcompile. A CFG is strongly regular when the rules of each set
M of mutually recursive nonterminals are either all right-linear or all left-linear
(nonterminals that do not belong to M are considered as terminals for deciding if
a rule of M is right- or left-linear). The following illustrates the use of the GRM
utility grmcfcompile for compiling a CFG given by the binary representation
cfg.bin.

grmcfcompile -i labels -s Z cfg.bin >cfg.fsm



Figure 3(b) shows the result of the compilation of that grammar. The CFG
compilation of the GRM library produces an FSM that can be expanded on-
demand. The FSM returned by grmcfcompile is a delayed acceptor, thus, its
states and transitions are expanded as required by the FSM operation that is
applied to it.

Not all weighted CFGs are strongly regular and thus can be compiled into
weighted automata using grmcfcompile. We have designed an efficient context-
free approximation algorithm that transforms any context-free grammar into
one that is strongly regular [17]. The algorithm is based on a simple transforma-
tion that applies to any context-free grammar. The resulting grammar contains
at most one new nonterminal for any nonterminal symbol of the input gram-
mar. The result thus remains readable and if necessary modifiable. A mapping
from an arbitrary CFG generating a regular language into a corresponding fi-
nite automaton cannot be realized by any algorithm [24]. Thus, in general, our
approximation cannot guarantee that the language is preserved when the gram-
mar already generates a regular language (neither can any other approximation).
However, this is guaranteed when the grammar is strongly regular.

The GRM utility grmcfapproximate takes as input the binary represen-
tation of a CFG and produces the textual representation of a strongly regular
grammar approximating the input. The approximation creates new non-terminal
symbols. The option -o olab specifies a new symbols file to be created, olab,
containing the original and the new symbols. The following illustrates the use of
grmcfapproximate.

grmcfapproximate -i lab -o nlab cfg.bin >ncfg.txt

grmread -i nlab ncfg.txt | grmcfcompile -i nlab -s E >cfg.fsm

cfg.txt ncfg.txt cfg.fsm

E E + T

E T

T T * F

T F

F ( E )

F a

E’ eps

T’ eps

F’ eps

E E

E’ + T

T’ E’

E T

T’ E’

T T

T’ * F

F’ T’

T F

F’ T’

F ( E

E’ ) F’

F a F’

0

(

1

a
*
+

)

The grammar cfg.txt above represents a simple grammar of arithmetic
expressions. When applied to cfg.txt, grmcfapproximate returns the strongly
regular grammar ncfg.txt that can be compiled into the automaton cfg.fsm

represented by the figure.

5 Statistical language models

The GRM library includes utilities for counting n-gram occurrences in corpora
of text or speech, and for estimating and representing n-gram language models
based upon these counts. The use of weighted finite-state transducers allows
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for an efficient algorithm for computing the expected value of n-gram sequences
given a weighted automaton. Failure transitions provide a natural automata
encoding of stochastic language models in the tropical semiring. Some of the
algorithmic details related to these utilities are presented in [3]. Here we give a
brief tutorial on their use.

5.1 Corpora

For counting purposes, a corpus is a collection (or archive) of weighted automata
in the log semiring. A corpus of strings can be compiled into such an archive
with the FSM library utility farcompilestrings. A collection of word lattices
(acyclic weighted graphs of alternative word strings, e.g. output from a speech
recognizer) can be simply concatenated together to form an archive. For posterior
counts from word lattices, weights should be pushed toward the initial state and
the total cost should be removed, using fsmpush.

5.2 Counting

We define the expected count (the count for short) c(x) of the sequence x in A

as: c(x) =
∑

u∈Σ∗ |u|x [[A]](u), where |u|x denotes the number of occurrences of
x in the string u, and [[A]](u) the weight associated to u by A. The transducer
of Figure 4 can be used to provide the count of x in A through composition
with A, projection onto output labels, and epsilon-removal. While we have been
mentioning just acyclic automata, e.g., strings and lattices, the algorithm can
count from cyclic weighted automata, provided that cycle weights are less than
one, a requirement for A to represent a distribution. There exists a general
algorithm for computing efficiently higher order moments of the distributions of
the counts of a sequence x in a weighted automaton A [7].

The utility grmcount takes an archive of weighted automata and produces
a count automaton as shown in figure 5. Optional arguments include the n-
gram order, and the start and final symbols, which are represented by <s> and
</s> respectively in the examples of this Section. These symbols are automati-
cally appended by grmcount to the beginning and end of each automaton to be
counted.

In addition to grmcount, the utility grmmerge is provided, which takes k

count files of the format produced by grmcount, and combines the counts into
a single file of the same format. This allows counting to be parallelized, and the
results combined. These counting utilities are used as follows:



corp wl
hello ε 0
bye hello 1
hello bye 2
bye bye <s> 3
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Fig. 5. Example corpus and count automata resulting from the command:
farcompilestrings -i wl corp | grmcount -n2 -s"<s>" -f"</s>" -i wl>bg.fsm

grmcount -n2 -s3 -f4 foo.far > foo.2g.counts.fsm

grmmerge foo.counts.fsm bar.counts.fsm > foobar.counts.fsm

5.3 Creating a backoff model from counts

The counts described in the previous section can be used in a variety of ap-
plications, e.g., to compute expected counts and gradients for machine learning
algorithms. They can also be used to produce n-gram backoff language models,
commonly used in many natural language processing applications, e.g., auto-
matic speech recognition, speech synthesis, information retrieval, or machine
translation.

An n-gram model is based on the Markovian assumption that the probability
of the occurrence of a word only depends on the n − 1 preceding words. Thus,

P(w) =

k∏

i=1

P(wi | hi) (1)

where the conditioning history hi has length at most n−1: |hi| ≤ n−1. Let c(hw)

denote the count of n-gram hw and let P̂(w | h) be the maximum likelihood

probability of w given h, estimated from counts. P̂ is often adjusted to reserve
some probability mass for unseen n-gram sequences. Denote by P̃(w | h) the
adjusted conditional probability. For all n-grams h = wh′ where h ∈ Σk for
some k ≥ 1, we refer to h′ as the Katz backoff n-gram of h [11]. Conditional
probabilities in a backoff model are of the form:

P(w | h) =

{
P̃(w | h) if c(hw) > 0
αhP(w | h′) otherwise

(2)

where αh is a factor that ensures a normalized model. In practice, for numerical
stability, negative log probabilities are used. Furthermore, when the Viterbi ap-
proximation is used, which is common in speech processing applications, then an
n-gram language model is represented by a weighted automaton over the tropical



0/0
1

</s>/0.410bye/1.108

4

ε/3.500 </s>/0.810

bye/1.098

2

hello/1.504 </s>/0.005

ε/4.704
3

bye/0.698

ε/4.481
hello/0.698

Fig. 6. Bigram language model with ε backoff arcs.

semiring. The utility grmmake takes counts in the format produced by grmcount

and produces a backoff model in the tropical semiring:

grmmake foo.2g.counts.fsm > foo.2g.lm.fsm

Figure 6 shows the bigram language model in the tropical semiring that re-
sults from the counts in Figure 5. The smoothing technique that is used by
default is Katz backoff [11], but the utility also provides for alternative esti-
mation methods, such as absolute discounting [20] and Kneser-Ney smoothing
[12]. Backoff transitions are naturally represented as failure transitions, but the
grmmake utility produces them with ε-transitions, a convenient off-line approxi-
mation of the failure-function representation.

The utility grmshrink takes a model output from grmmake and removes tran-
sitions when their absence results in a change to the model of magnitude less than
some threshold. Two methods are provided, the weighted difference method [21]
and the relative entropy method [22]. The utility grmconvert converts a model
output from grmmake or grmshrink to a failure class model or an interpolated
model. Also, an exact off-line model can be produced from grmconvert, using
ε-transitions instead of failure transitions, as detailed in [3]. These utilities are
used as follows:

grmshrink -c 4 foo.2g.lm.fsm > foo.2g.s4.lm.fsm

grmconvert -t failure foo.2g.lm.fsm >foo.fail.2g.lm.fsm

5.4 Comparison with other utilities

The statistical language modeling utilities of the GRM library are similar in
many ways to those of the SRI Language Modeling Toolkit (SRILM toolkit) [23],
but there are some key differences. The SRILM toolkit provides a large variety
of scripts and utilities for not only counting and creating language models, but
also for the use and manipulation of these models. Since the models produced by
the GRM library are in the format used by the FSM library, they can be readily
used and manipulated with existing FSM utilities. Hence additional utilities are
not part of the core GRM library.

For example, to score a string with a language model, the string must simply
be encoded as an automaton (farcompilestrings) and intersected with the model
(fsmintersect). Many of the same modeling options are provided by the utilities



in both the SRILM toolkit and the GRM library, as well as count merging and
model pruning capabilities. Class-based modeling is included explicitly in the
SRILM toolkit, but, as shown in [3], general class-based models can be straight-
forwardly represented with the GRM library, without requiring additional util-
ities, through the use of weighted transducers. With such an approach, classes
can be (weighted) regular languages, rather than just a finite set of words or a
finite list of sequences of words.

The GRM library provides some features that are not covered by the SRILM
Toolkit. It allows for counting from weighted automata, e.g., word lattices, which
is crucial in a number of text and speech processing applications. Also, the use
of failure transitions for the representation of language models and its off-line
approximation based on ε-transitions provide efficient and useful encodings for
intersection and composition with other finite automata and finite-state trans-
ducers. Finally the GRM’s tight coupling with the FSM library allows one to
benefit from the wide range of utilities of that library. In reverse, some of the
features provided by the SRILM Toolkit, e.g., different discounting methods such
as that of Witten-Bell are not provided by the current release of the GRM li-
brary but are likely to be available in future versions. The SRILM Toolkit also
provides a utility for converting its models to and from that of the FSM library.

6 Conclusion

We presented a general weighted grammar library and emphasized its use in
several text and speech processing applications. The binary executables of the
library are available for download from the following URL:

http://www.research.att.com/sw/tools/grm/

The GRM algorithms and utilities can be used in a similar way in many com-
putational biology applications.
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