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ABSTRACT depends on the application, they could be for exam-

One of the key tasks in the design of large-scale Jplereferral or pre-certificatiorfor a health-care com-

alog systems is classification. This consists of aBany dialog system, dilling servicesor credit for
signing, out of a finite set, a specific category to ead’ operator-sgrwce system.
spoken utterance, based on the output of a speech rec-T0 determine the category of a spoken utterance,
ognizer. Classification in general is a standard m@ne needs to analyze the output of a speech recog-
chine learning problem, but the objects to classifjfizer. Figure 1 is taken from a customer-care appli-
in this particular case are word lattices, or weightegftion. It illustrates the output of a state-of-the-art
automata, and not the fixed-size vectors learning &P€ech recognizer in a very simple case where the
gorithms were originally designed for. This chapSPoken utterance is "Hi, this is my number”. The
ter presents a general kernel-based learning franffPut is an acyclic weighted automaton called a
work for the design of classification algorithms foMord lattice It compactly represents the recognizer's
weighted automata. It introduces a family of kernel§€st guesses. Each path is labeled with a sequence
rational kernels that combined with support vec-Of words and has a score obtained by summing the
tor machines form powerful techniques for spokerveights of the constituent transitions. The path with
dialog classification and other classification tasks i€ lowest score is the recognizer’s best guess, in this
text and speech processing. It describes efficient &8se "I'd like my card number”.
gorithms for their computation and reports the results This example make evident that the error rate of
of their use in several difficult spoken-dialog classiconversational speech recognition systems is still too
fication tasks based on deployed systems. Our fggh in many tasks to rely only on the one-best out-
sults show that rational kernels are easy to design apidt of the recognizer. Instead, one can use the full
implement and lead to substantial improvements @ford lattice which contains the correct transcription
the classification accuracy. The chapter also providigsmost cases. This is indeed the case in Figure 1,
some theoretical results helpful for the design of raince the top path is labeled with the correct sentence.
tional kernels. Thus, in this chapter, spoken-dialog classification is
formulated as the problem of assigning a category to
each word lattice.

Classification in general is a standard machine

. ; learning problem. A classification algorithm receives
A critical problem for the design of large-scale_ .. . S
a pnlte number of labeled examples which it uses for

spoken-dialog systems is to assign a category, out Paining, and selects a hypothesis expected to make

a finite set, to each spoken utterance. - These ca}g\;v errors on future examples. For the design of

gories help guide the dialog manager in formulatin 4 . o
a response to the speaker. The choice of categorll%z(s)dem spoken-dialog systems, this training sample

1. MOTIVATION



Springer Handbook on Speech Processing and Speech Conatiomic 2

is/22.36

my/63.09

hi/80.76

like/41.58

Figure 1: Word lattice output of a speech recognition sydtarthe spoken utterance “Hi, this is my number”.

is often available. It is the result of careful humamvishes to distinguish two populations, the blue and
labeling of spoken utterances with a finite number o&d circles. In this very simple example, one can
pre-determined categories of the type already methoose a hyperplane to correctly separate the two
tioned. populations. But, there are infinitely many choices
But, most classification algorithms were origifor the selection of that hyperplane. There is good
nally designed to classify fixed-size vectors. The ofheory though supporting the choice of the hyper-
jects to analyze for spoken-dialog classification afgane that maximizes theargin, that is the distance
word lattices, each a collection of a large numbdietween each population and the separating hyper-
of sentences with some We|ght or probab|||ty Hovplane. Indeed, lefr denote the class of real-valued
can standard classification algorithms such as supnctions on the ball of radiug in R
port vector machines [Cortes and Vapnik, 1995] be
extended to handle such objects? F={z—w-z:|uw| <1z <R} (1)

sl Fer preses & Genee) amenork Hhen it can be shon Bartert and Shave-Tayor,
b . 1999] that there is a constansuch that, for all dis-

methodgBoser et al,, 1992, Scholkopf and SmOIatributionsD overX, with probability at least — ¢, if

2002]. Thus, we shall start with a brief introduction o . .
to kernel methods (Section 2). Section 3 will thef classifiesgn(f), with / € 7, has margin at leagt

present a kernel frameworkational kernels that is overm independently generated training examples,

appropriate for word lattices and other weighted a&ben the generalization error egn(f), or error on

tomata. Efficient algorithms for the computation of Y future example, is no more than
these kernels will be described in Section 4. We . < 2 >

: : R 1
also report the results of our experiments using these  — ( — log® m + log 5
m o\ p

2)
methods in several difficult large-vocabulary spoken-

dlalog c_Iassmcatlon tasks based on deployed syste is bound justifies large-margin classification algo-
in Section 5. There are several theoretical resul

: . SU¥Rhms such as support vector machines (SVMs). Let
that can guide the design of kernels forspoken—d|al%). 2+ b = 0 be the equation of the hyperplane,

gl(;':\nssgﬁcatmn. These results are discussed in S(\a/v'erew ¢ RV is a vector normal to the hyperplane

andb € R a scalar offset. The classifiggn(h) corre-
sponding to this hyperplane is unique and can be de-

2. INTRODUCTION TO KERNEL METHODS fined with respect to the training points, . . ., !

Let us start with a very simple two-group classi- hz)=w -z +b= zm:ai(xi 2)+b, (3

fication problem illustrated by Figure 2 where one =



Springer Handbook on Speech Processing and Speech Conatiomic 3

(@) (b)

Figure 2: Large-margin linear classification. (a) An adaiyrhyperplane can be chosen to separate the two
groups. (b) The maximal-margin hyperplane provides béteuretical guarantees.

where a;s are real-valued coefficients. The maitwo example(x) and®(y) in feature space:

point we are interested in here is that both for the

construction of the hypothesis and the later use of Va,y € X, K(z,y)= ®(x)  D(y). 4)
that hypothesis for classification of new examples,

one needs only to compute a number of dot produchs is often viewed as a similarity measure. A crucial
between examples. advantage ofX is efficiency: there is no need any-

In practice, non-linear separation of the trainingore to define and explicitly compute(z), ®(y),
data is often not possible. Figure 3(a) shows an ef0d ®(z) - ®(y). Another benefit ofK" is flexibil-
ample where any hyperplane crosses both popul: K can be arbitrarily chosen so long as the ex-
tions. However, one can use more complex functiofgence of® is guaranteed, which is called Mercer’s
to separate the two sets as in Figure 3(b). One way@8ndition. This condition is important to guarantee
do that is to use a non-linear mappittg: X — F the convergence of training for algorithms such as
from the input spac&’ to a higher-dimensional spaceSVMS-l
F where linear separation is possible. A condition equivalent to Mercer’s condition is

The dimension ofF" can truly be very large in that the kernelK be positive definite and sym-
practice. For example, in the case of document cla€triG that is, in the discrete case, the matrix
sification, one may use as features, sequences of tht8d @i, ;))1<i j<n Must be symmetric and positive
consecutive words (trigrams). Thus, with a vocabgemi-definite for any choice of pointszy, ... zn
lary of just 100,000 words, the dimension of the fedD X . Said differently, the matrix must be symmetric
ture spacel” is 10'5. On the positive side, as in-and its eigenvalues non-negative. Thus, for the prob-
dicated by the error bound of Equation 2, the gedem that we are interested in, the question is how to
eralization ability of large-margin classifiers such adefine positive definite symmetric kernels for word
SVMs does not depend on the dimension of the fetattices or weighted automata.
ture space but only on the margimnd the number of
training examplesn. However, taking a large num-
ber of dot products in a very high-dimensional space
to define the hyperplane may be very costly.

. . : his section introduces a family of kernels for
A solution to this problem is to use the so-called . . :
, S . . . “Weighted automatagational kernels We will start
kernel trick’ or kernel methodsThe idea is to define

a functionk : X x X — R called akerne| such with some preliminary definitions of automata and

that the kernel function on two examplesandy in 1Some standard Mercer kernels over a vector space are the

input space K (z,y), is equal to the dot product of polynomial kernels of degret € N, K4(z, y) = (z-y+1)¢, and
Gaussian kernel& , (z, y) = exp(—|jz — y||?/0?), 0 € R4.

3. RATIONAL KERNELS
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(a) (b)

Figure 3: Non-linearly separable case. The classificatisk tonsists of discriminating between solid squares
and solid circles. (a) No hyperplane can separate the twalptpns. (b) A non-linear mapping can be used
instead.

transducers. For the most part, we will adopt the nby [T](x, y), is obtained by summing the weights of
tation introduced in [Mohri et al., 2006] for automataall paths with input labet and output labe. Thus,
and transducers. for example, the weight associated by the transducer

Figure 4(a) shows a Simp|e Weighted automatot to the pair(abb, baa) is obtained as in the automata
Itis a weighted directed graph in which edges or tra§ase by summing the weights of the two paths labeled
sitions are augmented with a label and carry sontéth (abb, baa).
weight indicated after the symbol slash. A bold cir- To help us gain some intuition for the definition
cle indicates an initial state and a double-circle a finaf a family of kernels for weighted automata, let us
state. A final state may also carry a weight indicateitst consider kernels for sequences. As mentioned
after the slash symbol representing the state numbearlier in Section 2, a kernel can be viewed as a simi-

A path from an initial state to a final state is calledfrity measure. In the case of sequences, we may say
a successful pathThe weight of a path is obtainedthat two strings are similar if they share many com-
by multiplying the weights of constituent transitiongnon substrings or subsequences. The kernel could
and the final weight. The weight associateddgo a then be for example the sum of the product of the
stringz, denoted by A] (z), is obtained by summing counts Qf these common substrings. But how can we
the weights of all paths labeled with In this case, generalize that to weighted automata?
the weight associated to the strintp is the sum of Similarity measures such as the one just dis-
the weight of two paths. The weight of each pathussed can be computed by using weighted finite-
is obtained by multiplying transition weights and thetate transducers. Thus, a natural idea is to use
final weight0.1. weighted transducers to define similarity measures

Similarly, Figure 4(b) shows an example of dor sequences. We will say a that ker@€is rational
weighted transducer. Weighted transducers are siiben there exists a weighted transdufesuch that
ilar to weighted automata but each transition is aug-
mented with an output label in addition to the familiar K(z,y) = [T](z,y), ®)
input label and the weight. The output label of eacn)

transition is indicated after the colon separator. T r all sequences andy. This definition general-
NSIton 1S indi : ; P . rlges naturally to the case where the objects to handle
weight associated to a pair of strings y), denoted

are weighted automata. We say tHatis rational
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(a) (b)

Figure 4: Weighted automata and transducers. (a) Examm@enafighted automatoA. [A](abb) = .1 x
2x.3x.14.5x%x.3x.6x.1. (b) Example of a weighted transduc®r [T (abb, baa) = [A](abb).

when there exists a weighted transdu€esuch that 4. ALGORITHMS
K (A, B), the similarity measure of two automata
andB, is given by: This section describes general and efficient algo-

rithms for the computation of rational kernels be-

tween weighted automata and provide examples
K(A’B):Z[[A]](x) [T1(,y) - [Bl(y)- (6)  of effective positive definite symmetric kernels for

©Y spoken-dialog classification.
The outline of the algorithm is as follows. The

T (z,y) is the similarity measure between two stringmain observation is that the sum defining rational
xz andy. But, in addition, we need to take into ackernels can be viewed as the sum of the weights of
count the weight associated bBiyto = and byB toy, all the paths of a single transducer, the one obtained
and sum over all pairér, y).2 by composingA with 7" with B (see [Mohri et al.,

Our definition of kernels for weighted automat006]):
is a first step towards extending SVMs to handle
weighted automata. However, we also need to prE[[A]] (x)[T] (x7y)[[B]](y):Z[[AoToB]](x, y). (7)
vide efficient algorithms for computing the kernels, z,y
The weighted automata that we are dealing with in
spoken-dialog systems are word lattices that mahe sum of the weights of all the paths of a trans-
have hundreds of thousands of states and transitiodacer can be computed using a general single-source
and millions of paths, thus the efficiency of the comshortest-distance algorithm over the ordinésy x )
putation is critical. In particular, the computationagemiring or the so-called forward-backward algo-
cost of applying existing string kernel algorithms tagithm in the acyclic case [Mohri, 2002]. Thus, this
each pair of paths of two automateandB is clearly |eads to the following general algorithm to compute
prohibitive. K (A, B) when K is a rational kernel associated to
We also have to provide effective kernels fothe transducer.
spoken-dialog classification and prove that they are
indeed positive definite symmetric so they can b&
combined with SVM for high-accuracy classification
systems.

Use composition algorithm (see [Mohri et al.,
2006]) to computel/' = A o T o B in time
O(|T]|Al|BI)-

e Use a general single-source shortest-distance al-
gorithm to compute the sum of the weights of all
2This definition can be generalized to the case of an arbitrary syccessful paths df [Mohri, 2002]. This can be

semiring where general operations other than the usual swim a done in linear time Q(|U])) whenU is acyclic

multiplication are applied, which has important theortiand al- . . : !
gorithmic consequences and also interesting softwareeegng which is the case whed and B are acyclic au-

implications [Cortes et al., 2003a]. tomata (word lattices).
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b/l be/\ b/l
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Figure 5: Weighted transducers computing the expectedtsairfa) all sequences accepted by the regular
expressionX; (b) all bigrams; (c) all gappy bigrams with penalty gapover the alphabéfa, b}.

In combination, this provides a general aneveights. Thus, by definition of composition (see
efficient algorithm for computing rational kernelgMohri et al., 2006]), we could compute the sum of
whose total complexity for acyclic word lattices ighe expected counts i and B of the matching sub-
quadratic:O(|T||A||B|).2 strings by computing

The next question that arises is how to define
and compute kernels based on counts of substrings

or subsequences as previously discussed in Section 3.

For weighted automata, we need to generalize the rﬁﬂd summing the we|glhts (expected counts) .Of all
tion of counts to take into account the weight of thBathS using a general single-source shortest-distance

paths in each automaton and use instea@éxipected algorithm. ) ) ) _

countsof a sequence. Comparing this formula with Equation 7 shows
denote the number of occurrences of Epat thg c_ount—bas_ed similarity measure we are inter-
ested in is the rational kernel whose corresponding
weighted transducef is:

AoToT_loB, 9

Let |ul,
substringz in u. Since a weighted automatohde-
fines a distribution over the set of stringsthe ex-
pected counof a sequence in a weighted automa- _ -1
ton A can be defined naturally as S=ToT ™ (10)

Thus, if we can determine8 with this property, this
ca(z) = Z [uls[A](w), ®)  would help us naturally define the similarity measure
uex” S. In Section 6 we will prove that the kernel corre-
where the sum runs ov&*, the set of all strings over sponding taS will actually be positive definite sym-
the alphabeE. We mentioned earlier that weightednetric, and can hence be used in combination with
transducers can often be used to count the occ&VMs.
rences of some substrings of interest in a string. Let In the following, we will provide a weighted
us assume that one could find a transdufethat transducefl” for computing the expected counts of
could compute the expected counts of all substringabstrings. It turns out that there exists a very simple
of interest appearing in a weighted automatdn transducefl that can be used for that purpose. Fig-
Thus, A o T would provide the expected counts otire 5(a) shows a simple transducer that can be used
these substrings id. Similarly, 7~ o B would pro- to compute the expected counts of all sequences ac-
vide the expected counts of these substring#3in cepted by the regular expressighover the alpha-
Recall thatl'~! is the transducer obtained by swapbet {a,b}. In the figure, the transition labeled with
ping the input and output labels of each transitioi: X' /1 symbolizes a finite automaton representing
([Mohri et al., 2006]). Composition off o T" and with identical input and output labels and all weights
T~' o B matches paths labeled with the same subqual to one.

. . _1 H H H .
string in A o T"andT~" o B and multiplies their Here is how transducéf counts the occurrences

3Here|T| is a constant independent of the automatand 3 Of @ substringe reco_gnized byX in a sequence.
for which K (A, B) needs to be computed. State 0 reads a prefixy of u and outputs the empty
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stringe. Then, an occurrence of is read and out- algorithm for each new kernel, as previously done in
put identically. Then staté reads a suffixis of v the literature. As an example, the gappy kernel used
and outputs. In how many different ways cambe by Lodhi et al. [2001] is the rational kernel corre-
decomposed inta = u; zus? In exactly as many sponding to the 6-state transducgr= T o T~ of
ways as there are occurrencescdh w. Thus,T' ap- Figure 6.

plied tou generates exactly:|,. successful paths la-

beled withz. This holds for all strings: accepted by

X. If T'is applied to (or composed with) a weighted 5. EXPERIMENTS

automatom instead, then for any, it generateu|,

paths for each path of labeled withu. Furthermore, This section describes the applications of the kernel
by definition of composition, each path generated fsamework and techniques to spoken-dialog classifi-
weighted with the weight of the path iA labeled cation.

with u. Thus, the sum of the WEightS of the paths In most of our experiments, we used Simmle

generated that are labeled withis exactly the ex- gram rational kernelsAn n-gram kernelk,, for two

pected count of: weighted automata or latticesand B is defined by:
Thus, there exists a simple weighted transduEer jz=n

described in Section 4,, is a kernel of the form
oT~! and can be computed efficiently. Angram
rational kernel K, is simply the sum of kernels,,,,
vaith 1<m<n:

that can count, as desired, the expected counts of all
strings recognized by an arbitrary regular expressié?
X in a weighted automatod. In particular, since

the set of bigrams over an alphabitis a regular

language, we can construct a weighted transdilice
computing the expected counts of all bigrams. Fig- n

ure 5(b) shows that transducer, which has only three K, = Z o
states, regardless of the alphabet size.

In some applications, one may wish to allow for
a gap between the occurrences of two symbols ahfus, the feature space associated wiithis the set
view two weighted automata as similar if they sharef all m-gram sequences withh < n. As discussed
such substringg@ppy bigrampwith relatively large in the previous section, itis straightforward, using the
expected counts. The gap or distance between t&®me algorithms and representations, to extend these
symbols is penalized using a fixed penalty factpr kernels to kernels with gaps and to many other more
0 < A < 1. A sequence kernel based on theseomplex rational kernels more closely adapted to the
ideas was used successfully by Lodhi et al. [2008pplications considered.
for text categorization. Interestingly, constructing a We did a series of experiments in several large-
kernel based on gappy bigrams is straightforward wocabulary spoken-dialog tasks using rational kernels
our framework. Figure 5(c) shows the transducevith a twofold objective [Cortes et al., 2004]: to im-
T counting expected counts of gappy bigrams fromrove classification accuracy in those tasks, and to
which the kernel can be efficiently constructed. Thevaluate the impact on classification accuracy of the
same can be done similarly for higher-order gappyse of a word lattice rather than the one-best output
n-grams or other gappy substrings. of the automatic speech recognition (ASR) system.

The methods presented in this section can be used The first task we considered was that of a de-
to construct efficiently and, often in a simple manployed customer-care application (HMIHY 0300). In
ner, relatively complex weighted automata kerni€ls this task, users interact with a spoken-dialog system
based on expected counts or other ideas. A singla the telephone, speaking naturally, to ask about
general algorithm can then be used as describedtheir bills, their calling plans, or other similar top-
compute efficientlyK (A, B) for any two weighted ics. Their responses to the open-ended prompts of
automatad and B, without the need to design a newthe system are not constrained by the system, they

m=1
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Figure 6: Simple weighted transducer corresponding to #pgg bigram kernel used by Lodhi et al. [2001]
obtained by composition of the transducer of Figure 5(c)itmithverse.

may be any natural language sequence. The objecror rate. The word error rate is indicative of the dif-
tive of the spoken-dialog classification is to assigficulty of classification task since a higher error rate
one or several categories or call-types, eRilling implies a more noisy input. The average number of
Credit, or Calling Plans to the users’ spoken utter-transitions of a word lattice in VoiceTonel was about
ances. The set of categories is pre-determined, a2t and in VoiceTone2 about 360.

in this first application there arel categories. The  Each utterance of the dataset may be labeled with

calls are classified based on the user’s response to #a@eral classes. The evaluation is based on the fol-

first greeting prompt: Mello, this is AT&T. How may |owing criterion: it is considered an error if the high-

I help you?. est scoring class given by the classifier is none of
Table 1 indicates the size of the HMIHY 030Qhese labels.

datasets we used for training and testing. The train- \We used the AT&T FSM Library [Mohri et al.,
ing set is relatively large with more than 35,000 ut2000] and the GRM Library [Allauzen et al., 2004]
terances, this is an extension of the one we usedsy} the implementation of the-gram rational kernels
our previous classification experiments with HMIHYE  ysed. We used these kernels with SVMs, using
0300 [Cortes et al., 2003b]. In our experiments, Wg general learning library for large-margin classifi-
used then-gram rational kernels just described withxation (LLAMA), which offers an optimized multi-

n = 3. Thus, the feature set we used was that @fass recombination of binary SVMs [Haffner et al.,
all n-grams withn < 3. Table 1 indicates the t0- 2003]. Training time took a few hours on a single
tal number of distinct features of this type found irhrocessor of a 2.4GHz Intel Pentium processor Linux
the datasets. The word accuracy of the system basggster with 2GB of memory and 512 KB cache.

on the best hypothesis of the speech recognizer was In our experiments, we used the trigram kernel
0 i i i . ! . -
72.5%. This motivated our use of the_word IattmesK3 with a second-degree polynomial. Preliminary

" : éxperiments showed that the top performance was
The average number of transitions of a word lattiGgya ched for trigram kernels and that 4-gram kernels,
in this task was about 260. K4, did not significantly improve the performance.
Table 1 reports similar information for two othenye also found that the combination of a second-
datasets, VoiceTonel, and VoiceTone2. These &fggree polynomial kernel with the trigram kernel sig-
more recently deployed spoken-dialog systems ificantly improves performance over a linear clas-
differentareas, e.g., VoiceTonel is a task where usejffier, but that no further improvement could be ob-
interact with a system related to health-care with @ined with a third-degree polynomial.
larger set of categories (97). The size of the Voice- We used the same kernels in the three datasets
Tonel datasets we used and the word accuracy of viously described and applied them to both the

recognizer (70.5%) make this task otherwise simil heech recognizer's single best hypothesis (one-best

to HMIHY 0300. The datasets provided for VoiCeyag ts)  and to the full word lattices output by the

Tone2 are significantly smaller with a higher Wor%peech recognizer. We also ran, for the sake of
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Dataset Number of | Training | Testing| Number of | ASR word
classes size size n-grams | accuracy
HMIHY 0300 64 35551 | 5000 24177 72.5%
\oiceTonel 97 29561 | 5537 22007 70.5%
\oiceTone2 82 9093 5172 8689 68.8%

Table 1: Key characteristics of the three datasets useciaxperiments. The fifth column displays the total
number of unigrams, bigrams, and trigrams found in the armt-butput of the ASR for the utterances of
the training set, that is the number of features used by Bodsior SVMs used with the one-best outputs.
The training and testing sizes reported in columns 3 and 4leseribed in the number of utterances, or
equivalently the number of word lattices.

comparison, the BoosTexter algorithm [Schapire arfdr classification in this task. This advantage is even
Singer, 2000] on the same datasets by applying it toore manifest for the VoiceTone2 task for which the
the one-best hypothesis. This served as a baselinespeech recognition accuracy is lower. VoiceTone2 is
our experiments. also a harder classification task as can be seen by the

Figure 7(a) shows the result of our experimen&mparison of the plots of Figure 7(b). The classifi-
in the HMIHY 0300 task. It gives classification er-cation accuracy of SVMs with kernels applied to lat-
ror rate as a function of rejection rate (utterances fé€€s is more than 6% absolute value better than that
which the top score is lower than a given threshol@f BoosTexter near 40% rejection rate, and about 3%
are rejected) in HMIHY 0300 for: BoosTexter, SVMbetter than SVMs applied to the one-best hypothesis.
combined with our kernels when applied to the one- Thus, our experiments in spoken-dialog classifi-
best hypothesis, and SVM combined with kernels apation in three distinct large-vocabulary tasks demon-
plied to the full lattices. strated that using rational kernels with SVMs consis-

SVM with trigram kernels applied to the one-besiently leads to very competitive classifiers. They also
hypothesis leads to better classification than Booshow that their application to the full word lattices
Texter everywhere in the range of 0-40% rejectiofistead of the single best hypothesis output by the
rate. The accuracy is about 2-3% absolute value b&gcognizer systematically improves classification ac-
ter than that of BoosTexter in the range of interest féuracy.
this task, which is roughly between 20% and 40% We further explored the use of kernels based on
rejection rate. The results also show that the clasther moments of the counts of substrings in se-
sification accuracy of SVMs combined with trigrangquences, generalizing-gram kernels [Cortes and
kernels applied to word lattices is consistently bettélohri, 2005]. Letrn be a positive integer. Let} (z)
than that of SVMs applied to the one-best alone lyenote then-th moment of the couwnf the sequence

about 1% absolute value. x in A defined by:

Figures 7(b)-(c) show the results of our experi-
ments in the VoiceTonel and VoiceTone? tasks us- €4 (x) = Y |ulZ" [A](u). (13)
ing the same techniques and comparisons. As ob- uen*

served previously, in many regards, VoiceTonel
similar to the HMIHY 0300 task, and our result
for VoiceTonel are comparable to those for HMIH
0300. The results show that the classification accu- m m m
racy of SVMs combined with trigram kernels applied Ki'(4,B) = Z ci(@) ep (@), (14)
to word lattices is consistently better than that of
BoosTexter, by more than 4% absolute value at abayhich exploit them-th moment of the counts of sub-
20% rejection rate. They also demonstrate MOKgringsz in weighted automatal and B to define

clearly the benefits of the use of the word latticegheir similarity. Cortes and Mohri [2005] showed that

We can define a general family of kernels, denoted
y K]*, n,m > 1 and defined by:

|z|=n
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Figure 7: Classification error rate as a function of rejectiate in (a) HMIHY 0300, (b) VoiceTonel, and (c)
\oiceTone2.

there exist weighted transducérg' that can be used to spoken-dialog tasks. Several questions arise in
to compute efficiently’y () for all n-gram sequence relation with these kernels. As pointed out earlier,
x and weighted automataof. Thus, these kernels areto guarantee the convergence of algorithms such as
rational kernels and their associated transducers &¢Ms, the kernels used must be positive definite
TmoTm 1 symmetric (PDS). But, how can we construct PDS
rational kernels? Ara-gram kernels and similar ker-
KJ"(A,B)=> " [Ao[T}"o(T;") "o B](x,y). (15) nels PDS? Canwe combine simpler PDS rational ker-
nels to create more complex ones? Is there a charac-
_ _ terization of PDS rational kernels?
Figure 8 shows the weighted transduggt for ape- All these questions have been investigated by
riodic stringsz, which has onlyn|z| + 1 states! By  cortes et al. [2003a]. The following theorem pro-

Equation 15, the transduc@{™ can be used to COM-jqes a general method for constructing PDS rational
pute K;'(A, B) by first computing the composedygarnels.

transducerd o [T o (™)~ !] o B and then sum-
ming the weights of all the paths of this transducer

using a shortest-distance algorithm [Mohri, 2002]. Theorem 1 Let T' be a weighted finite-state trans-

The application of moment kernels to th&lucer over(+, x). Assume that the weighted trans-

HMIHY 0300 task resulted in a further improvemenfjucerTOT. is regulated thens — T'o7~" defines

of the classification accuracy. In particular,1&% a PDS rational kernel.

rejection rate, the error rate was reduced fyabso-

lute, that is abou6.2% relative, which is significant Proof. ~We give a sketch of the proof. A full proof

in this task, by usingariance kernelgthat is moment is given in [Cortes et al., 2003a]. Lé&f be the kernel

kernels of second-order( = 2). associated t§ = T'oT~!. By definition of7~* and
composition,

z,Y

6. THEORETICAL RESULTSFOR
RATIONAL KERNELS Va,y € X, K(x,y)=> _[T](z,2)[T](y,2), (16)

z

In the previous sections, we introduced a number, ere the sum is over all strinas Let K. be the
of rational kernels, e.g., kernels based on expect (lj' . ' ! Strings no
counts or moments of the counts and applied theMnCtlon defined by restricting the sum to strings of

4An aperiodic string is a string that does not admit a non-gmpt A weighted transducefl’ is said to beregulated when
prefix as a suffix. Then-th moment of other strings (periodic [T](z,y), the sum of the weights of the paths with inpuand
strings) can also be computed using weighted transducers. outputy is well-defined.
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b €/1

be/l b/l
b/l gg 1 ac az/l
0 X:X/1 \ X:€/2 x:s/k»z'i KIS(m, k)

Figure 8: Weighted transduc@&f™ for computing then-th moment of the count of an aperiodic substring
The final weight at statg, £k = 1, ..., m, indicated after “/”, isS(m, k), the Stirling number of the second
kind that is the number of ways of partitioning a setnofelements intdk nonempty subsetsy(m, k) =

k, Zl 0 ( )(—=1)%(k — i)™. The first-order transduc@ coincides with the transducer of Figure 5(a), since

=1.
length at mosk: Theorem 2 PDS rational kernels are closed under
sum, product, and Kleene-Closure.
Ve,y € X, Ki(z,y)= Z[[T (x, 2)[T](y, 2). (A7)
|2l<k Thus, one can use rational operations to create
Consider any ordering of all strings of length afomplex PDS rational kernels from simpler ones.
most k: z1,...,z. For any set ofn strings

z1,...,T,, let A be the matrix defined byd =
(ITV(xi, 25))ici,n),jeny- Then, the eigenvalues of
the matrix),, defined by

7. CONCLUSION

Rational kernels form an effective tool and frame-

My, = (Kn(73,25))i je1,n) (18) work for spoken-dialog classification. They are
) ) ) based on a general theory that guarantees in particu-
are necessarily non-negative sind¢, = AAT. |ar the positive definiteness of rational kernels based

Thus, for anyn < 0, K,, is a PDS kemel. Since on an arbitrary(+, x )-weighted transducer and thus
K is a pointwise limit ofK,,, K is also PDS [Berg the convergence of training for algorithms such as
etal., 1984, Cortes et al., 2003a]. L1 svMs. General and efficient algorithms can be read-

The theorem shows that the rational kernels wity used for their computation.
considered in previous sections, e.g., count-based Experiments in several large-vocabulary spoken-
similarity kernels,n-gram kernels, gappy:-gram dialog tasks show that rational kernels can be com-
kernels are all PDS rational kernels, which justifiesined with SVMs to form powerful classifiers and
a posteriori their use in combination with SVMsthat they perform well in several difficult tasks. They
Conversely, we have conjectured elsewhere that also demonstrate the benefits of the use of kernels ap-
PDS rational kernels are rational kernels associatptied to word lattices.

to transducers of the typg= T o T~ ' [Cortes etal.,  Rational kernels form a rich family of kernels.
2003a] and proved several results in support of th@the kernels used in the experiments we described are
conjecture. In particular, for acyclic transducer, thignly special instances of this general class of kernels.
provides indeed a characterization of PDS rationglational kernels adapted to a specific spoken-dialog
kernels. task can be designed. In fact, it is often straight-
It can also be shown that a finite sum of PDS rderward to craft prior knowledge about a task in the
tional kernels is a PDS rational kernel, which we usetansducer defining these kernels. One may for exam-
for definingn-gram kernels. More generally, the fol-ple exclude some word sequences or regular expres-
lowing theorem holds [Cortes et al., 2003a]. sions from the similarity measure defined by these
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kernels or emphasize the importance of others by in-of Machine Learning Research (JMLR9:1035—-
creasing their respective weight in the weighted trans-1062, 2004.

ducer. ) )
Patrick Haffner, Gokhan Tur, and Jeremy Wright.

Optimizing SVMs for complex Call Classification.
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