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ABSTRACT

One of the key tasks in the design of large-scale di-
alog systems is classification. This consists of as-
signing, out of a finite set, a specific category to each
spoken utterance, based on the output of a speech rec-
ognizer. Classification in general is a standard ma-
chine learning problem, but the objects to classify
in this particular case are word lattices, or weighted
automata, and not the fixed-size vectors learning al-
gorithms were originally designed for. This chap-
ter presents a general kernel-based learning frame-
work for the design of classification algorithms for
weighted automata. It introduces a family of kernels,
rational kernels, that combined with support vec-
tor machines form powerful techniques for spoken-
dialog classification and other classification tasks in
text and speech processing. It describes efficient al-
gorithms for their computation and reports the results
of their use in several difficult spoken-dialog classi-
fication tasks based on deployed systems. Our re-
sults show that rational kernels are easy to design and
implement and lead to substantial improvements of
the classification accuracy. The chapter also provides
some theoretical results helpful for the design of ra-
tional kernels.

1. MOTIVATION

A critical problem for the design of large-scale
spoken-dialog systems is to assign a category, out of
a finite set, to each spoken utterance. These cate-
gories help guide the dialog manager in formulating
a response to the speaker. The choice of categories

depends on the application, they could be for exam-
plereferral or pre-certificationfor a health-care com-
pany dialog system, orbilling servicesor credit for
an operator-service system.

To determine the category of a spoken utterance,
one needs to analyze the output of a speech recog-
nizer. Figure 1 is taken from a customer-care appli-
cation. It illustrates the output of a state-of-the-art
speech recognizer in a very simple case where the
spoken utterance is ”Hi, this is my number”. The
output is an acyclic weighted automaton called a
word lattice. It compactly represents the recognizer’s
best guesses. Each path is labeled with a sequence
of words and has a score obtained by summing the
weights of the constituent transitions. The path with
the lowest score is the recognizer’s best guess, in this
case ”I’d like my card number”.

This example make evident that the error rate of
conversational speech recognition systems is still too
high in many tasks to rely only on the one-best out-
put of the recognizer. Instead, one can use the full
word lattice which contains the correct transcription
in most cases. This is indeed the case in Figure 1,
since the top path is labeled with the correct sentence.
Thus, in this chapter, spoken-dialog classification is
formulated as the problem of assigning a category to
each word lattice.

Classification in general is a standard machine
learning problem. A classification algorithm receives
a finite number of labeled examples which it uses for
training, and selects a hypothesis expected to make
few errors on future examples. For the design of
modern spoken-dialog systems, this training sample
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Figure 1: Word lattice output of a speech recognition systemfor the spoken utterance “Hi, this is my number”.

is often available. It is the result of careful human
labeling of spoken utterances with a finite number of
pre-determined categories of the type already men-
tioned.

But, most classification algorithms were origi-
nally designed to classify fixed-size vectors. The ob-
jects to analyze for spoken-dialog classification are
word lattices, each a collection of a large number
of sentences with some weight or probability. How
can standard classification algorithms such as sup-
port vector machines [Cortes and Vapnik, 1995] be
extended to handle such objects?

This chapter presents a general framework and
solution for this problem, which is based onkernels
methods[Boser et al., 1992, Schölkopf and Smola,
2002]. Thus, we shall start with a brief introduction
to kernel methods (Section 2). Section 3 will then
present a kernel framework,rational kernels, that is
appropriate for word lattices and other weighted au-
tomata. Efficient algorithms for the computation of
these kernels will be described in Section 4. We
also report the results of our experiments using these
methods in several difficult large-vocabulary spoken-
dialog classification tasks based on deployed systems
in Section 5. There are several theoretical results
that can guide the design of kernels for spoken-dialog
classification. These results are discussed in Sec-
tion 6.

2. INTRODUCTION TO KERNEL METHODS

Let us start with a very simple two-group classi-
fication problem illustrated by Figure 2 where one

wishes to distinguish two populations, the blue and
red circles. In this very simple example, one can
choose a hyperplane to correctly separate the two
populations. But, there are infinitely many choices
for the selection of that hyperplane. There is good
theory though supporting the choice of the hyper-
plane that maximizes themargin, that is the distance
between each population and the separating hyper-
plane. Indeed, letF denote the class of real-valued
functions on the ball of radiusR in R

N :

F = {x 7→ w · x : ‖w‖ ≤ 1, ‖x‖ ≤ R} . (1)

Then, it can be shown [Bartlett and Shawe-Taylor,
1999] that there is a constantc such that, for all dis-
tributionsD overX , with probability at least1−δ, if
a classifiersgn(f), with f ∈ F , has margin at leastρ
over m independently generated training examples,
then the generalization error ofsgn(f), or error on
any future example, is no more than

c

m

(

R2

ρ2
log2 m + log

1

δ

)

. (2)

This bound justifies large-margin classification algo-
rithms such as support vector machines (SVMs). Let
w · x + b = 0 be the equation of the hyperplane,
wherew ∈ R

N is a vector normal to the hyperplane
andb ∈ R a scalar offset. The classifiersgn(h) corre-
sponding to this hyperplane is unique and can be de-
fined with respect to the training pointsx1, . . . , xm:

h(x) = w · x + b =

m
∑

i=1

αi(xi · x) + b, (3)
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Figure 2: Large-margin linear classification. (a) An arbitrary hyperplane can be chosen to separate the two
groups. (b) The maximal-margin hyperplane provides bettertheoretical guarantees.

where αis are real-valued coefficients. The main
point we are interested in here is that both for the
construction of the hypothesis and the later use of
that hypothesis for classification of new examples,
one needs only to compute a number of dot products
between examples.

In practice, non-linear separation of the training
data is often not possible. Figure 3(a) shows an ex-
ample where any hyperplane crosses both popula-
tions. However, one can use more complex functions
to separate the two sets as in Figure 3(b). One way to
do that is to use a non-linear mappingΦ : X → F
from the input spaceX to a higher-dimensional space
F where linear separation is possible.

The dimension ofF can truly be very large in
practice. For example, in the case of document clas-
sification, one may use as features, sequences of three
consecutive words (trigrams). Thus, with a vocabu-
lary of just 100,000 words, the dimension of the fea-
ture spaceF is 1015. On the positive side, as in-
dicated by the error bound of Equation 2, the gen-
eralization ability of large-margin classifiers such as
SVMs does not depend on the dimension of the fea-
ture space but only on the marginρ and the number of
training examplesm. However, taking a large num-
ber of dot products in a very high-dimensional space
to define the hyperplane may be very costly.

A solution to this problem is to use the so-called
’kernel trick’ or kernel methods. The idea is to define
a functionK : X ×X → R called akernel, such
that the kernel function on two examplesx andy in
input space,K(x, y), is equal to the dot product of

two examplesΦ(x) andΦ(y) in feature space:

∀x, y ∈ X, K(x, y) = Φ(x) · Φ(y). (4)

K is often viewed as a similarity measure. A crucial
advantage ofK is efficiency: there is no need any-
more to define and explicitly computeΦ(x), Φ(y),
andΦ(x) · Φ(y). Another benefit ofK is flexibil-
ity: K can be arbitrarily chosen so long as the ex-
istence ofΦ is guaranteed, which is called Mercer’s
condition. This condition is important to guarantee
the convergence of training for algorithms such as
SVMs.1

A condition equivalent to Mercer’s condition is
that the kernelK be positive definite and sym-
metric, that is, in the discrete case, the matrix
(K(xi, xj))1≤i,j≤n must be symmetric and positive
semi-definite for any choice ofn pointsx1, . . . , xn

in X . Said differently, the matrix must be symmetric
and its eigenvalues non-negative. Thus, for the prob-
lem that we are interested in, the question is how to
define positive definite symmetric kernels for word
lattices or weighted automata.

3. RATIONAL KERNELS

This section introduces a family of kernels for
weighted automata,rational kernels. We will start
with some preliminary definitions of automata and

1Some standard Mercer kernels over a vector space are the
polynomial kernels of degreed ∈ N, Kd(x, y) = (x·y+1)d, and
Gaussian kernelsKσ(x, y) = exp(−‖x − y‖2/σ2), σ ∈ R+.
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(a) (b)

Figure 3: Non-linearly separable case. The classification task consists of discriminating between solid squares
and solid circles. (a) No hyperplane can separate the two populations. (b) A non-linear mapping can be used
instead.

transducers. For the most part, we will adopt the no-
tation introduced in [Mohri et al., 2006] for automata
and transducers.

Figure 4(a) shows a simple weighted automaton.
It is a weighted directed graph in which edges or tran-
sitions are augmented with a label and carry some
weight indicated after the symbol slash. A bold cir-
cle indicates an initial state and a double-circle a final
state. A final state may also carry a weight indicated
after the slash symbol representing the state number.

A path from an initial state to a final state is called
a successful path. The weight of a path is obtained
by multiplying the weights of constituent transitions
and the final weight. The weight associated byA to a
stringx, denoted by[[A]](x), is obtained by summing
the weights of all paths labeled withx. In this case,
the weight associated to the stringabb is the sum of
the weight of two paths. The weight of each path
is obtained by multiplying transition weights and the
final weight0.1.

Similarly, Figure 4(b) shows an example of a
weighted transducer. Weighted transducers are sim-
ilar to weighted automata but each transition is aug-
mented with an output label in addition to the familiar
input label and the weight. The output label of each
transition is indicated after the colon separator. The
weight associated to a pair of strings(x, y), denoted

by [[T ]](x, y), is obtained by summing the weights of
all paths with input labelx and output labely. Thus,
for example, the weight associated by the transducer
T to the pair(abb, baa) is obtained as in the automata
case by summing the weights of the two paths labeled
with (abb, baa).

To help us gain some intuition for the definition
of a family of kernels for weighted automata, let us
first consider kernels for sequences. As mentioned
earlier in Section 2, a kernel can be viewed as a simi-
larity measure. In the case of sequences, we may say
that two strings are similar if they share many com-
mon substrings or subsequences. The kernel could
then be for example the sum of the product of the
counts of these common substrings. But how can we
generalize that to weighted automata?

Similarity measures such as the one just dis-
cussed can be computed by using weighted finite-
state transducers. Thus, a natural idea is to use
weighted transducers to define similarity measures
for sequences. We will say a that kernelK is rational
when there exists a weighted transducerT such that

K(x, y) = [[T ]](x, y), (5)

for all sequencesx andy. This definition general-
izes naturally to the case where the objects to handle
are weighted automata. We say thatK is rational
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Figure 4: Weighted automata and transducers. (a) Example ofa weighted automatonA. [[A]](abb) = .1 ×
.2 × .3 × .1 + .5 × .3 × .6 × .1. (b) Example of a weighted transducerT . [[T ]](abb, baa) = [[A]](abb).

when there exists a weighted transducerT such that
K(A, B), the similarity measure of two automataA
andB, is given by:

K(A, B)=
∑

x,y

[[A]](x) · [[T ]](x, y) · [[B]](y). (6)

T (x, y) is the similarity measure between two strings
x andy. But, in addition, we need to take into ac-
count the weight associated byA to x and byB to y,
and sum over all pairs(x, y).2

Our definition of kernels for weighted automata
is a first step towards extending SVMs to handle
weighted automata. However, we also need to pro-
vide efficient algorithms for computing the kernels.
The weighted automata that we are dealing with in
spoken-dialog systems are word lattices that may
have hundreds of thousands of states and transitions,
and millions of paths, thus the efficiency of the com-
putation is critical. In particular, the computational
cost of applying existing string kernel algorithms to
each pair of paths of two automataA andB is clearly
prohibitive.

We also have to provide effective kernels for
spoken-dialog classification and prove that they are
indeed positive definite symmetric so they can be
combined with SVM for high-accuracy classification
systems.

2This definition can be generalized to the case of an arbitrary
semiring where general operations other than the usual sum and
multiplication are applied, which has important theoretical and al-
gorithmic consequences and also interesting software engineering
implications [Cortes et al., 2003a].

4. ALGORITHMS

This section describes general and efficient algo-
rithms for the computation of rational kernels be-
tween weighted automata and provide examples
of effective positive definite symmetric kernels for
spoken-dialog classification.

The outline of the algorithm is as follows. The
main observation is that the sum defining rational
kernels can be viewed as the sum of the weights of
all the paths of a single transducer, the one obtained
by composingA with T with B (see [Mohri et al.,
2006]):

∑

x,y

[[A]](x)[[T ]](x, y)[[B]](y)=
∑

x,y

[[A◦T ◦B]](x, y). (7)

The sum of the weights of all the paths of a trans-
ducer can be computed using a general single-source
shortest-distance algorithm over the ordinary(+,×)
semiring or the so-called forward-backward algo-
rithm in the acyclic case [Mohri, 2002]. Thus, this
leads to the following general algorithm to compute
K(A, B) whenK is a rational kernel associated to
the transducerT .

• Use composition algorithm (see [Mohri et al.,
2006]) to computeU = A ◦ T ◦ B in time
O(|T ||A||B|).

• Use a general single-source shortest-distance al-
gorithm to compute the sum of the weights of all
successful paths ofU [Mohri, 2002]. This can be
done in linear time (O(|U |)) whenU is acyclic,
which is the case whenA andB are acyclic au-
tomata (word lattices).
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Figure 5: Weighted transducers computing the expected counts of (a) all sequences accepted by the regular
expressionX ; (b) all bigrams; (c) all gappy bigrams with penalty gapλ, over the alphabet{a, b}.

In combination, this provides a general and
efficient algorithm for computing rational kernels
whose total complexity for acyclic word lattices is
quadratic:O(|T ||A||B|).3

The next question that arises is how to define
and compute kernels based on counts of substrings
or subsequences as previously discussed in Section 3.
For weighted automata, we need to generalize the no-
tion of counts to take into account the weight of the
paths in each automaton and use instead theexpected
countsof a sequence.

Let |u|x denote the number of occurrences of a
substringx in u. Since a weighted automatonA de-
fines a distribution over the set of stringsu, theex-
pected countof a sequencex in a weighted automa-
tonA can be defined naturally as

cA(x) =
∑

u∈Σ∗

|u|x[[A]](u), (8)

where the sum runs overΣ∗, the set of all strings over
the alphabetΣ. We mentioned earlier that weighted
transducers can often be used to count the occur-
rences of some substrings of interest in a string. Let
us assume that one could find a transducerT that
could compute the expected counts of all substrings
of interest appearing in a weighted automatonA.
Thus,A ◦ T would provide the expected counts of
these substrings inA. Similarly,T−1 ◦B would pro-
vide the expected counts of these substrings inB.
Recall thatT−1 is the transducer obtained by swap-
ping the input and output labels of each transition
([Mohri et al., 2006]). Composition ofA ◦ T and
T−1 ◦ B matches paths labeled with the same sub-
string in A ◦ T and T−1 ◦ B and multiplies their

3Here|T | is a constant independent of the automataA andB
for which K(A, B) needs to be computed.

weights. Thus, by definition of composition (see
[Mohri et al., 2006]), we could compute the sum of
the expected counts inA andB of the matching sub-
strings by computing

A ◦ T ◦ T−1 ◦ B, (9)

and summing the weights (expected counts) of all
paths using a general single-source shortest-distance
algorithm.

Comparing this formula with Equation 7 shows
that the count-based similarity measure we are inter-
ested in is the rational kernel whose corresponding
weighted transducerS is:

S = T ◦ T−1. (10)

Thus, if we can determine aT with this property, this
would help us naturally define the similarity measure
S. In Section 6 we will prove that the kernel corre-
sponding toS will actually be positive definite sym-
metric, and can hence be used in combination with
SVMs.

In the following, we will provide a weighted
transducerT for computing the expected counts of
substrings. It turns out that there exists a very simple
transducerT that can be used for that purpose. Fig-
ure 5(a) shows a simple transducer that can be used
to compute the expected counts of all sequences ac-
cepted by the regular expressionX over the alpha-
bet {a, b}. In the figure, the transition labeled with
X:X/1 symbolizes a finite automaton representingX
with identical input and output labels and all weights
equal to one.

Here is how transducerT counts the occurrences
of a substringx recognized byX in a sequenceu.
State 0 reads a prefixu1 of u and outputs the empty
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string ε. Then, an occurrence ofx is read and out-
put identically. Then state1 reads a suffixu2 of u
and outputsε. In how many different ways canu be
decomposed intou = u1 xu2? In exactly as many
ways as there are occurrences ofx in u. Thus,T ap-
plied tou generates exactly|u|x successful paths la-
beled withx. This holds for all stringsx accepted by
X . If T is applied to (or composed with) a weighted
automatonA instead, then for anyx, it generates|u|x
paths for each path ofA labeled withu. Furthermore,
by definition of composition, each path generated is
weighted with the weight of the path inA labeled
with u. Thus, the sum of the weights of the paths
generated that are labeled withx is exactly the ex-
pected count ofx:

[[A ◦ T ]](x) = cA(x). (11)

Thus, there exists a simple weighted transducerT
that can count, as desired, the expected counts of all
strings recognized by an arbitrary regular expression
X in a weighted automatonA. In particular, since
the set of bigrams over an alphabetΣ is a regular
language, we can construct a weighted transducerT
computing the expected counts of all bigrams. Fig-
ure 5(b) shows that transducer, which has only three
states, regardless of the alphabet size.

In some applications, one may wish to allow for
a gap between the occurrences of two symbols and
view two weighted automata as similar if they share
such substrings (gappy bigrams) with relatively large
expected counts. The gap or distance between two
symbols is penalized using a fixed penalty factorλ,
0 ≤ λ < 1. A sequence kernel based on these
ideas was used successfully by Lodhi et al. [2001]
for text categorization. Interestingly, constructing a
kernel based on gappy bigrams is straightforward in
our framework. Figure 5(c) shows the transducer
T counting expected counts of gappy bigrams from
which the kernel can be efficiently constructed. The
same can be done similarly for higher-order gappy
n-grams or other gappy substrings.

The methods presented in this section can be used
to construct efficiently and, often in a simple man-
ner, relatively complex weighted automata kernelsK
based on expected counts or other ideas. A single
general algorithm can then be used as described to
compute efficientlyK(A, B) for any two weighted
automataA andB, without the need to design a new

algorithm for each new kernel, as previously done in
the literature. As an example, the gappy kernel used
by Lodhi et al. [2001] is the rational kernel corre-
sponding to the 6-state transducerS = T ◦ T−1 of
Figure 6.

5. EXPERIMENTS

This section describes the applications of the kernel
framework and techniques to spoken-dialog classifi-
cation.

In most of our experiments, we used simplen-
gram rational kernels. An n-gram kernelkn for two
weighted automata or latticesA andB is defined by:

kn(A, B) =
∑

|x|=n

cA(x) cB(x). (12)

As described in Section 4,kn is a kernel of the form
T ◦T−1 and can be computed efficiently. Ann-gram
rational kernelKn is simply the sum of kernelskm,
with 1 ≤ m ≤ n:

Kn =

n
∑

m=1

km

Thus, the feature space associated withKn is the set
of all m-gram sequences withm ≤ n. As discussed
in the previous section, it is straightforward, using the
same algorithms and representations, to extend these
kernels to kernels with gaps and to many other more
complex rational kernels more closely adapted to the
applications considered.

We did a series of experiments in several large-
vocabulary spoken-dialog tasks using rational kernels
with a twofold objective [Cortes et al., 2004]: to im-
prove classification accuracy in those tasks, and to
evaluate the impact on classification accuracy of the
use of a word lattice rather than the one-best output
of the automatic speech recognition (ASR) system.

The first task we considered was that of a de-
ployed customer-care application (HMIHY 0300). In
this task, users interact with a spoken-dialog system
via the telephone, speaking naturally, to ask about
their bills, their calling plans, or other similar top-
ics. Their responses to the open-ended prompts of
the system are not constrained by the system, they
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Figure 6: Simple weighted transducer corresponding to the gappy bigram kernel used by Lodhi et al. [2001]
obtained by composition of the transducer of Figure 5(c) andits inverse.

may be any natural language sequence. The objec-
tive of the spoken-dialog classification is to assign
one or several categories or call-types, e.g.,Billing
Credit, or Calling Plans, to the users’ spoken utter-
ances. The set of categories is pre-determined, and
in this first application there are64 categories. The
calls are classified based on the user’s response to the
first greeting prompt: “Hello, this is AT&T. How may
I help you?”.

Table 1 indicates the size of the HMIHY 0300
datasets we used for training and testing. The train-
ing set is relatively large with more than 35,000 ut-
terances, this is an extension of the one we used in
our previous classification experiments with HMIHY
0300 [Cortes et al., 2003b]. In our experiments, we
used then-gram rational kernels just described with
n = 3. Thus, the feature set we used was that of
all n-grams withn ≤ 3. Table 1 indicates the to-
tal number of distinct features of this type found in
the datasets. The word accuracy of the system based
on the best hypothesis of the speech recognizer was
72.5%. This motivated our use of the word lattices,
which contain the correct transcription in most cases.
The average number of transitions of a word lattice
in this task was about 260.

Table 1 reports similar information for two other
datasets, VoiceTone1, and VoiceTone2. These are
more recently deployed spoken-dialog systems in
different areas, e.g., VoiceTone1 is a task where users
interact with a system related to health-care with a
larger set of categories (97). The size of the Voice-
Tone1 datasets we used and the word accuracy of the
recognizer (70.5%) make this task otherwise similar
to HMIHY 0300. The datasets provided for Voice-
Tone2 are significantly smaller with a higher word

error rate. The word error rate is indicative of the dif-
ficulty of classification task since a higher error rate
implies a more noisy input. The average number of
transitions of a word lattice in VoiceTone1 was about
210 and in VoiceTone2 about 360.

Each utterance of the dataset may be labeled with
several classes. The evaluation is based on the fol-
lowing criterion: it is considered an error if the high-
est scoring class given by the classifier is none of
these labels.

We used the AT&T FSM Library [Mohri et al.,
2000] and the GRM Library [Allauzen et al., 2004]
for the implementation of then-gram rational kernels
Kn used. We used these kernels with SVMs, using
a general learning library for large-margin classifi-
cation (LLAMA), which offers an optimized multi-
class recombination of binary SVMs [Haffner et al.,
2003]. Training time took a few hours on a single
processor of a 2.4GHz Intel Pentium processor Linux
cluster with 2GB of memory and 512 KB cache.

In our experiments, we used the trigram kernel
K3 with a second-degree polynomial. Preliminary
experiments showed that the top performance was
reached for trigram kernels and that 4-gram kernels,
K4, did not significantly improve the performance.
We also found that the combination of a second-
degree polynomial kernel with the trigram kernel sig-
nificantly improves performance over a linear clas-
sifier, but that no further improvement could be ob-
tained with a third-degree polynomial.

We used the same kernels in the three datasets
previously described and applied them to both the
speech recognizer’s single best hypothesis (one-best
results), and to the full word lattices output by the
speech recognizer. We also ran, for the sake of
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Dataset Number of Training Testing Number of ASR word
classes size size n-grams accuracy

HMIHY 0300 64 35551 5000 24177 72.5%
VoiceTone1 97 29561 5537 22007 70.5%
VoiceTone2 82 9093 5172 8689 68.8%

Table 1: Key characteristics of the three datasets used in the experiments. The fifth column displays the total
number of unigrams, bigrams, and trigrams found in the one-best output of the ASR for the utterances of
the training set, that is the number of features used by BoosTexter or SVMs used with the one-best outputs.
The training and testing sizes reported in columns 3 and 4 aredescribed in the number of utterances, or
equivalently the number of word lattices.

comparison, the BoosTexter algorithm [Schapire and
Singer, 2000] on the same datasets by applying it to
the one-best hypothesis. This served as a baseline for
our experiments.

Figure 7(a) shows the result of our experiments
in the HMIHY 0300 task. It gives classification er-
ror rate as a function of rejection rate (utterances for
which the top score is lower than a given threshold
are rejected) in HMIHY 0300 for: BoosTexter, SVM
combined with our kernels when applied to the one-
best hypothesis, and SVM combined with kernels ap-
plied to the full lattices.

SVM with trigram kernels applied to the one-best
hypothesis leads to better classification than Boos-
Texter everywhere in the range of 0-40% rejection
rate. The accuracy is about 2-3% absolute value bet-
ter than that of BoosTexter in the range of interest for
this task, which is roughly between 20% and 40%
rejection rate. The results also show that the clas-
sification accuracy of SVMs combined with trigram
kernels applied to word lattices is consistently better
than that of SVMs applied to the one-best alone by
about 1% absolute value.

Figures 7(b)-(c) show the results of our experi-
ments in the VoiceTone1 and VoiceTone2 tasks us-
ing the same techniques and comparisons. As ob-
served previously, in many regards, VoiceTone1 is
similar to the HMIHY 0300 task, and our results
for VoiceTone1 are comparable to those for HMIHY
0300. The results show that the classification accu-
racy of SVMs combined with trigram kernels applied
to word lattices is consistently better than that of
BoosTexter, by more than 4% absolute value at about
20% rejection rate. They also demonstrate more
clearly the benefits of the use of the word lattices

for classification in this task. This advantage is even
more manifest for the VoiceTone2 task for which the
speech recognition accuracy is lower. VoiceTone2 is
also a harder classification task as can be seen by the
comparison of the plots of Figure 7(b). The classifi-
cation accuracy of SVMs with kernels applied to lat-
tices is more than 6% absolute value better than that
of BoosTexter near 40% rejection rate, and about 3%
better than SVMs applied to the one-best hypothesis.

Thus, our experiments in spoken-dialog classifi-
cation in three distinct large-vocabulary tasks demon-
strated that using rational kernels with SVMs consis-
tently leads to very competitive classifiers. They also
show that their application to the full word lattices
instead of the single best hypothesis output by the
recognizer systematically improves classification ac-
curacy.

We further explored the use of kernels based on
other moments of the counts of substrings in se-
quences, generalizingn-gram kernels [Cortes and
Mohri, 2005]. Letm be a positive integer. Letcm

A (x)
denote them-th moment of the countof the sequence
x in A defined by:

cm
A (x) =

∑

u∈Σ∗

|u|mx [[A]](u). (13)

We can define a general family of kernels, denoted
by Km

n , n, m ≥ 1 and defined by:

Km
n (A, B) =

∑

|x|=n

cm
A (x) cm

B (x), (14)

which exploit them-th moment of the counts of sub-
stringsx in weighted automataA and B to define
their similarity. Cortes and Mohri [2005] showed that
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Figure 7: Classification error rate as a function of rejection rate in (a) HMIHY 0300, (b) VoiceTone1, and (c)
VoiceTone2.

there exist weighted transducersT m
n that can be used

to compute efficientlycm
A (x) for all n-gram sequence

x and weighted automatonA. Thus, these kernels are
rational kernels and their associated transducers are
T m

n ◦ T m
n

−1:

Km
n (A, B)=

∑

x,y

[[A◦[T m
n ◦(T m

n )−1]◦B]](x, y). (15)

Figure 8 shows the weighted transducerT m
1 for ape-

riodic stringsx, which has onlym|x|+ 1 states.4 By
Equation 15, the transducerT m

1 can be used to com-
pute Km

n (A, B) by first computing the composed
transducerA ◦ [T m

n ◦ (T m
n )−1] ◦ B and then sum-

ming the weights of all the paths of this transducer
using a shortest-distance algorithm [Mohri, 2002].

The application of moment kernels to the
HMIHY 0300 task resulted in a further improvement
of the classification accuracy. In particular, at15%
rejection rate, the error rate was reduced by1% abso-
lute, that is about6.2% relative, which is significant
in this task, by usingvariance kernels, that is moment
kernels of second-order (m = 2).

6. THEORETICAL RESULTS FOR
RATIONAL KERNELS

In the previous sections, we introduced a number
of rational kernels, e.g., kernels based on expected
counts or moments of the counts and applied them

4An aperiodic string is a string that does not admit a non-empty
prefix as a suffix. Them-th moment of other strings (periodic
strings) can also be computed using weighted transducers.

to spoken-dialog tasks. Several questions arise in
relation with these kernels. As pointed out earlier,
to guarantee the convergence of algorithms such as
SVMs, the kernels used must be positive definite
symmetric (PDS). But, how can we construct PDS
rational kernels? Aren-gram kernels and similar ker-
nels PDS? Can we combine simpler PDS rational ker-
nels to create more complex ones? Is there a charac-
terization of PDS rational kernels?

All these questions have been investigated by
Cortes et al. [2003a]. The following theorem pro-
vides a general method for constructing PDS rational
kernels.

Theorem 1 Let T be a weighted finite-state trans-
ducer over(+,×). Assume that the weighted trans-
ducerT ◦T−1 is regulated,5 thenS = T ◦T−1 defines
a PDS rational kernel.

Proof. We give a sketch of the proof. A full proof
is given in [Cortes et al., 2003a]. LetK be the kernel
associated toS = T ◦T−1. By definition ofT−1 and
composition,

∀x, y ∈ X, K(x, y)=
∑

z

[[T ]](x, z)[[T ]](y, z), (16)

where the sum is over all stringsz. Let Kn be the
function defined by restricting the sum to strings of

5A weighted transducerT is said to beregulated when
[[T ]](x, y), the sum of the weights of the paths with inputx and
outputy is well-defined.
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Figure 8: Weighted transducerT m for computing them-th moment of the count of an aperiodic substringx.
The final weight at statek, k = 1, . . . , m, indicated after “/”, isS(m, k), the Stirling number of the second
kind, that is the number of ways of partitioning a set ofm elements intok nonempty subsets,S(m, k) =
1
k!

∑k

i=0

(

k
i

)

(−1)i(k − i)m. The first-order transducerT1 coincides with the transducer of Figure 5(a), since
S(1, 1) = 1.

length at mostk:

∀x, y ∈ X, Kk(x, y)=
∑

|z|≤k

[[T ]](x, z)[[T ]](y, z). (17)

Consider any ordering of all strings of length at
most k: z1, . . . , zl. For any set ofn strings
x1, . . . , xn, let A be the matrix defined byA =
([[T ]](xi, zj))i∈[1,n],j∈[1,l]. Then, the eigenvalues of
the matrixMn defined by

Mn = (Kn(xi, xj))i,j∈[1,n] (18)

are necessarily non-negative sinceMn = AA>.
Thus, for anyn ≤ 0, Kn is a PDS kernel. Since
K is a pointwise limit ofKn, K is also PDS [Berg
et al., 1984, Cortes et al., 2003a].

The theorem shows that the rational kernels we
considered in previous sections, e.g., count-based
similarity kernels,n-gram kernels, gappyn-gram
kernels are all PDS rational kernels, which justifies
a posteriori their use in combination with SVMs.
Conversely, we have conjectured elsewhere that all
PDS rational kernels are rational kernels associated
to transducers of the typeS = T ◦T−1 [Cortes et al.,
2003a] and proved several results in support of that
conjecture. In particular, for acyclic transducer, this
provides indeed a characterization of PDS rational
kernels.

It can also be shown that a finite sum of PDS ra-
tional kernels is a PDS rational kernel, which we used
for definingn-gram kernels. More generally, the fol-
lowing theorem holds [Cortes et al., 2003a].

Theorem 2 PDS rational kernels are closed under
sum, product, and Kleene-Closure.

Thus, one can use rational operations to create
complex PDS rational kernels from simpler ones.

7. CONCLUSION

Rational kernels form an effective tool and frame-
work for spoken-dialog classification. They are
based on a general theory that guarantees in particu-
lar the positive definiteness of rational kernels based
on an arbitrary(+,×)-weighted transducer and thus
the convergence of training for algorithms such as
SVMs. General and efficient algorithms can be read-
ily used for their computation.

Experiments in several large-vocabulary spoken-
dialog tasks show that rational kernels can be com-
bined with SVMs to form powerful classifiers and
that they perform well in several difficult tasks. They
also demonstrate the benefits of the use of kernels ap-
plied to word lattices.

Rational kernels form a rich family of kernels.
The kernels used in the experiments we described are
only special instances of this general class of kernels.
Rational kernels adapted to a specific spoken-dialog
task can be designed. In fact, it is often straight-
forward to craft prior knowledge about a task in the
transducer defining these kernels. One may for exam-
ple exclude some word sequences or regular expres-
sions from the similarity measure defined by these
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kernels or emphasize the importance of others by in-
creasing their respective weight in the weighted trans-
ducer.
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