
page 87

9

Local Grammar Algorithms

MEHRYAR MOHRI

Local syntactic constraints can often be described with much precision. For

example, the sequences of preverbal particles in French, e.g., ne, le, lui, obey

strict rules that govern their ordering and the insertion of other terms among

them, regardless of the remaining material forming the sentence (Gross,

1968). As such, they can be viewed as local rules, or local grammars. Similar

detailed local grammars have been given for time expressions (Maurel, 1989)

and later for many other linguistic expressions (Gross, 1997).

Such local grammars do not just capture some rare linguistic phenomena.

Widespread technical jargon, idioms, or clichés, lead to common syntactic

constraints that can be accurately described locally without resorting to more

powerful syntactic formalisms. A careful examination of articles written in

the financial section of a newspaper reveals for example that only a limited

number of constructions accounts for the description of the variations of the

stock market, or the changes in inflation or unemployment rate.

A local grammar may describe a set of forbidden or unavoidable se-

quences. In both cases, it can be compactly represented by a finite automaton.

A collection of local grammars can be combined and represented by a more

complex finite automaton by taking the union of the simpler local grammar

automata. Novel linguistic studies keep increasing the number of local gram-

mars (Gross, 1997). This tends to significantly increase the size of the union

local grammar finite automata and creates the need for efficient algorithms to

apply large local grammar automata.

87

A Finnish Computer Linguist: Kimmo Koskenniemi

Festschrift on the 60th birthday.

Editors: Arppe, Carlson,

Heinämäki, Lindén,

Miestamo, Piitulainen, Tupakka,

Westerlund, Yli-Jyrä,

jne... (lisättävä puuttuvat).

Copyright c© 2005, CSLI Publications.

page 88

88 / MEHRYAR MOHRI

0 1
Det
Pro

2Adv

sing
3this

0

1
N

4

V

2

sing

5inf

imp

7

pres
3limit6

1st

2nd

3rd

1st

2nd

8

3rd

sing
plu
plu

(a) (b)

FIGURE 1 Automata representing the possible part-of-speech tags for (a) this; and (b)

limit; in the absence of any context.

This chapter presents an overview of algorithms for the application of lo-

cal grammar automata. Section 1 introduces the algorithmic problem related

to the application of large local grammar automata. Section 2 reviews two

local grammar algorithms and presents in detail the most efficient one. It also

illustrates these algorithms by showing examples of their applications.

9.1 Description of the problem

Let Σ denote the alphabet and let A be a local grammar finite automaton

specifying a set of forbidden sequences. We denote by L(A) the language

accepted by A. By definition, any sequence containing a sequence accepted

by A is unacceptable. Thus, acceptable sequences must be in Σ∗L(A)Σ∗.

Let us illustrate this with an example related to part-of-speech tagging.

Let T be the automaton representing the set of all possible tagging of a text

(Koskenniemi, 1990). T can be obtained by concatenating simpler automata

representing the set of possible tagging for each of the word composing the

text. Figures 1(a)-(b) show these automata for the words this and limit. The

three paths of the automaton of Figure 1(a) account for the fact that this may

be a singular (sing) determiner (Det) or pronoun (Pro), or an adverb (Adv) as

in: Tom is this tall. Similarly, the automaton of Figure 1(b) has different paths

corresponding to the case where the word limit is a singular (sing) noun (N),

or the infinitive (inf), imperative (imp), or present (pres) form of a verb (V),

with the third (3rd) person singular (sing) form excluded in the latter case.

Simple observations can help derive a set of forbidden sequences repre-

sented by the automaton A of Figure 2. For example, when this is an adverb,

it cannot be followed by a noun or a verb, and similarly, when it is a deter-

miner, it cannot precede a verb unless the verb is a past or present participle.

The automaton A can help reduce the ambiguities of the text T since it en-

page 89

LOCAL GRAMMAR ALGORITHMS / 89

0
1Det

5
Adv

2sing

6this

3this
4V

7

inf

pres
imp
N

V

FIGURE 2 Finite automaton A representing a set of forbidden sequences.

0
1Det

2
Pro

3sing

4sing

5this

6this

7N
N

8

V

9

sing

10inf

imp

11

pres
12limit13

1st

2nd

3rd

1st

2nd

14

3rd

sing
plu
plu

FIGURE 3 Accepted sequences L(T) ∩ Σ∗L(A)Σ∗.

forces that the sequences accepted must be in L(T) ∩ Σ∗L(A)Σ∗. Figure 3

shows the automaton of accepted sequences resulting from the application of

the local grammar A to T .

The main problem for the application of a large local grammar A to a

text automaton T is the efficient computation of an automaton representing

L(T)∩Σ∗L(A)Σ∗. Complex local grammars automata may have in the order

of several million transitions. The alphabet includes the vocabulary of the

language considered, which, in English, has more than 200,000 words.

An automaton accepting Σ∗L(A)Σ∗ can thus be very large. Taking the

complement of that automaton may lead to an even larger automaton since

the worst case complexity of complementation is exponential for a non-

deterministic automaton, and the result would yet need to be intersected with

T .

The next section examines several algorithms for the computation of an

automaton representing L(T) ∩ Σ∗L(A)Σ∗.

9.2 Algorithms

This section presents two local grammar algorithms. It first discusses the

properties of a simple algorithm that can be viewed as the counter-part

page 90

90 / MEHRYAR MOHRI

(a) 0 1a 2a 3a 4a 5a
b

(b) 0 1a 2a
3a

4c

b

(c) (0, {0}) (1, {0, 1})a (2, {0, 1, 2})a (3, {0, 1, 2, 3})a (4, {0, 1, 2, 3})a (5, {0, 1, 2, 3})a

(d) (0, 0) (1, 1)a (2, 2)a (3, 3)a (4, 3)a (5, 3)a

FIGURE 4 (a) Simple text automaton T0. (b) Simple local grammar automaton A0. (c)

Result of the application of A0 to T0 using the simple algorithm. (d) Application of

A0 to T0 using a more efficient algorithm.

for local grammar algorithms of the straightforward quadratic-time string-

matching algorithm and illustrates its application. A more efficient algorithm

is then described in detail, including its pseudocode, and its optimization. In

what follows, the local grammar automaton A and the text automaton T will

be assumed to be deterministic.

9.2.1 A simple algorithm

The problem of the application of a local grammar can be viewed as a gen-

eralization to automata of pattern-matching in text. A simple algorithm for

the application of A to T is to search for all sequences accepted by A start-

ing from each state of T . If a forbidden sequence is found, the appropriate

transition is removed to disallow that sequence. This can be done by:

. simulating the presence of a self-loop labeled with all elements of Σ at the

initial state of A;. reading the paths of T starting from its initial state while pairing each state

reached by a string x with the set of all states of A that can be reached by

x from its initial state.

This describes the algorithm of Roche (1992). Figure 4(c) shows its result

when using the simple text automaton of Figure 4(a) and the local grammar

A0 shown in Figure 4(b). Each state of the output automaton is a pair (p, s)
where p is a state of T and s an element of the powerset of the states of A.

At each state, the transitions of state p and those of the set of states in s are

matched to form new transitions. In general, this operation may be very costly

page 91

LOCAL GRAMMAR ALGORITHMS / 91

because of the large number of transitions leaving the states of s. Note that

the transition labeled with b from the state (4, {0, 1, 2, 3}) to (5, {4}) is not

constructed to disallow the forbidden sequence aaab (state 4 is a final state of

A0).

As it is clear from this example, the algorithm is very similar to the simple

quadratic-time string-matching algorithm seeking to match a pattern at each

position of the text, ignoring the information derived from matching attempts

at previous positions.

The next section describes an algorithm that precisely exploits such in-

formation as with the linear-time string-matching algorithm of Knuth et al.

(1977). Figure 4(d) shows the result of the application of that algorithm. Each

state of the output automaton is identified with a pair of states (p, q) where p
is a state of T and q the state of A corresponding to the longest (proper) suffix

of the strings leading to p.

9.2.2 A more efficient local grammar algorithm

The application of a local grammar is directly related to the computation of

a deterministic automaton representing Σ∗L(A). Let A′ be the automaton

constructed by augmenting A with a self-loop at its initial state labeled with

all elements of the alphabet Σ, and let B = det(A′) be the result of the

determinization of A′. B recognizes the language Σ∗L(A). To apply the local

grammar A to T , we can proceed as for computing the intersection B ∩ T ,

barring the creation of transitions leading to a state identified with a pair (p, q)
where q is a final state of B.

In fact, since determinization can be computed on-the-fly (Aho et al., 1986,

Mohri, 1997a), the full determinization of A ′ is not needed, only the part rele-

vant to the computation of the intersection with T . However, if one wishes to

apply the grammar to many different texts, it is preferable to compute B ′ once

beforehand. In general, the computation of B ′ may be very costly though, in

particular because of the alphabet size |Σ| which can reach several hundred

thousand.

There exists an algorithm for constructing a compact representation of

the deterministic automaton representing Σ∗L(A) using failure transitions

(Mohri, 1997b). A failure transition is a special transition that is taken when

no standard transition with the desired input label is found.

The algorithm can be viewed as a generalization to an arbitrary determin-

istic automaton A of the classical algorithms of Knuth et al. (1977) and that of

Aho and Corasick (1975) that were designed only for strings or trees. When

A is a tree, the complexity of the algorithm of Mohri (1997b) coincides with

that of Aho and Corasick (1975): it is linear in the sum of the lengths of the

strings accepted by A.

The following is the pseudocode of that algorithm in the case where A is

page 92

92 / MEHRYAR MOHRI

acyclic.

LocalGrammar(A)

1 E ← E ∪ {(i, φ, i)}
2 ENQUEUE(S, i)
3 while S $= ∅ do
4 p ← DEQUEUE(S)
5 for e ∈ E[p] do
6 q ← δ(p, φ)
7 while q $= i and δ(q, l[e]) = UNDEFINED do q ← δ(p, φ)
8 if p $= i and δ(q, l[e]) $= UNDEFINED

9 then q ← δ(q, l[e])
10 if δ(n[e], φ) = UNDEFINED

11 then δ(n[e], φ) ← q
12 if q ∈ F then F ← F ∪ {n[e]}
13 L[n[e]] = L[n[e]] ∪ {n[e]}
14 ENQUEUE(S, n[e])
15 else if there exists r ∈ L[old[n[e]]] such that (r, φ, q) ∈ E
16 then n[e] ← r
17 else if old[q] $= n[e]
18 then create new state r
19 for e′ ∈ E[n[e]] such that l[e′] $= φ do
20 E ← E ∪ {(r, l[e′], old[n[e′]])}
21 E ← E ∪ (r, φ, q)
22 old[r] ← old[n[e]]
23 if old[n[e]] ∈ F then F ← F ∪ {r}
24 L[old[n[e]]] = L[old[n[e]]] ∪ {r}
25 n[e] ← r
26 ENQUEUE(S, r)
27 else n[e] ← q

The algorithm takes as input a deterministic automaton A that it modifies

to construct the desired local grammar automaton. States of A are visited in

the order of a breadth-first search using a FIFO queue S. Each state q admits

a failure transition labeled with φ. The destination state of that transition is

the failure state of q, which is defined as the state reached by the longest

proper suffix of the strings reaching q that are prefix of L(A). Two distinct

paths reaching q may correspond to two distinct failure states for q. In that

case, q must be duplicated. Thus, the algorithm maintains the two following

attributes: old[q], the original state from which q was copied and, if q was

originally in A (i.e. old[q] = q), L[q], the list of the states obtained by copying

page 93

LOCAL GRAMMAR ALGORITHMS / 93

0

! 1a

!

2a
!

3
a

4
c

!
b

!

FIGURE 5 Finite automaton B′
0 recognizing Σ∗L(A0), where A0 is the automaton of

Figure 4. Failure transitions are marked with φ.

q.

The outgoing transitions e of each state p extracted from the queue S (line

4) are examined. The candidate failure state q of n[e] is determined (lines 6-

10) as the first state on the failure path of p that has an outgoing transition

labeled by l[e]. If n[e] is not already assigned a failure state, its failure state

is set to q and n[e] is added to the queue (lines 10-14). If there exists a state

r that has the same original state as n[e] and has q as a failure state, then the

destination of e is changed to r (lines 15-16). If q is not a copy of n[e], then

a new state r is created by copying n[e], the failure state of r is set to q, the

destination state of e is changed to r and r is added to the queue (lines 17-26).

Otherwise, the destination state of e is changed to q (line 27).

When A is not acyclic, the condition of the test of line 17 needs to be gen-

eralized as described in detail in (Mohri, 1997b). An efficient implementation

of this algorithm has been incorporated in the GRM library (Allauzen et al.,

2005) with the command-line utility grmlocalgrammar.

Figure 5 shows the output of the algorithm when applied to the automaton

A0 of Figure 4(b). Each state admits a failure transition. The failure transition

at the initial state is a self-loop. In such cases, the search for a default state

can stop, e.g., at state 0, if a desired label such as b cannot be found, no further

default state is considered. The automaton of Figure 5 is intersected with T 0

in the way previously described to produce the result (Figure 4(d)).

Figure 6(b) shows another illustration of the application where it is applied

to the automaton of Figure 6(a). The special symbol φ is used to mark failure

transitions.

The algorithm just described admits an on-the-fly implementation which

makes it suitable for expanding only those states and transitions of the result

need for the intersection with T .

An offline construction is preferable when multiple applications of the lo-

cal grammar are expected. Unlike the algorithm presented in the previous

section, the determinization of A′ is then computed just once. The resulting

page 94

94 / MEHRYAR MOHRI

0 1a 2b 3a 4b
c 0

!

1a
!

2
b

!

3

a

!
4b

5

c

!

!

(a) (b)

FIGURE 6 (a) Deterministic automaton A; (b) deterministic automaton B recognizing

Σ∗L(A). Transitions labeled with φ represent failure transitions.

automaton B ′ is compact thanks to the use of failure transitions.

The use of B ′ can be further optimized in a way similar to what can be

done in the case of the algorithm of Knuth et al. (1977) using the following

observation: if a label a is unavailable at q, it is also unavailable at the default

state q′ of q if the set of labels at q′ is included in set of labels at q. Let the

context of q be defined by:

C(q) = {a ∈ Σ : δ(q, a) $= ∅}.
To speed-up the use of default transitions, the new transition function δ ′ can

thus be defined as follows:

δ′(q, φ) ←
{

δ(q, φ) if C(δ(q, φ)) $⊆ C(q) or δ(q, φ) = q;

δ′(δ(q, φ), φ) otherwise.

For example, the context of state 3 contains that of its default state 1 in the

automaton of Figure 6(b). Thus, its default transition can be redefined to point

to the default state of state 1, that is state 0.

Figures 7 and 8 provide a full example of application of a local grammar

using the algorithm described. Figure 7(a) shows an example of a local gram-

mar automaton A. The application of the algorithm produces the compact

deterministic automaton B of Figure 7(b) represented with failure transitions.

Figure 8(a) shows a text automaton and Figure 8(b) the result of the ap-

plication of the application of A to T obtained by intersecting B with T . The

dotted transition is a transition not constructed during that intersection since

it leads to the state pair (2, 3) where 3 is a final state of B.

9.3 Conclusion

Accurate local grammar automata are useful tools for disambiguation. They

can significantly speed up the application of further text processing steps such

as part-of-speech tagging or parsing. We gave a brief overview of several local

grammar algorithms, including an efficient algorithm for their application to

a text represented by an automaton.

Another natural way to define local grammars is to use context-dependent

page 95

REFERENCES / 95

(a) (b)

FIGURE 7 (a) Local grammar automaton A; (b) deterministic automaton B
recognizing Σ∗L(A) represented with failure transitions.

(0,0) (1,1)
a

b

(2,2)
a

(2,1)
b

(2,3)

c

(3,2)
a

a

(3,1)
b

(a) (b)

FIGURE 8 (a) Text automaton T ; (b) Result of the application of the local grammar A
to T .

rewrite rules. Context-dependent rules can be efficiently compiled into finite-

state transducers that can then be readily applied to an input text automaton

(Kaplan and Kay, 1994, Mohri and Sproat, 1996). They can be further gener-

alized to weighted context-dependent rules compiled into weighted transduc-

ers (Mohri and Sproat, 1996).

References

Aho, Alfred V. and Margaret J. Corasick. 1975. Efficient string matching: An aid to

bibliographic search. Communication of the Association for Computing Machinery

18 (6):333–340.

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers, Principles, Tech-

niques and Tools. Addison Wesley: Reading, MA.

Allauzen, Cyril, Mehryar Mohri, and Brian Roark. 2005. The Design Principles and

Algorithms of a Weighted Grammar Library. International Journal of Foundations

of Computer Science (to appear).

Gross, Maurice. 1968. Grammaire transformationnelle du francais., vol. 1, Syntaxe

du verbe. Larousse.

Gross, Maurice. 1997. The Construction of Local Grammars. In Finite-State Lan-

guage Processing, pages 329–354. The MIT Press, Cambridge, Massachusetts.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phonological rule sys-

tems. Computational Linguistics 20(3).

page 96

96 / MEHRYAR MOHRI

Knuth, D.E., J.H. Morris, and V.R. Pratt. 1977. Fast Pattern Matching in Strings. SIAM

Journal on Computing 6:323–350.

Koskenniemi, Kimmo. 1990. Finite-State Parsing and Disambiguation. In Pro-

ceedings of the thirteenth International Conference on Computational Linguistics

(COLING’90), Helsinki, Finland.

Maurel, Denis. 1989. Reconaissance de séquences de mots par automates. Adverbes

de date. Ph.D. thesis, Université Paris 7.

Mohri, Mehryar. 1997a. Finite-State Transducers in Language and Speech Processing.

Computational Linguistics 23:2.

Mohri, Mehryar. 1997b. String-Matching with Automata. Nordic Journal of Comput-

ing 4:2.

Mohri, Mehryar and Richard Sproat. 1996. An Efficient Compiler for Weighted

Rewrite Rules. In 34th Meeting of the Association for Computational Linguistics
(ACL ’96), Proceedings of the Conference, Santa Cruz, California.

Roche, Emmanuel. 1992. Text disambiguation by finite state automata, an algorithm

and experiments on corpora. In Proceedings of COLING-92.

