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ABSTRACT

We showed in previous work thateighted finite-state transduc-
ers provide a common representation for many components of
a speech reco%n|t|on system and described general algerith
for combining these representations to build a single dpéoh
and compact transducer integrating all these componeinestigt
mapping from HMM states to words. This approach works well
for certain well-controlled input transducers, but J)r&semme
problems related to the efficiency obmpositionand the appli-
cability of determinizationand welght-pushingwith more gen-
eral transducers. We generalize our prior constructiorhefit-
tegrated speech recognition transducer to work with artrarli
number of component transducers and, to a large extengseele
the constraints imposed to the type of input transducersdyig

|nF1 more general solutions to these problems. This gezatain
allowed us to deal with cases where our prior optimizatioth di
not apply. Our experiments in the AT&T HMIHY 0300 task and
an AT&T VoiceTone task show the efficiency of our generalized
optimization technique. We reportla6 recognition speed-up in
the HMIHY 0300 task,1.8 speed-up in a VoiceTone task using a
word-based language model, ah@ using a class-based model.

1. MOTIVATION

In previous work, we showed thateighted finite-state transduc-
ers provide a common and natural representation for many com-
ponents of a speech recognition system, e.g., HMMs, context
dependency, pronunciation dictionaries, and languagestadd].

We also described general algorithms for combining thegeere
sentations flexibly and efficiently and showed that they caaded

to build a single optimized transducer that integratesdlvesnpo-
nents, directly mapping from HMM states to words [9, 10]. In
this method, weighted transduaasmpositionis used to combine
the component transducers, whdeterminization minimization
andweight-pushingptimize the result in time and space. The re-
sultant transducer has a standardized representatiaqyeunp to
state renumberln%

This approach works well for certain well-controlled input
transducers, but presents some problems with more genana} t
ducers. These problems are related to composition, detani
tion, and weight-pushing.

Composition can use unacceptable amounts of time and s
when there are significant delays in matching dueti@nsitions.
In simple cases, this can be avoided by a careful construcfithe
component transducers. In practice, inexperienced useisftzn
not fully aware of this. For example, they may place the outpu
labels in the lexicon transducérat the ends of words rather than
at the beginning, which can significantly slow down composit
For more complex transducers, trying to manually place ripeti
and output labels for the best effect becomes difficult.

Not all transducers are determinizable. The lexicon trans-
ducer, for example, is not determinizable if it contains lem
Bhones. In our prior construction, we added disambiguatjon-

ols at word ends as needed to solve this p
eral transducer inputs, this is insufficient. A related feabis that
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the prior construction assumed that ofilywas non-determinizable
in our composition chain while we might wish to use other info
mation sources represented by non-determinizable traesslu

Not all transducers can be pushed over the (log) probability
semiring, in particular because not all transducers cae tasir
weights redistributed along their paths so that they fortoetss-
tic distribution. A trivial example is a self-loop with weiggreater
than one. In practice, there are several common causes of non
stochastic knowledge sources: unweighted word grammags, e
hand-crafted grammars; silence models with free cost loops
weighted or unnormalized multiple pronunciations; cone
proximate automata representatiomefiram models; andd hoc
word or phone insertion penalties.

One way to deal with these problems would be to allow only
very limited kinds and number of knowledge sources and peggi
stipulate how each is constructed as a transducer prioeiodbm-
bination and optimization. But much of the inherent ﬂerityra:lf
weighted transducer algorithms would be lost by such &gins.
Instead, we consider here how to generalize our constnggo
that as wide a range of component transducers as possibleecan
used successfully as inputs. This generalization will pethe
more efficient use of current models and of hopefully yet more
innovative future models.

We present our %eneralized construction technique inldetai
section 4 and show how,within the general framework comsitie
it provides solutions to each of the problems just mentiofigds
culminates in the description ofrake, a utility from the AT&T
Decoder Library (DCD Library), that takes a very general afet
transducer inputs and constructs an optimized recognitenms-
ducer from them (Section 5). We also present in that Sectien t
results of experiments in several spoken-dialog apptioattasks
that show very substantial recognition speed-ups comgartte
previous optimizations (that were limited due to the kinfissues
mentioned above). We also demonstrate the efficiency ofdhe c
struction of recognition transducers from component tlaners.

We begin with some preliminary definitions of weighted trans
ducers needed in the remainder of the paper (Section 2) anefa b
description of some basic algorithms needed in our gezedli
construction (Section 3) that are also of independentéster

2. PRELIMINARIES

paC(?/Veig_hted automata are automata in which the transitiony éar

addition to the usual alphabet symbols some weights elentént
a semiring[5]. A semiring is a ring that may lack negation. It
has two associative operatiors and ® with identity elements
0 and 1. ® distributes overd and 0 is an annihilator. The
weights used in speech recognition often represent priitedi
The appropriate semiring to use is then titebability semiring
(R,+,-,0,1). For numerical stability, implementations often re-
place probabilities with log probabilities. The appropgigaemir-
ing to use is then thivg semiring (RU {oo}, @y, +, 00, 0), with:

roblem. For more genVa,b € RU{oo}, a @ b = —log(exp(—a) + exp(—b)), where

by conventiorezp(—o0) = 0, and— log(0) = co. The log semir-
ing is the image byog of the semiring(R, +,-,0,1). When log
probabilities are used and a Viterbi approximation is assijm,
Is replaced bymin and the appropriate semiring is th®pical
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Fig. 1. Input e-normalization in the tropical semiring. (a)
Weighted transducefy. (b) Weighted transducef, equivalent
to 71 output of thee-normalization algorithm.

semiring(R+ U {oo}, min, +, 00, 0).

A weighted transducel’ = (X,A,Q, I, F, E, )\, p) overK
is a 7-tuple where is a finite input alphabet) is a finite output
alphabet( is a finite set of stated, C @ the set of initial states,
F C @ the set of final statedy C Q) x ¥ x A x K x Q afinite
set of transitions) : I — K the initial weight function mapping
ItoK, andp : F — K the final weight.function mapping’ to
K [12, 5]. Weighted automataan be defined in a similar way by
simply omitting the output labels. pathm =e; - --ex in Ais an
element ofE™ with consecutive transitions. successful patfs a
path from an initial state to a final state.

3. BASICALGORITHMS

This section briefly describes several basic algorithmsleador
our generalized construction of an integrated recognitians-
ducer: input e-normalizationand synchronizatiorare used in our
OPtImIZB_IIOH to normalize the positions of input and outiaiels

of acyclic transducers, andsgmbol insertiorbased on weighted
transducedeterminizatiorused to ensure the determinizability of
the closure of an acyclic transducer.

3.1. Input e-Normalization

Inpute-normalization[6] is an algorithm used in our optimizations
of the acyclic component transducers. It consists of ndming
the input transducef? in the following way. The output trans-
ducerT; is equivalent tdly, it has noe-transitions, and along any
of its successful paths, no transition with input labelefiént from

e is_preceded with a transition with input label Figures 1(a)-
(b) illustrate the application of this algorithm to the tsaicer of
Figure 1(a).

3.2. Synchronization

There exists a general algorithm for theynchronization of
weighted transducer§]. The objective of the algorithm is to syn-
chronize, to the extent that it is possible, the consumpiforon-<
symbols by the input and output tapes of a weighted transduce
Figures 2(a)-(b) illustrate the algorithm and its appimatto the
transducer of Figure 2(a). Each state of the resulting thacesT”’
corresponds to a tripldl, =, y) wheregq is a state of the original
machinel” and wherer andy are residual input and output strings
used to create synchronized outgoing transitions.

3.3. Determinization with Symbol Insertion

Determinization can be applied to any acyclic transddces cre-
ate an equivalent transducéf that isfinitely subsequentiai.e.,

a transducer with deterministic input and a finite numbertiohg
outputs at each final state. The algorithm can be augmenieed to
sert a new and distinct input symbol corresponding to eatheof
final output strings at final states. The alphabet of the tiesul

transducefl”’ has a finite number of additional auxiliary symbols.
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Fig. 2. (a) Weighted transducédr; over the tropical semiring. (b)

Equivalent synchronized weighted transduér (c) Synchro-
nized weighted transducdf; equivalent toT; and 7> obtained
by e-removal fromT5.

T" is unambiguous and the input label of each of its successful
paths ends with an auxiliary symbol. It is not hard to showt tha

the closure off” is determinizable. Figures 3(c¥-(d) illustrate the
application of the algorithm to the transducer of Figure.3(c

4. GENERALIZED CONSTRUCTION

Our generalized construction applies to an arbitrar¥ numbe

of transducersly,, k 1,...,n, representing the information
sources used by the system in the order of the numbering of the
transducers. The essential scheme is similar to our privstogc-

tion [8]. Composition is applied right-to-left to combineforma-

tion sources, with each composition step being followed &y d
terminization to reduce redundancy. The resulting op&inte-
grated transduce¥ is thus constructed in the following way:

N = 7c(det(Ty o det(Tp—1 0---det(To 0 T1) - --)))

where the tilde operator indicates that disambiguation &l
are inserted so the transducer admits determinization ssegsa
through the disambiguation symbols of prior stagiks,stands for
the weighted determinization algorithm applied in the legs-
ing andr. replaces the disambiguation symbols witiansitions.
Additionally, weighted minimization can be used to redutedize
of all (encoded) intermediate and final transducers.

Before applying the general construction just outlinede th
component transducefl, must be optimized. IdeaIIK, arbitrary
input transducerqy, could be considered. In fact, it helps to ex-
ploit the prior knowledge about these transducers to a;ﬁe!;a -
propriate optimizations in the most efficient way. As sucle w
distinguish three types of component transduceasyclic, bi-
determinizableandarbitrary and describe in detail the optimiza-
tion algorithms applied to each type.

No optimization algorithms are applied &wbitrary compo-
nent transducers. We assume that the user ensured thatrtirese
ducers are build adequately for composition, and that theltia
transducer after composition is determinizaledeterminizable
component transducers are simply determinized on thejyubut
side. No specific assumption is made aboutaaxclic compo-
nent transducer, e.g., the relative position of the input @umtput
labels, the weights, or topology of the machine. To deal witth
arbitrary transducers, we use several algorithms to opéirand
sunabéy disambiguate them, in particular the basic athots pre-
sented in the previous section. The exact sequence of g
applied are: input-normalization, determinization with symbol
insertion — to ensure determinizability after closure, niza-
tion — to optimize the positions of the output labels for camp
sition, e-removal, then determinization, minimization and weight
pushing applied to the transducer encoded as an acceptr (ea
pair of input and output labels is treated as one symbolsuckn
and reverse-removal — to create a compact representation of the
transducer. This construction is illustrated in Figure 3iehext
S.GC“%nS describe our solutions to the problems previoomn-
tioned.
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Fig. 3. (a) Acyclic weighted transducér; over the log semir-
ing. (b) Weighted transducéf, obtained fromTI} after inpute-
normalization. (c) Weighted transduc®s obtained from(’% by
determinization with symbol insertion. (d) Weighted trdnser?’
obtained fronil’z by synchronization and-removal. (e) Weighted
transducefls obtained by apPI_ying to the transducgr encoded

0

as an acceptor (each pair of input and output labels is tiezte
one symbols) determinization, minimization and weight pogh

4.1. Solutions to Composition- and Determinization-Related
Problems

Each component transducer in the composition chain is -deter
minizable: bi-determinizable components are determbiezdy
definition and the processing of acyclic transducers pteseim

the previous section ensure that their closure is detezatife.
Hence, we need to ensure (1) that the results of the intermedi
ary compositions are indeed determinizable, and (2) tleahdw
input symbols that have been inserted in the acyclic compuone
transducers do no disrupt the composition chain. To soltie ise
sues, each transducer in the composition chain is modifiethfw
each symbol out of its output alphabet to a new input symblois T
can be done by simulating at every state loops mapping eut-of
alphabet output symbols to new input symbols. Note that we ha
also presented elsewhere a general technique for dealthgnan-
determinizable transducers [1].

4.2. Solutionsto Weight-Pushing-Related Problems
4.2.1. Silence modeling

Silence tokens are typically not modeled within languagelem
They are added after the fact, most commonly as free coss labp
various states in the automata representation of the meuwieh, as
the initial, final, and unigram states. This makes the mode} n
stochastic.

One solution consists of force-aligning the training tiaipgs
to the training audio, which produces silence tokens in tae-t
script at the points that best align the transcript to théauthe
resulting annotation can be used to explicitly include stoiens
in the language model. With that approach, silences areetigast
like other words, their probabilities are conditioned bg\pous
words and they condition the probabilities of the words flo&t
low. Hand-crafted grammars, multiple pronunciations, hadd-
crafted silence models all admit to this solution. Howeteere
are several problems with this approach. First, it requarésced
alignment to be run for every model that is built, which ma
may not be possible. More importantly, silences are notitige
like words, and treating them as such can disrupt valid &de-
pendencies by placing silence tokens, which now partieijyathe
Markov chain, between words.

Non-stochasticity arises because words can be variously re

or

alized, i.e. each word can be followed by zero or more silence

€:<silence>/1.609
‘ w:w/0 a

Fig. 4. A silence class transducer

ciated with the word must be shared among these sequencas. Th
is, there is a set (or class) of sequences, each of which issi-po
ble realization of the word in the utterance. This suggestass-
based method to allow for the occurrences of silence tokelass-
based language models can be obtained by composing a languag
modelG defined on classes with a weighted transd¢erapping
classes to their members and projectin%the resull” on the out-

put [3]. In the current case, the input label of each sucaépsith

7 € T will be we* ™ and the output labeb(silence)”e for some
k > 0. If the class transducéF is pushable, and the language
modelG over classes is stochastic, the result is pushable.

Figure 4 shows one such weighted transducer over the log
semiring, with a looping silence transition with probatyilp
0.2, and with probabilityl — p of ending the silence sequence. Our
general class-based approach allows for more complexcsilser

uence modeling, but for the current approach we adoptexha-tr

ucer with the above structure, and a singlfor silences, inde-

endent ofw. This results in a model that is similar to an approach
or filled pauses advocated by [11]. The probabifitgan be esti-
mated from a forced alignment or empirically optimized.

4.2.2. Other Sources of Non-Stochasticity

This leaves two non-stochastic knowledge source typestuss:
the compact, approximate automata representation and arord
other insertion penaltiesn-gram language models can be com-
pactly encoded as finite automata b% introducing backotéstéat
are visited bye-transitions carrying the backoff weights [3]. Since
thesec-transitions are taken freely instead of only when a match at
the higher-leveh-gram fails, this approximation introduces excess
probability mass into the model due to multiple ways of matgh
(Positive) insertion penalties, on the other hand, reduobabil-

ity mass. Since it is excess probability mass on cycles tlzkes
automata unpushable, it is thegram representation that presents
the problem here. There are several solutions: (1) theri
recognition transducer can beemoved and determinized, (2) the
insertion penalties can be chosen large enough to compeftmsat
then-gram approximation, or (3) the recognition transducerzn
built without explicitly pushing it but instead construwgjiit nearl
pushed by using log semiring operations (esp. determinizat
throughout. The first gives the best results in recognitiiwre t but
can result in large transducer size incread@s: (s typical). The
second is how we built our previously published DARPA NAB and
BN tasks. The third method is, in practice, nearly as goodas t
first, but applicable even when the task’s insertion pees|tbpti-
mized for accuracy, are small.

5. EXPERIMENTAL RESULTS

The construction algorithm described has been implemested
incorporated in the DCD Library [2]. In particular, the corand-
line utility dmake can be used to build optimized transducers. For
instance, the following command can be used to build an opti-
mized integrated recognition transduterl g. f smmapping se-
guences of HMM states to word sequences from a language model
g. f sm alexicon transducér. f sm a context-dependency trans-
ucerc. f sm and the HMM state-level transduder f sm

dmeke -a h.fsm-b c.fsm-a |l.fsm-b g.fsm>hclg.fsm

The- b flag declares the arguments f smand]g. f smto be bi-
determinizable, and thea flag indicates thal. f smandl . f sm

are acyclic and need to be d|samb|5]uated, closed and made de-
terminizable as previously describedmake can be used simi-
larly with class-based language models. The following camen
constructs an o‘ptlmlzed integrated transducer with a dassd
language model:

tokens. To make the model stochastic, the probability mess-a dmake -ah.fsm-bc.fsm-al.fsm-pa tc.fsm-bgc. fsnehcl g. fsm
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wheret c. f smis an acyclic weighted transducer mapping word without disrupting the lexical dependencies leads to amasgtic

sequences to classes . f sma language model defined on
classes. Thep flags indicates that the result of the composition
of t c. f smandgc. f smmust be projected on the input before
composition withc. f sm

We used thelmake utility to build optimized integrated trans-
ducers for two large-vocabulary speech recognition tadktiHY
0300, and a AT&T VoiceTone spoken-dialog
share the same acoustic model consisting of 9,219 distini¥IH
states each associated to a four-Gaussian mixture modethan
same triphonic context-dependency model with 2,641 statels
551,969 transitions. The language models were trigram Katz
backoff models shrunk with a threshold of 0 using the method
of Seymore-Rosenfeld [13], built with the utilities of theRGI
Library [4]. All our recognition experiments were done usin
dr ecog, a general-purpose one-pass Viterbi decoder [2], on a
single processor of an Intel Pentium Il 1GHz linux clustathw
256KB of cache and 2GB of memory.

Figure 5(a) gives recognition accuracy as a function ofgeco
nition time for the 4,600-word vocabulary HMIHY 0300 taskier
accuracy achieved at .6 times real-time by the transdudenized
at the lexicon level is achieved at .36 times real-time bydpe
timized transducer at the HMM-state level with the new siken
model described in section 4.2, the probability mass resefor
the silences at every state of the language model ifig This
represents a speed-up b. The use of the silence model also
leads to an asymptotic improvement of the word accuracl.
absolute value.

The results obtained in a 5,400-word vocabulary task of an
AT&T VoiceTone task are reported in Figure 5(b) when using
word-based language model is used, and in Figure 5(c) when a
class-based model is used. In the case of a word-based Gagua
model, the accuracy achieved .dttimes real time by the trans-
ducer optimized at the lexicon level is achieved2&t times real-
time by the optimized transducer at the HMM-state level il
new silence model, that 8 times faster. In the case of a class-
based models, the accuracy achievedtatiimes real time by the
transducer optimized at the lexicon level is achieve®&ttimes
real-time by the optimized transducer at the HMM-statellexith
the new silence model, that i1s7 times faster. In both cases, the
probability mass reserved for the silences at every stateedin-
guage model i30%. The asymptotic improvement of the accuracy

ue to the use of the silence model is even more importantftiian
the previous task: slightly ove2% in both cases. Note that the
performance of the word-based Iangf( age model is betterthizdn
of the class-based model in this task. However, class-based

els seem to lead to a better performance in some spokergdialo [

classification systems, which motivated our experiments.

These results show two effects of the stochastic silence mod
eling technique described earlier. First, the fact that uage
model is stochastic allows us to take the full benefit of our-op
mization algorithm, which leads to a substantial speed aver
ment (an HMM-state level optimized transducer with a stathda
language model would only have been only marginally more effi
cient than a lexicon-level optimized transducer). Secémel fact
that the new modeling technique allows the emission of sden

(11]
(12]
(13]

increase of the word accuracy.

6. CONCLUSION

General techniques were presented for the design of effieigye-
task. The tasks Vvocabulary speech recognition transducers. The efficiendye
resulting transducers was demonstrated by experiments/éra
tasks with both word-based and class-based statisticguéae
models. These techniques are incorporated in a generatieleco
library available for download for non-commercial use [2].
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