
Weighted Finite-State Transducer Algorithms

An Overview

Mehryar Mohri

AT&T Labs – Research

Shannon Laboratory

180 Park Avenue, Florham Park, NJ 07932, USA

mohri@research.att.com

May 14, 2004

Abstract

Weighted finite-state transducers are used in many applications such
as text, speech and image processing. This chapter gives an overview
of several recent weighted transducer algorithms, including composition
of weighted transducers, determinization of weighted automata, a weight
pushing algorithm, and minimization of weighted automata. It briefly
describes these algorithms, discusses their running time complexity and
conditions of application, and shows examples illustrating their applica-
tion.

1 Introduction

Weighted transducers are used in many applications such as text, speech and im-
age processing [9, 12, 5]. They are automata in which each transition in addition
to its usual input label is augmented with an output label from a possibly new
alphabet, and carries some weight element of a semiring. Transducers can be
used to define a mapping between two different types of information sources, e.g.,
word and phoneme sequences. The weights are critically needed to model the
uncertainty or the variability of such information sources. Weighted transducers
can be used for example to assign different pronunciations to the same word but
with different ranks or probabilities. Their weights are typically derived from
large data sets using various sophisticated statistical learning techniques.

Much of the theory of weighted transducers and rational power series was de-
veloped more than two decades ago [15, 7, 4]. However, many essential weighted
transducer algorithms such as determinization and minimization of weighted
transducers [9] are recent and arise new questions, both theoretical and algo-
rithmic. This chapter overviews several recent weighted transducer algorithms,
including composition of weighted transducers, determinization of weighted au-
tomata, a weight pushing algorithm, and minimization of weighted automata.

1

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

Table 1: Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e−y).

2 Preliminaries

This section introduces the definitions and notation used in the following.

Definition 1 ([7]) A system (K,⊕,⊗, 0, 1) is a semiring if: (K,⊕, 0) is a com-
mutative monoid with identity element 0; (K,⊗, 1) is a monoid with iden-
tity element 1; ⊗ distributes over ⊕; and 0 is an annihilator for ⊗: for all
a ∈ K, a⊗ 0 = 0⊗ a = 0.

Thus, a semiring is a ring that may lack negation. Table 1 lists some familiar
semirings. A semiring is said to be commutative when the multiplicative oper-
ation ⊗ is commutative. It is said to be left divisible if for any x 6= 0, there
exists y ∈ K such that y⊗x = 1, that is if all elements of K admit a left inverse.
(K,⊕,⊗, 0, 1) is said to be weakly left divisible if for any x and y in K such that
x ⊕ y 6= 0, there exists at least one z such that x = (x ⊕ y) ⊗ z. When the ⊗
operation is cancellative, z is unique and we can then write: z = (x ⊕ y)−1x.
When z is not unique, we can still assume that we have an algorithm to find one
of the possible z and call it (x⊕ y)−1x. Furthermore, we will assume that z can
be found in a consistent way, that is: ((u⊗ x)⊕ (u⊗ y))−1(u⊗ x) = (x⊕ y)−1x

for any x, y, u ∈ K such that u 6= 0. A semiring is zero-sum-free if for any x and
y in K, x ⊕ y = 0 implies x = y = 0. In the following definitions, K is assumed
to be a left semiring or a semiring.

Definition 2 A weighted finite-state transducer T over a semiring K is an
8-tuple T = (Σ, ∆, Q, I, F, E, λ, ρ) where: Σ is the finite input alphabet of the
transducer; ∆ is the finite output alphabet; Q is a finite set of states; I ⊆ Q the
set of initial states; F ⊆ Q the set of final states; E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪
{ε})× K × Q a finite set of transitions; λ : I → K the initial weight function;
and ρ : F → K the final weight function mapping F to K.

We denote by |T | the sum of the number of states and transitions of T . Weighted
automata are defined in a similar way by simply omitting the input or output
labels.

Given a transition e ∈ E, we denote by p[e] its origin or previous state
and n[e] its destination state or next state, and w[e] its weight. A path π =
e1 · · · ek is an element of E∗ with consecutive transitions: n[ei−1] = p[ei], i =
2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek] and p[π] =
p[e1]. The weight function w can also be extended to paths by defining the
weight of a path as the ⊗-product of the weights of its constituent transitions:

2

w[π] = w[e1] ⊗ · · · ⊗ w[ek]. We denote by P (q, q′) the set of paths from q to
q′ and by P (q, x, y, q′) the set of paths from q to q′ with input label x ∈ Σ∗

and output label y. These definitions can be extended to subsets R, R′ ⊆ Q,
by: P (R, x, y, R′) = ∪q∈R, q′∈R′P (q, x, y, q′). A transducer T is regulated if the
output weight associated by T to any pair of input-output string (x, y) by:

[[T]](x, y) =
⊕

π∈P (I,x,y,F)

λ[p[π]] ⊗ w[π]⊗ ρ[n[π]] (1)

is well-defined and in K. [[T]](x, y) = 0 when P (I, x, y, F) = ∅. If for all q ∈ Q
⊕

π∈P (q,ε,ε,q) w[π] ∈ K, then T is regulated. In particular, when T does not

have any ε-cycle, it is regulated. We define the domain of T , Dom(T), as:
Dom(T) =

{

(x, y) : [[T]](x, y) 6= 0
}

.

3 Composition of Weighted Transducers

Composition is a fundamental algorithm used to create complex weighted trans-
ducers from simpler ones. Let K be a commutative semiring and let T1 and T2

be two weighted transducers defined over K such that the input alphabet of
T2 coincides with the output alphabet of T1. Assume that the infinite sum
⊕

z T1(x, z) ⊗ T2(z, y) is well-defined and in K for all (x, y) ∈ Σ∗ × Ω∗. This
condition holds for all transducers defined over a closed semiring [8, 11] such as
the Boolean semiring and the tropical semiring and for all acyclic transducers
defined over an arbitrary semiring. Then, the result of the composition of T1

and T2 is a weighted transducer denoted by T1 ◦ T2 and defined for all x, y by
[3, 6, 15, 7]:1

[[T1 ◦ T2]](x, y) =
⊕

z

T1(x, z)⊗ T2(z, y) (2)

There exists a general and efficient composition algorithm for weighted trans-
ducers [13, 12]. States in the composition T1 ◦ T2 of two weighted transducers
T1 and T2 are identified with pairs of a state of T1 and a state of T2. Leaving
aside transitions with ε inputs or outputs, the following rule specifies how to
compute a transition of T1 ◦ T2 from appropriate transitions of T1 and T2:

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′

2) =⇒ ((q1, q
′

1), a, c, w1 ⊗ w2, (q2, q
′

2)) (3)

See [13, 12] for a detailed presentation of the algorithm including the use of a
transducer filter for dealing with ε-multiplicity in the case of non-idempotent
semirings. In the worst case, all transitions of T1 leaving a state q1 match all
those of T2 leaving state q′1, thus the space and time complexity of composition
is quadratic: O(|T1||T2|). However, an on-the-fly implementation of composition
can be used to construct just the part of the composed transducer that is needed.
Figures 1(a)-(c) illustrate the algorithm when applied to the transducers of
Figures 1(a)-(b) defined over the tropical semiring.

1Note that we use a matrix notation for the definition of composition as opposed to a func-

tional notation. This is a deliberate choice motivated in many cases by improved readability.

3

0 1a:b/0.1
a:b/0.2

2b:b/0.3
3/0.7b:b/0.4

a:b/0.5
a:a/0.6

0 1b:b/0.1
b:a/0.2 2a:b/0.3

3/0.6a:b/0.4

b:a/0.5

(a) (b)

(0, 0) (1, 1)a:b/0.2

(0, 1)a:a/0.4

(2, 1)b:a/0.5 (3, 1)

b:a/0.6

a:a/0.3

a:a/0.7

(3, 2)a:b/0.9

(3, 3)/1.3

a:b/1

(c)

Figure 1: (a) Weighted transducer T1 over the tropical semiring. (b) Weighted
transducer T2 over the tropical semiring. (c) Composition of T1 and T2.

Intersection (or Hadamard product) of weighted automata and composition
of finite-state transducers are both special cases of composition of weighted
transducers. Intersection corresponds to the case where input and output la-
bels of transitions are identical and composition of unweighted transducers is
obtained simply by omitting the weights.

In general, the definition of composition cannot be extended to the case of
non-commutative semirings because the composite transduction cannot always
be represented by a weighted finite-state transducer. Consider for example, the
case of two transducers T1 and T2, with Dom(T1) = Dom(T2) = (a, a)∗, with
[[T1]](a, a) = x ∈ K and [[T2]](a, a) = y ∈ K and let τ be the composite of the
transductions corresponding to T1 and T2. Then, for any non-negative integer
n, τ(an, an) = xn ⊗ yn which in general is different from (x ⊗ y)n if x and y

do not commute. An argument similar to the classical Pumping lemma can
then be used to show that τ cannot be represented by a weighted finite-state
transducer.

When T1 and T2 are acyclic, composition can be extended to the case of non-
commutative semirings. The algorithm would then consist of matching paths
of T1 and T2 directly rather than matching their constituent transitions. The
termination of the algorithm is guaranteed by the fact that the number of paths
of T1 and T2 is finite. However, the time and space complexity of the algorithm
is then exponential.

The weights of matching transitions and paths are ⊗-multiplied in compo-
sition. One might wonder if another operation, ×, can be used instead of ⊗, in
particular when K is not commutative. The following proposition proves that
that cannot be.

Proposition 1 Let (K,×, e) be a monoid. Assume that × is used instead of ⊗
in composition. Then, × coincides with ⊗ and (K,⊕,⊗, 0, 1) is a commutative
semiring.

4

Proof. Consider two sets of consecutive transitions of two paths: π1 =
(p1, a, a, x, q1)(q1, b, b, y, r1) and π2 = (p2, a, a, u, q2)(q2, b, b, v, r2). Matching
these transitions using × result in the following:

((p1, p2), a, a, x× u, (q1, q2)) and ((q1, q2), b, b, y × v, (r1, r2)) (4)

Since the weight of the path obtained by matching π1 and π2 must also corre-
spond to the ×-multiplication of the weight of π1, x ⊗ y, and the weight of π2,
u⊗ v, we have:

(x× u)⊗ (y × v) = (x⊗ y)× (u⊗ v) (5)

This identity must hold for all x, y, u, v ∈ K. Setting u = y = e and v = 1 leads
to x = x ⊗ e and similarly x = e⊗ x for all x. Since the identity element of ⊗
is unique, this proves that e = 1.

With u = y = 1, identity 5 can be rewritten as: x ⊗ v = x × v for all x

and v, which shows that × coincides with ⊗. Finally, setting x = v = 1 gives
u⊗ y = y × u for all y and u which shows that ⊗ is commutative.

4 Determinization

A weighted automaton is said to be deterministic or subsequential [16] if it has
a unique initial state and if no two transitions leaving any state share the same
input label.

There exists a natural extension of the classical subset construction to the
case of weighted automata over a weakly left divisible semiring called deter-
minization [9].2 The algorithm is generic: it works with any weakly left di-
visible semiring. Figures 2(a)-(b) illustrate the determinization of a weighted
automaton over the tropical semiring. A state r of the output automaton that
can be reached from the start state by a path π corresponds to the set of pairs
(q, x) ∈ Q × K such that q can be reached from an initial state of the original
machine by a path σ with l[σ] = l[π] and λ[p[σ]] ⊗ w[σ] = λ[p[π]] ⊗ w[π] ⊗ x.
Thus, x is the remaining weight at state q. The worst case complexity of de-
terminization is exponential even in the unweighted case. However, in many
practical cases such as for weighted automata used in large-vocabulary speech
recognition, this blow-up does not occur. It is also important to notice that just
like composition, determinization admits a natural on-the-fly implementation
[9] which can be useful for saving space.

Unlike the unweighted case, determinization does not halt for some input
weighted automata. In fact, some weighted automata, non subsequentiable au-
tomata, do not even admit equivalent subsequential machines. We say that a
weighted automaton A is determinizable if the determinization algorithm halts
for the input A. With a determinizable input, the algorithm outputs an equiv-
alent subsequential weighted automaton [9].

2We assume that the weighted automata considered are all such that for any string x ∈ Σ∗,
w[P (I, x, Q)] 6= 0. This condition is always satisfied with trim machines over the tropical
semiring or any zero-sum-free semiring.

5

0

1a/1

2

a/2

b/3

3/0

c/5

b/3 d/6 (0,0) (1,0),(2,1)a/1

b/3

(3,0)/0c/5
d/7

0

1a/1

2

a/2

b/3

3/0

c/5

b/4 d/6

(a) (b) (c)

Figure 2: Determinization of weighted automata. (a) Weighted automaton over
the tropical semiring A. (b) Equivalent weighted automaton B obtained by
determinization of A. (c) Non-determinizable weighted automaton over the
tropical semiring, states 1 and 2 are non-twin siblings.

There exists a general property, the twins property, first formulated for finite-
state transducers by C. Choffrut [3], later generalized to weighted automata over
the tropical semiring by [9], that provides a characterization of determinizable
weighted automata under some general conditions.

Let A be a weighted automaton over a weakly left divisible left semiring K.
Two states q and q′ of A are said to be siblings if there exist two strings x and
y in Σ∗ such that both q and q′ can be reached from I by paths labeled with
x and there is a cycle at q and a cycle at q′ both labeled with y. When K is
a commutative and cancellative semiring, then two sibling states are said to be
twins iff for any string y:

w[P (q, y, q)] = w[P (q′, y, q′)] (6)

A has the twins property if any two sibling states of A are twins. Figure 2(c)
shows an unambiguous weighted automaton over the tropical semiring that does
not have the twins property: states 1 and 2 can be reached by paths labeled
with a from the initial state and admit cycles with the same label b, but the
weights of these cycles (3 and 4) are different.

Theorem 1 ([9]) Let A be a weighted automaton over the tropical semiring.
If A has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary.

Theorem 2 ([9]) Let A be a trim unambiguous weighted automaton over the
tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.

2. A has the twins property.

3. A is subsequentiable.

There exists an efficient algorithm for testing the twins property for weighted
automata [2]. The test of the twins property for finite-state transducers and
weighted automata over other semirings is also discussed by [2]. Note that any
acyclic weighted automaton over a zero-sum-free semiring has the twins property
and is determinizable.

6

5 Weight Pushing

The choice of the distribution of the total weight along each successful path of
a weighted automaton does not affect the definition of the function realized by
that automaton, but this may have a critical impact on the efficiency in many
applications, e.g., natural language processing applications, when a heuristic
pruning is used to visit only a subpart of the automaton. There exists an
algorithm, weight pushing, for normalizing the distribution of the weights along
the paths of a weighted automaton or more generally a weighted directed graph.

Let A be a weighted automaton over a semiring K. Assume that K is zero-
sum-free and weakly left divisible. For any state q ∈ Q, assume that the follow-
ing sum is well-defined and in K:

d[q] =
⊕

π∈P (q,F)

(w[π] ⊗ ρ[n[π]]) (7)

d[q] is the shortest-distance from q to F [11]. d[q] is well-defined for all q ∈ Q

when K is a k-closed semiring [11]. The weight pushing algorithm consists of
computing each shortest-distance d[q] and of reweighting the transition weights,
initial weights and final weights in the following way:

∀e ∈ E s.t. d[p[e]] 6= 0, w[e] ← d[p[e]]−1 ⊗ w[e]⊗ d[n[e]] (8)

∀q ∈ I, λ[q] ← λ[q]⊗ d[q] (9)

∀q ∈ F, s.t. d[q] 6= 0, ρ[q] ← d[q]−1 ⊗ ρ[q] (10)

Each of these operations can be assumed to be done in constant time, thus
reweighting can be done in linear time O(T⊗|A|) where T⊗ denotes the worst
cost of an ⊗-operation. The complexity of the computation of the shortest-
distances depends on the semiring. In the case of k-closed semirings such as
the tropical semiring, d[q], q ∈ Q, can be computed using a generic shortest-
distance algorithm [11]. The complexity of the algorithm is linear in the case
of an acyclic automaton: O(|Q| + (T⊕ + T⊗)|E|), where T⊕ denotes the worst
cost of an ⊕-operation. In the case of a general weighted automaton over the
tropical semiring, the complexity of the algorithm is O(|E|+ |Q| log |Q|).

In the case of closed semirings such as (R+, +,×, 0, 1), a generalization of the
Floyd-Warshall algorithm for computing all-pairs shortest-distances can be used.
The complexity of the algorithm is Θ(|Q|3(T⊕ +T⊗+T∗)) where T∗ denotes the
worst cost of the closure operation. The space complexity of these algorithms
is Θ(|Q|2). These complexities make it impractical to use the Floyd-Warshall
algorithm for computing d[q], q ∈ Q for relatively large graphs or automata
of several hundred million states or transitions. An approximate version of the
shortest-distance algorithm of [11] can be used instead to compute d[q] efficiently
[10].

Roughly speaking, the algorithm pushes the weights of each path as much as
possible towards the initial states. Figures 3(a)-(c) illustrate the application of
the algorithm in a special case both for the tropical and probability semirings.

7

0

1

a/0

b/1

c/5

2

d/0

e/1

3

e/0
f/1

e/4

f/5

0/0

1

a/0

b/1

c/5

2

d/4

e/5

3/0

e/0
f/1

e/0

f/1

0/15

1

a/0

b/(1/15)

c/(5/15)

2

d/0

e/(9/15)

3/1

e/0
f/1

e/(4/9)

f/(5/9)
0/0 1

a/0
b/1
c/5

3/0e/0
f/1

(a) (b) (c) (d)

Figure 3: Weight pushing algorithm. (a) Weighted automaton A. (b) Equivalent
weighted automaton B obtained by weight pushing in the tropical semiring. (c)
Weighted automaton C obtained from A by weight pushing in the probability
semiring. (d) Minimal weighted automaton over the tropical semiring equivalent
to A.

Note that if d[q] = 0, then, since K is zero-sum-free, the weight of all paths
from q to F is 0.

Let A be a weighted automaton over the semiring K. Assume that K is
closed or k-closed and that the shortest-distances d[q] are all well-defined and in
K−

{

0
}

. Note that in both cases we can use the distributivity over the infinite
sums defining shortest distances. Let e′ (π′) denote the transition e (path π)
after application of the weight pushing algorithm. e′ (π′) differs from e (resp.
π) only by its weight. Let λ′ denote the new initial weight function, and ρ′ the
new final weight function.

Proposition 2 Let B = (Σ, Q, I, F, E′, λ′, ρ′) be the result of the weight pushing
algorithm applied to the weighted automaton A, then

1. the weight of a successful path π is unchanged after application of weight
pushing:

λ′[p[π′]]⊗ w[π′]⊗ ρ′[n[π′]] = λ[p[π]]⊗ w[π] ⊗ ρ[n[π]] (11)

2. the weighted automaton B is stochastic, i.e.

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1 (12)

Proof. Let π′ = e′1 . . . e′k. By definition of λ′ and ρ′,

λ
′[p[π′]] ⊗ w[π′] ⊗ ρ

′[n[π′]] = λ[p[e1]] ⊗ d[p[e1]] ⊗ d[p[e1]]
−1

⊗ w[e1] ⊗ d[n[e1]] ⊗ · · ·

⊗ d[p[ek]]−1
⊗ w[ek] ⊗ d[n[ek]] ⊗ d[n[ek]]−1

⊗ ρ[n[π]]

= λ[p[π]] ⊗ w[e1] ⊗ · · · ⊗ w[ek] ⊗ ρ[n[π]]

which proves the first statement of the proposition. Let q ∈ Q,
M

e′∈E′[q]

w[e′] =
M

e∈E[q]

d[q]−1
⊗ w[e] ⊗ d[n[e]]

8

= d[q]−1
⊗

M

e∈E[q]

w[e] ⊗ d[n[e]]

= d[q]−1
⊗

M

e∈E[q]

w[e] ⊗
M

π∈P (n[e],F)

(w[π] ⊗ ρ[n[π]])

= d[q]−1
⊗

M

e∈E[q],π∈P (n[e],F)

(w[e] ⊗ w[π] ⊗ ρ[n[π]])

= d[q]−1
⊗ d[q] = 1

where we used the distributivity of the multiplicative operation over infinite
sums in closed or k-closed semirings. This proves the second statement of the
proposition.

These two properties of weight pushing are illustrated by Figures 3(a)-(c): the
total weight of a successful path is unchanged after pushing; at each state of
the weighted automaton of Figure 3(b), the minimum weight of the outgoing
transitions is 0, and at at each state of the weighted automaton of Figure 3(c),
the weights of outgoing transitions sum to 1. Weight pushing can also be used
to test the equivalence of two weighted automata [9].

6 Minimization

A deterministic weighted automaton is said to be minimal if there exists no other
deterministic weighted automaton with a smaller number of states and realizing
the same function. Two states of a deterministic weighted automaton are said to
be equivalent if exactly the same set of strings with the same weights label paths
from these states to a final state, the final weights being included. Thus, two
equivalent states of a deterministic weighted automaton can be merged without
affecting the function realized by that automaton. A weighted automaton is
minimal when it admits no two distinct equivalent states after any redistribution
of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic au-
tomaton equivalent to a given weighted automaton [9]. The algorithm consists
of first applying the weight pushing algorithm to normalize the distribution of
the weights along the paths of the input automaton, and then of treating each
pair (label, weight) as a single label and applying the classical (unweighted)
automata minimization.

Theorem 3 ([9]) Let A be a deterministic weighted automaton over a semiring
K. Assume that the conditions of application of the weight pushing algorithm
hold, then the execution of the following steps:

1. weight pushing,

2. (unweighted) automata minimization,

lead to a minimal weighted automaton equivalent to A.

9

0

1

a/1

b/2

c/3

2

d/4

e/5

3/1

e/.8
f/1

e/4

f/5

0/(459/5) 1

a/(1/51)

b/(2/51)
c/(3/51)

d/(20/51)
e/(25/51)

2/1e/(4/9)
f/(5/9)

0/25 1

a/.04

b/.08
c/.12
d/.80
e/1

2/1e/.8
f/1

(a) (b) (c)

Figure 4: Minimization of weighted automata. (a) Weighted automaton A′ over
the probability semiring. (b) Minimal weighted automaton B′ equivalent to A′.
(c) Minimal weighted automaton C′ equivalent to A′.

The complexity of automata minimization is linear in the case of acyclic au-
tomata O(|Q| + |E|) [14] and in O(|E| log |Q|) in the general case [1]. Thus, in
view of the complexity results given in the previous section, in the case of the
tropical semiring, the total complexity of the weighted minimization algorithm
is linear in the acyclic case O(|Q|+ |E|) and in O(|E| log |Q|) in the general case.

Figures 3(a), 3(b), and 3(d) illustrate the application of the algorithm in
the tropical semiring. The automaton of Figure 3(a) cannot be further mini-
mized using the classical unweighted automata minimization since no two states
are equivalent in that machine. After weight pushing, the automaton (Figure
3(b)) has two states (1 and 2) that can be merged by the classical unweighted
automata minimization.

Figures 4(a)-(c) illustrate the minimization of an automaton defined over
the probability semiring. Unlike the unweighted case, a minimal weighted au-
tomaton is not unique, but all minimal weighted automata have the same graph
topology, they only differ by the way the weights are distributed along each
path. The weighted automata B′ and C′ are both minimal and equivalent to
A′. B′ is obtained from A′ using the algorithm described above in the probabil-
ity semiring and it is thus a stochastic weighted automaton in the probability
semiring.

For a deterministic weighted automaton, the first operation of the semiring
can be arbitrarily chosen without affecting the definition of the function it real-
izes. This is because, by definition, a deterministic weighted automaton admits
at most one path labeled with any given string. Thus, in the algorithm de-
scribed in theorem 3, the weight pushing step can be executed in any semiring
K

′ whose multiplicative operation matches that of K. The minimal weighted
automata obtained by pushing the weights in K

′ is also minimal in K since it
can be interpreted as a (deterministic) weighted automaton over K.

In particular, A′ can be interpreted as a weighted automaton over the
(max,×)-semiring (R+, max,×, 0, 1). The application of the weighted minimiza-
tion algorithm to A′ in this semiring leads to the minimal weighted automaton
C′ of Figure 4(c). C′ is also a stochastic weighted automaton in the sense that,
at any state, the maximum weight of all outgoing transitions is one.

10

This fact has several interesting observations. One is related to the com-
plexity of the algorithms. Indeed, we can choose a semiring K

′ in which the
complexity of weight pushing is better than in K. The resulting automaton is
still minimal in K and has the additional property of being stochastic in K

′.
It only differs from the weighted automaton obtained by pushing weights in
K in the way weights are distributed along the paths. They can be obtained
from each other by application of weight pushing in the appropriate semiring.
In the particular case of a weighted automaton over the probability semiring,
it may be preferable to use weight pushing in the (max,×)-semiring since the
complexity of the algorithm is then equivalent to that of classical single-source
shortest-paths algorithms. The corresponding algorithm is a special instance of
the generic shortest-distance algorithm given by [11].

Another important point is that the weight pushing algorithm may not be
defined in K because the machine is not zero-sum-free or for other reasons.
But an alternative semiring K

′ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the num-
ber of states of a deterministic weighted automaton. The following proposition
shows that minimizing the number of states coincides with minimizing the num-
ber of transitions.

Proposition 3 ([9]) Let A be a minimal deterministic weighted automaton,
then A has the minimal number of transitions.

Proof. Let A be a deterministic weighted automaton with the minimal number
of transitions. If two distinct states of A were equivalent, they could be merged,
thereby strictly reducing the number of its transitions. Thus, A must be a
minimal deterministic automaton. Since, minimal deterministic automata have
the same topology, in particular the same number of states and transitions, this
proves the proposition.

7 Conclusion

We surveyed several recent weighted finite-state transducer algorithms. These
algorithms can be used in a variety of applications to create efficient and com-
plex systems. They have been used with weighted transducers of several hundred
million states and transitions to create large-vocabulary speech recognition and
complex spoken-dialog systems. Other algorithms such as ε-removal and syn-
chronization of weighted transducers also play a critical role in the design of
such large-scale systems.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer algorithms. Addison Wesley: Reading, MA, 1974.

11

[2] Cyril Allauzen and Mehryar Mohri. Efficient Algorithms for Testing the
Twins Property. Journal of Automata, Languages and Combinatorics, 8(2),
2003.

[3] Jean Berstel. Transductions and Context-Free Languages. Teubner Studi-
enbucher: Stuttgart, 1979.

[4] Jean Berstel and Christophe Reutenauer. Rational Series and Their Lan-
guages. Springer-Verlag: Berlin-New York, 1988.

[5] Karel Culik II and Jarkko Kari. Digital Images and Formal Languages.
In Grzegorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, volume 3, pages 599–616. Springer, 1997.

[6] Samuel Eilenberg. Automata, Languages and Machines, volume A. Aca-
demic Press, 1974.

[7] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Num-
ber 5 in EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, Germany, 1986.

[8] Daniel J. Lehmann. Algebraic Structures for Transitive Closures. Theoret-
ical Computer Science, 4:59–76, 1977.

[9] Mehryar Mohri. Finite-State Transducers in Language and Speech Pro-
cessing. Computational Linguistics, 23:2, 1997.

[10] Mehryar Mohri. General Algebraic Frameworks and Algorithms for
Shortest-Distance Problems. Technical Memorandum 981210-10TM,
AT&T Labs - Research, 62 pages, 1998.

[11] Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-
Distance Problems. Journal of Automata, Languages and Combinatorics,
7(3):321–350, 2002.

[12] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Au-
tomata in Text and Speech Processing. In Proceedings of the 12th biennial
European Conference on Artificial Intelligence (ECAI-96), Workshop on
Extended finite state models of language, Budapest, Hungary. ECAI, 1996.

[13] Fernando C. N. Pereira and Michael D. Riley. Speech recognition by com-
position of weighted finite automata. In Emmanuel Roche and Yves Sch-
abes, editors, Finite-State Language Processing, pages 431–453. MIT Press,
Cambridge, Massachusetts, 1997.

[14] Dominique Revuz. Minimisation of acyclic deterministic automata in linear
time. Theoretical Computer Science, 92:181–189, 1992.

[15] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal
Power Series. Springer-Verlag: New York, 1978.

12

[16] Marcel Paul Schützenberger. Sur une variante des fonctions séquentielles.
Theoretical Computer Science, 4(1):47–57, 1977.

13

