
Distribution Kernels Based on Moments of Counts

Corinna Cortes corinna@google.com

Google Labs, 1440 Broadway, New York, NY 10018

Mehryar Mohri mohri@research.att.com

AT&T Labs – Research, Shannon Laboratory
180 Park Avenue, Florham Park, NJ 07932-0971

Abstract

Many applications in text and speech pro-
cessing require the analysis of distributions
of variable-length sequences. We recently in-
troduced a general kernel framework, ratio-
nal kernels, to extend kernel methods to the
analysis of such variable-length sequences or
more generally weighted automata. These
kernels are efficient to compute and have
been successfully used in applications such
as spoken-dialog classification using Support
Vector Machines.

However, the rational kernels previously in-
troduced do not fully encompass distribu-
tions over alternate sequences. Prior similar-
ity measures between two weighted automata
are based only on the expected counts of co-
occurring subsequences and ignore similari-
ties (or dissimilarities) in higher order mo-
ments of the distributions of these counts.

In this paper, we introduce a new family
of rational kernels, moment kernels, that
precisely exploit this additional information.
These kernels are distribution kernels based
on moments of counts of strings. We de-
scribe efficient algorithms to compute mo-
ment kernels and apply them to several dif-
ficult spoken-dialog classification tasks. Our
experiments show that using the second mo-
ment of the counts of n-gram sequences con-
sistently improves the classification accuracy
in these tasks.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the owner.

1. Introduction

Many applications in text and speech processing re-
quire the analysis of distributions of variable-length
sequences. The output of complex systems combining
multiple information sources, e.g., large-vocabulary
speech recognition or information extraction systems,
is typically a weighted automaton compactly repre-
senting a large set of alternative sequences or paths,
where the weights rank different hypotheses according
to the underlying models of these systems and repre-
sent the probability of correctness of the sequences.

An approach widely used in statistical learning tech-
niques is that of kernel methods due to their compu-
tational efficiency in high-dimensional feature spaces
(Schölkopf & Smola, 2002). Recently, a general ker-
nel framework based on weighted transducers, ratio-
nal kernels, was introduced to extend kernel meth-
ods to distributions represented by weighted automata
(Cortes et al., 2003b; Cortes et al., 2003a). The frame-
work was shown to include many string kernels in-
troduced for text classification or computational biol-
ogy. It was shown that there are general and efficient
algorithms for computing rational kernels. Rational
kernels have been combined with Support Vector Ma-
chines (SVMs) (Boser et al., 1992; Cortes & Vapnik,
1995; Vapnik, 1998) and successfully used in many
applications including spoken-dialog classification and
computational biology.

However, the rational kernels previously introduced
do not fully encompass distributions over alternate
sequences. Prior similarity measures between two
weighted automata are based only on the expected
counts of co-occurring subsequences and ignore sim-
ilarities (or dissimilarities) in higher order moments of
the distributions of these counts.1 In this paper, we in-

1For a weighted automaton, the expected count of a
string is the weighted average of the number of times the
string appears in a path.

troduce a new family of rational kernels, moment ker-
nels, that precisely exploit this additional information.
These kernels are distribution kernels based on mo-
ments of counts of strings. We describe efficient algo-
rithms to compute moment kernels and apply them to
several difficult spoken-dialog classification tasks. Our
experiments show that using the second moment of the
counts of n-gram sequences consistently improves the
classification accuracy in these tasks.

This paper describes in detail the algorithms for com-
puting the moments of the count of an arbitrary string
in a weighted automaton and gives the proof of their
correctness. Rational kernels exploiting moments of
the counts of all n-gram sequences are then defined.
These moment kernels generalize those based on just
the expected counts. The last section details their
application to spoken-dialog classification and reports
the results of our experiments in several difficult tasks.

2. Preliminaries

This section presents the definitions and notation nec-
essary to present the algorithms and kernels described
in the next sections. We give a brief introduction to
weighted automata and weighted finite-state transduc-
ers. We refer the reader to (Mohri, 1997) for an ex-
tensive presentation of these devices.

A weighted finite-state transducer T is an 8-tuple
T = (Σ, ∆, Q, I, F, E, λ, ρ) where Σ is the finite in-
put alphabet of the transducer, ∆ is the finite out-
put alphabet, Q is a finite set of states, I ⊆ Q the
set of initial states, F ⊆ Q the set of final states,
E ⊆ Q×(Σ∪{ε})×(∆∪{ε})×R×Q a finite set of tran-
sitions where ε represents the empty string, λ : I → R

the initial weight function, and ρ : F → R the final
weight function mapping F to R. In what follows, the
weights can be interpreted as probabilities, thus they
are multiplied along a path.

Let R(I, x, y, F) denote the set of paths from a initial
state p ∈ I to a final state q ∈ F with input label x

and output label y, w[π] the weight of path π, λ[p[π]]
the initial weight of the origin state of π, and ρ[n[π]]
the final weight of its destination. A transducer T is
regulated if the output weight associated by T to a pair
of strings (x, y) ∈ Σ∗ × ∆∗:

[[T]](x, y) =
∑

π∈R(I,x,y,F)

λ[p[π]] · w[π] · ρ[n[π]] (1)

is well-defined and in R. A Weighted automaton
A = (Σ, Q, I, F, E, λ, ρ) is defined in a similar way
by simply omitting the output (or input) labels. A

is regulated if the weight associated by A to a string

x ∈ Σ∗:

[[A]](x) =
∑

π∈R(I,x,F)

λ[p[π]] · w[π] · ρ[n[π]] (2)

is well-defined and in R, where R(I, x, F) denotes the
set of paths labeled with x from an initial state to a
final state. We denote by Π2(T) the weighted automa-
ton obtained from T by removing its input labels.

A general composition operation similar to the compo-
sition of relations can be defined for weighted finite-
state transducers. The composition of two transducers
T1 and T2 is a weighted transducer denoted by T1 ◦T2

and defined by:

[[T1 ◦ T2]](x, y) =
∑

z∈∆∗

[[T1]](x, z) · [[T2]](z, y) (3)

There exists an algorithm for computing and con-
structing T = T1 ◦T2 from T1 and T2 (Pereira & Riley,
1997; Mohri et al., 1996), its complexity is quadratic,
O(|T1||T2|), where |Ti|, i = 1, 2, is the size of Ti, that
is the sum of the number of states and transitions of
Ti. The states of T are identified as pairs of a state
of T1 and a state of T2. A state (q1, q2) in T1 ◦ T2

is an initial (final) state if and only if q1 is an initial
(resp. final) state of T1 and q2 is an initial (resp. fi-
nal) state of T2. The transitions of T are the result
of matching a transition of T1 and a transition of T2

as follows: (q1, a, b, w1, q
′
1) and (q2, b, c, w2, q

′
2) produce

the transition ((q1, q2), a, c, w1 · w2, (q
′
1, q

′
2)) in T .

3. Moments of Counts of Strings

This section gives the definition of the moments of the
distribution of the counts of an arbitrary sequence x

appearing in a weighted automaton A, describes effi-
cient algorithms for computing it, and gives the proof
of the correctness of the algorithms. It also presents
algorithms for computing the moments of the counts
of all sequences x ∈ L(X), where L(X) is the language
described by a regular expression X .

3.1. Definition

Let A = (Q, I, F,Σ, δ, σ, λ, ρ) be an arbitrary weighted
automaton. We are interested in counting the occur-
rences of a sequence x in A while taking into account
the weight of the paths where they appear. When A

is stochastic, i.e., when it is deterministic and the sum
of the weights of the transitions leaving any state is 1,
it can be viewed as a probability distribution P over
all strings Σ∗. The weight [[A]](u) associated by A to a
string u ∈ Σ∗ is then P (u). This leads to the following
definition.

0

a:ε/1
b:ε/1

1/S(m, 1)x:x/1

a:ε/1
b:ε/1

2/S(m, 2)x:ε/2

a:ε/1
b:ε/1

 k/S(m, k)x:ε/k

b:ε/1
a:ε/1

m/S(m, m)x:ε/m

a:ε/1
b:ε/1

Figure 1. Weighted transducer Tm for computing the m-th moment of the count of x ∈ Ω. An initial state is represented
by bold circles, final states by double circles. Inside each circle, the first number indicates the state number, the second,
at final states only, the value of the final weight function ρ at that state. The final weight at state k, k = 1, . . . , m, is
S(m, k), the Stirling numbers of the second kind. Each transition is labeled with an input label and an output label
separated by a colon, and carries some weight indicated after the slash symbol, e.g., the transition from state 1 to state
2 has input label x, output label ε (the empty string), and weight 2.

Definition 1 Let m ≥ 1. The m-th moment of the
count of the sequence x in A, is denoted by cm(x) and
defined as:

cm(x) =
∑

u∈Σ∗

|u|mx [[A]](u) (4)

where |u|x denotes the number of occurrences of x in
the string u labeling one or several successful paths of
A.

We will define the m-th moment of the count of x

as above regardless of whether A is stochastic or not.
In many applications, the weighted automaton A is
acyclic, e.g., it is the output of a speech recognition
system, but our algorithms are general and do not as-
sume A to be acyclic.

3.2. Algorithms

Our algorithms for computing the moments of the
count of a sequence x are based on the definition of
suitable weighted transducers. We start with the sim-
pler case where the sequence x is aperiodic.

A positive integer p is said to be a period of a string
x = a1a2 · · · an if ai = ai+p for i = 1, . . . , n − p. Note
that |x|, the length of x, is always a period of x. The
smallest period of x is called the period of x. x is said
to be aperiodic if its period coincides with its length
|x|. The period of the string ba is 2, since ab is the
shortest repeated pattern in that string. The string
abb is aperiodic since it contains no repeated pattern
shorter than itself. When a string x is aperiodic, two
consecutive occurrences of x cannot overlap. This may
happen in the case of non-aperiodic strings, e.g., ababa

contains two overlapping occurrences of aba.

We will denote by Ω ⊂ Σ∗ the set of aperiodic string

over the alphabet Σ.

3.2.1. Case of Aperiodic Sequences

Proposition 1 Let x ∈ Ω. Then, for any positive
integer m, there exists a weighted transducer Tm such
that for any weighted automaton A:

[[Π2(A ◦ Tm)]](x) = cm(x) (5)

Proof. Let m be a positive integer. Let αm be the
weighted regular expression (or rational power series)
defined by:

αm =
m

∑

k=0

k! S(m, k) (Σ∗x)kΣ∗ (6)

where S(m, k), k = 1, . . . , m, denote the Stirling num-
bers of the second kind (van Lint & Wilson, 1992).
The weight associated by a weighted regular expres-
sion X to a string u is denoted by (X, u). The weight
associated by αm to a string u ∈ Σ∗ is:

(αm, u) =

m
∑

k=0

k! S(m, k) ((Σ∗x)kΣ∗, u) (7)

The number ((Σ∗x)kΣ∗, u) corresponds to the number
of occurrences of xΣ∗xΣ∗ · · ·Σ∗x in u, with k repeti-
tions of x. Since x is aperiodic, two consecutive occur-
rences of x cannot overlap. Thus, this is the number
of ways of choosing k positions of x in u. Let N = |u|x
denote the number of occurrences of x in u. Then,
((Σ∗x)kΣ∗, u) =

(

N
k

)

. Thus

(αm, u) =

m
∑

k=0

(

N

k

)

k! S(m, k) = Nm (8)

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

2/1x: ε/2

a:ε/1
b:ε/1

0

a:ε/1
b:ε/1

1/1x:x/1

a:ε/1
b:ε/1

2/1x:ε/6

a:ε/1
b:ε/1

3/1x:ε/1

b:ε/1
a:ε/1

(a) (b)

Figure 2. (a) Weighted transducer T2 for computing the second moment. (b) Weighted transducer T3 for computing the
third moment.

where we use a standard formula relating Stirling num-
bers of the second kind (van Lint & Wilson, 1992).

Since αm is a weighted regular expression, by the theo-
rem of (Schützenberger, 1961), there exists a weighted
automaton Am realizing αm. Let Tm be a weighted
transducer with input automaton Am and with out-
put reduced to x. Tm exactly verifies the hypotheses
of the proposition.

The next proposition shows that there exists an ef-
ficient algorithm for computing the moments of the
counts of an aperiodic sequence x.

Proposition 2 Let x ∈ Ω. There exists an algorithm
for computing cm(x) for any weighted automaton A in
O(m|A||x|) time and O(m|A||x|) space.

Proof. By Proposition 1, cm(x) can be computed
in O(|A||Tm|) time and space where Tm is a weighted
transducer with input automaton representing αm and
with output x. There exists such a weighted trans-
ducer with only m|x| + 1 states. Figure 1 shows that
transducer. Clearly, its input projection realizes αm

and its output is x. It admits |Σ| self-loop transi-
tions at each state. However, with a lazy implemen-
tation, these transitions can be explicitly constructed
just when needed. The size of the lazy implementa-
tion of this transducer is in O(m|x|), which proves the
proposition.

The transducer Tm of Figure 1 is quite simple and
admits a natural lazy implementation. Figures 2(a)-
(b) show the transducers T2 and T3 for computing the
second and third moment of the counts of a sequence
x ∈ Ω.

3.2.2. General Case

When the string x is not aperiodic, two consecutive
occurrences of x may have an overlap. In that case,
the counting transducer must be suitably modified to
allow for such occurrences. Let Uk denote the set of all
strings over the alphabet Σ with at least k occurrences
of x, possibly overlapping. It is not hard to prove

that Uk is a regular language. We can now generalize
Proposition 1 to the case of all strings using arguments
similar to those used in the aperiodic case.

Proposition 3 Let x ∈ Σ∗. Then, for any positive
integer m, there exists a weighted transducer T ′

m such
that for any weighted automaton A:

[[Π2(A ◦ T ′
m)]](x) = cm(x) (9)

Proof. Let m be a positive integer. Let βm be the
weighted regular expression (or rational power series)
defined by:

βm =

m
∑

k=0

k! S(m, k)Uk (10)

The weight associated by βm to the string u ∈ Σ∗ is:

(βm, u) =

m
∑

k=0

k! S(m, k) (Uk, u) (11)

(Uk, u) represents exactly the number of ways of choos-
ing k positions of x in u. The rest of the proof is similar
to that of Proposition 1.

Similarly, Proposition 2 can be generalized in the fol-
lowing way.

Proposition 4 Let x ∈ Σ∗. There exists an algo-
rithm for computing cm(x) for any weighted automa-
ton A in O(m|A||x|) time and O(m|A||x|) space.

Proof. By Proposition 3, cm(x) can be computed
in O(|A||T ′

m|) time and space where T ′
m is a weighted

transducer with input automaton representing αm and
with output x. There exists such a weighted trans-
ducer with only m|x| + 1 states and admitting a lazy
implementation whose size is in O(m|x|).

Figure 3 shows the weighted transducer T ′
2 for the par-

ticular case of x = aba. x is not aperiodic. T ′
2 only

differs from T2 by the transition from state 2 to state
4. This transition is used to account for ababa which
contains two occurrences of aba.

0

a:ε/1
b:ε/1

1a:a/1 2b:b/1 3/1a:a/1 4

a:a/1

a:ε/1
b:ε/1

a:ε/1 5b:ε/1 6/2a:ε/1

a:ε/1
b:ε/1

Figure 3. Weighted transducer T ′

2 used to compute the second moment of the count of aba with the alphabet Σ = {a, b}.

3.2.3. Counts of a Set of Sequences

The computation of the kernels used in practice re-
quires collecting not just the moments of the counts
of a single sequence but those of a set of sequences
X ⊆ Σ∗, e.g., the set of all n-gram sequences for a fixed
n. When the set X is finite, a weighted transducer T X

m

for computing the counts of all sequences x ∈ X can
be constructed by simply taking the sum (union) of
the counting transducers Tm defined for each x ∈ X .
By definition of T X

m , for all x ∈ X ,

[[Π2(A ◦ T X
m)]](x) = cm(x) (12)

Figure 4 shows the transducer T X
2 used to compute

the second moment of the counts of all unigrams. This
transducer has |Σ| + 2 states. But it admits a natu-
ral lazy implementation which avoids the explicit con-
struction of the states and transitions corresponding to
all elements of the alphabet when |Σ| is large. More
generally, the transducer T X

m for computing the m-th
moment of the counts of all unigram sequences has
(m − 1)|Σ| + 2 states but T X

m admits a natural lazy
implementation.

In the particular case of the expected counts, a sim-
ple transducer T X

1 can be constructed to compute the
counts of all strings x ∈ X for an arbitrary regular
language X . Figure 5 shows the transducer T X

1 where
the transition labeled with X serves as a shorthand for
a finite automaton accepting X . It is clear that:

[[Π2(A ◦ T X
1)]](x) = c1(x) (13)

since for any x ∈ L(X), Π2(T
X
1 ◦x) coincides with the

transducer T1 defined for a single string x in Proposi-
tion 1. The size of a lazy implementation of the trans-
ducer T X

1 is in O(AX), where AX is a finite automaton
accepting X .

4. Moment Kernels

The algorithms given in the previous section can be
used to compute rational kernels exploiting other mo-

0

a:ε/1
b:ε/1

1/1
a:a/1

2/1

b:b/1

a:ε/1
b:ε/1

3/2

a:ε/1

a:ε/1
b:ε/1 b:ε/1

a:ε/1
b:ε/1

Figure 4. Weighted transducer T X

2 used to compute the
second moment of the counts of all unigrams over the al-
phabet Σ = {a, b}.

ments of the distributions given as weighted automata.

In previous work (Cortes et al., 2003b; Cortes et al.,
2003c), we defined n-gram kernels Kn

1 based on the
expected counts of common n-gram sequences between
two automata A1 and A2:

Kn
1 (A1, A2) =

∑

|x|=n

cA1

1 (x)cA2

1 (x) (14)

where cAi(x), i = 1, 2, denotes the expected count of x

in the weighted automaton Ai. With these kernels, two
automata are viewed as similar when they share com-
mon n-gram subsequences with high expected counts.

We now introduce a general family of kernels, moment
kernels, denoted by Kn

m, m, n ≥ 1 and defined by:

Kn
m(A1, A2) =

∑

|x|=n

cA1

m (x)cA2

m (x) (15)

By Propositions 1-4, moment kernels are rational ker-
nels and can be computed efficiently using the algo-
rithms previously described. Indeed,

Kn
m(A1, A2) = w[A1 ◦ (T n

m ◦ T n
m

−1) ◦ A2] (16)

0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

Figure 5. Weighted transducer T1 used to compute the ex-
pected counts of all sequences x ∈ L(X) with the alphabet
Σ = {a, b}.

where T n
m is the weighted transducer counting the m-

th moment of the counts of all n-gram sequences over
the alphabet Σ. Since their definition is based on
weighted transducers of the type T ◦T−1, moment ker-
nels are positive definite (Cortes et al., 2003a). This
guarantees the convergence of training for discrimi-
nant classification algorithms such as SVMs when us-
ing these kernels.

Moment kernels can be used to measure the similar-
ity of two weighted automata A1 and A2 based on the
higher order moments of the counts of their common
n-gram sequences. Since rational kernels are closed
under rational operations (Cortes et al., 2003a), these
kernels can be combined using sum, product, or the
Kleene-Closure to create more complex rational ker-
nels taking advantage of higher order moments of the
counts of subsequences. They can also be combined
using other functions to define useful positive definite
kernels. The next section reports the results of our pre-
liminary experiments in several difficult spoken-dialog
classification tasks using these distribution kernels.

5. Spoken-Dialog Application –

Experimental Results

We have fully implemented the core algorithms for
computing the moment kernels described in the pre-
vious section using the AT&T FSM Library (Mohri
et al., 2000) and the GRM Library (Allauzen et al.,
2003). In particular, we implemented and used the
expectation kernels K1

n for various n-gram orders and
the variance kernel K2

1 based on the second moment
of the unigram sequences and applied them to several
difficult spoken-dialog classification tasks.

5.1. Spoken-Dialog Classification Problem

A key problem for the design of large-scale spoken-
dialog systems is classification. This consists of assign-
ing, out of a set of about hundred classes, a specific cat-
egory to each speech utterance. Categories help guide
the dialog. Their definition depends on the task. They

may correspond to the type of flight or billing mode
in the case of a dialog with an airline reservation sys-
tem, or to type of request, e.g., refund, or calling-card
in the case of a dialog with an operator service sys-
tem. Classification of a speech utterance is based on
its transcription by a speech recognizer and is typically
based on features such as relevant word sequences.

The word error rate of conversational speech recog-
nition systems is still relatively high in many tasks.
In the case of the deployed services we experimented
with, it is about 30% if one relies only on the one-
best output of the recognizer. But, the full output
of a speech recognizer is a word lattice, a weighted au-
tomaton compactly representing the recognizer’s “best
guesses”, which contains the correct transcription in
most cases. Each path of a word lattice is labeled
with a sequence of words and has a weight that can
be interpreted as a probability. The path with the
largest probability is the recognizer’s best guess. Thus,
the objects to analyze for spoken-dialog classification
are word lattices, i.e. distributions of word sequences
given as weighted automata.

The design of classification algorithms for word lattices
raises several issues. Word lattices, even relatively
small ones, may contain more than a billion paths, thus
classical algorithms devised for strings cannot be gen-
eralized by simply applying them to each path of the
lattice. Furthermore, the paths are weighted and these
weights must be used to guide appropriately the clas-
sification task. In previous work, we showed that the
use of rational kernels solves both of these problems
since they define kernels between weighted automata
and since they can be computed efficiently.

The rational kernels previously introduced were based
on the expected counts of sequences appearing in both
automata. It is natural to assume indeed, as in the
string case, that two lattices are similar when they
share many common sequences. However, such kernels
ignore higher order moments of the counts, which may
be important to take into consideration to compare
two word lattices. The moments kernels we defined
in previous sections generalize these kernels by taking
into account higher order moments of the count distri-
butions.

5.2. Experiments and Results

We did a series of experiments with data collected from
two deployed large-scale spoken-dialog systems using
moments kernels. The next two sections describe our
experiments and the corresponding results in detail.

5.2.1. HMIHY 0300

The first task we considered is that of a deployed
customer-care application (HMIHY 0300). In this
task, users interact with a spoken-dialog system via
the telephone, speaking naturally, to ask about their
bills, their calling plans, or other similar topics. Their
responses to the open-ended prompts of the system are
not constrained by the system, they may be any natu-
ral language sequence. The objective of the spoken-
dialog classification is to assign one or several cat-
egories or call-types, e.g., Billing Credit, or Calling
Plans, to the users’ speech utterances.

We applied moment kernels to a difficult subset of a
partition of the HMIHY 0300 task with 70 categories
and a vocabulary size of 5,405 words for which the
speech recognizer’s word error rate is 28.7%. In our
experiments, we used 10,794 word lattices as our train-
ing data and 2,784 lattices as our test data. Each ut-
terance may be assigned to several classes and it is
considered to be an error if the highest scoring class is
not one of these labels.

We experimented with two types of moment kernels:
expectation kernels, and kernels obtained by combin-
ing expectation kernels and variance kernels, enhanced
with polynomials of varying degrees d in the form
(1 + K)d. We applied SVMs with these kernels to
the word lattices output by the speech recognition sys-
tem and compared their results by varying the n-gram
order and polynomial degree using the large-margin
classification software library (LLAMA) written by
P. Haffner which includes an optimized multi-class re-
combination of binary SVMs. No attempt was made
to optimize with respect to other SVM training pa-
rameters. Training and testing were done on a single
processor of a 2.40GHz Intel Pentium processor Linux
cluster with 2GB of memory and 512 KB cache. Train-
ing took in the order of 4-5 hours for both kernels.

The best results when using the expectation kernel
alone were obtained with the n-gram order n = 4
and polynomial degree d = 2. In the case of vari-
ance kernels combined with expectation kernels, the
best results were achieved with n = 3 and d = 2. The
best result using variance kernels was clearly better
than expectation kernels alone, which were previously
shown to substantially improve on kernels based on
the one-best sequences of lattices. In particular, at
15% rejection rate, the error rate was reduced by 1%
absolute, that is about 6.2% relative, which is signif-
icant in this task. Figure 6 shows that this improve-
ment is consistent in the range of 0 − 20% rejection
and confirms the usefulness of higher-order moments
of the counts of n-gram sequences.

0.00 0.05 0.10 0.15 0.20

0.
10

0.
15

0.
20

0.
25

Rejection Rate

E
rr

or
 R

at
e

Expectation kernel
Expectation +
Variance kernel

Figure 6. Experiments in 70-category HMIHY 0300 task.
Comparison of the best results obtained using expectation
kernels alone (n = 4, d = 2) applied to the one-best output
of the recognizer and the best result achieved by combining
expectation kernels with variance kernels (n = 3, d = 2).

5.2.2. VoiceTone2

Similarly, we did experiments with a more recently
deployed spoken-dialog system (VoiceTone2) with a
larger set of categories (82) and a higher word error
rate (31.2%), both indicative of the greater difficulty
of the classification task. In these experiments, we
used about 9,000 word lattices as our training data
and about 5,100 lattices as our test data. The average
number of transitions of a word lattice in Voicetone2
was about 360.

Our experiments show that expectation kernels com-
bined with variance kernels lead to the best classifi-
cation accuracy in this task with a performance that
is substantially better than that of the best previous
classifier designed for this task. At about 15% rejec-
tion rate, the classification error is 5-6% lower than
that of the best previous classifier. Figure 7 presents
the results of the experiments comparing these two
classifiers. It also shows the accuracy achieved when
applying these kernels to the one-best output of the
speech recognizer. The substantial difference in accu-
racy between the plots (2-3% absolute value) demon-
strates the benefit of the use of word lattices and that
of kernels defined over such distributions.

Finally, as with HMIHY 0300, our experiments with
VoiceTone2 showed that expectation kernels combined
with variance kernels lead to an improvement of about
1% absolute value at 15% rejection rate with respect
to the use of expectation kernels alone.

Altogether, our results show that the use of higher-

0 10 20 30 40

5

10

15

20

25

30

Rejection Rate

E
rr

or
 R

at
e

Previous Best Classifier
Moment Kernel/One−Best
Moment Kernel/Lattice

Figure 7. Experiments in a VoiceTone task. Comparison
of the best previous classifier used in this task with the
expectation kernel combined with the variance kernel (n =
3, d = 2) applied to the one-best output of the speech
recognizer and to word lattices.

order moment kernels consistently improves the clas-
sification accuracy in several difficult spoken-dialog
tasks. The complexity of the computation of these
moment kernels is no worse than that of the computa-
tion of expectation kernels and their implementation
is quite similar. Thus, they can be of practical use for
analyzing distributions of strings such as those found
in natural language processing.

6. Conclusion

We introduced a new set of rational kernels that can
be used to exploit higher-order moments of the counts
of sequences appearing in weighted automata. We de-
scribed efficient algorithms for computing these kernels
using weighted finite-state transducers. We showed
that they consistently improve the accuracy in several
difficult spoken-dialog classification task using SVMs.
Moment kernels can be applied similarly to many other
text and speech processing tasks, and to other domains
such as computational biology.

7. Acknowledgments

We thank Patrick Haffner for his help with the use of
the LLAMA software library.

References

Allauzen, C., Mohri, M., & Roark, B. (2003).
General-Purpose Grammar Library – GRM Library.
http://www.research.att.com/sw/tools/grm, AT&T
Labs - Research.

Boser, B. E., Guyon, I., & Vapnik, V. N. (1992).
A training algorithm for optimal margin classifiers.
Proceedings of the Fifth Annual Workshop of Com-
putational Learning Theory (pp. 144–152). Pitts-
burg: ACM.

Cortes, C., Haffner, P., & Mohri, M. (2003a). Posi-
tive Definite Rational Kernels. Proceedings of The
16th Annual Conference on Computational Learn-
ing Theory (COLT 2003) (pp. 41–56). Washington
D.C.: Springer, Heidelberg, Germany.

Cortes, C., Haffner, P., & Mohri, M. (2003b). Rational
Kernels. Advances in Neural Information Processing
Systems (NIPS 2002). Vancouver, Canada: MIT
Press.

Cortes, C., Haffner, P., & Mohri, M. (2003c). Weighted
Automata Kernels – General Framework and Al-
gorithms. Proceedings of the 9th European Con-
ference on Speech Communication and Technology
(Eurospeech ’03), Special Session Advanced Machine
Learning Algorithms for Speech and Language Pro-
cessing. Geneva, Switzerland.

Cortes, C., & Vapnik, V. N. (1995). Support-Vector
Networks. Machine Learning, 20, 273–297.

Mohri, M. (1997). Finite-state transducers in language
and speech processing. Computational Linguistics,
23:2.

Mohri, M., Pereira, F. C. N., & Riley, M. (1996).
Weighted automata in text and speech processing.
ECAI-96 Workshop, Budapest, Hungary. ECAI.

Mohri, M., Pereira, F. C. N., & Riley, M. (2000). The
Design Principles of a Weighted Finite-State Trans-
ducer Library. Theoretical Computer Science, 231,
17–32. http://www.research.att.com/sw/tools/fsm.

Pereira, F. C. N., & Riley, M. D. (1997). Speech
recognition by composition of weighted finite au-
tomata. In E. Roche and Y. Schabes (Eds.),
Finite-state language processing, 431–453. Cam-
bridge, Massachusetts: MIT Press.

Schölkopf, B., & Smola, A. (2002). Learning with ker-
nels. MIT Press: Cambridge, MA.

Schützenberger, M. P. (1961). On the definition of a
family of automata. Information and Control, 4.

van Lint, J. H., & Wilson, R. M. (1992). A Course in
Combinatorics. Cambridge University Press.

Vapnik, V. N. (1998). Statistical learning theory. John
Wiley & Sons.

