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Abstract

In many applications, good ranking is a highly desirable performance for
a classifier. The criterion commonly used to measure the ranking quality
of a classification algorithm is the area under the ROC curve (AUC). To
report it properly, it is crucial to determine an interval ofconfidence for
its value. This paper provides confidence intervals for the AUC based
on a statistical and combinatorial analysis using only simple parameters
such as the error rate and the number of positive and negativeexamples.
The analysis is distribution-independent, it makes no assumption about
the distribution of the scores of negative or positive examples. The results
are of practical use and can be viewed as the equivalent for AUC of the
standard confidence intervals given in the case of the error rate. They
are compared with previous approaches in several standard classification
tasks demonstrating the benefits of our analysis.

1 Motivation

In many machine learning applications, the ranking qualityof a classifier is critical. For
example, the ordering of the list of relevant documents returned by a search engine or
a document classification system is essential. The criterion widely used to measure the
ranking quality of a classification algorithm is the area under an ROC curve (AUC). But, to
measure and report the AUC properly, it is crucial to determine an interval of confidence
for its value as it is customary for the error rate and other measures. It is also important to
make the computation of the confidence interval practical byrelying only on a small and
simple number of parameters. In the case of the error rate, such intervals are often derived
from just the sample sizeN .

We present an extensive theoretical analysis of the AUC and show that a similar confidence
interval can be derived for its value using only simple parameters such as the error ratek/N ,
the number of positive examplesm, and the number of negative examplesn = N − m.
Thus, our results extend to AUC the computation of confidenceintervals from a small
number of readily available parameters.

Our analysis is distribution-independent in the sense thatit makes no assumption about the
distribution of the scores of negative or positive examples. The use of the error rate helps
determine tight confidence intervals. This contrasts with existing approaches presented in



the statistical literature [11, 5, 2] which are based eitheron weak distribution-independent
assumptions resulting in too loose confidence intervals, orstrong distribution-dependent
assumptions leading to tight but unsafe confidence intervals.

We show that our results are of practical use. We also comparethem with previous ap-
proaches in several standard classification tasks demonstrating the benefits of our analysis.
Our results are also useful for testing the statistical significance of the difference of the
AUC values of two classifiers.

The paper is organized as follows. We first introduce the definition of the AUC, its con-
nection with the Wilcoxon-Mann-Whitney statistic (Section 2), and briefly review some
essential aspects of the existing literature related to thecomputation of confidence intervals
for the AUC. Our computation of the expected value and variance of the AUC for a fixed
error rate requires establishing several combinatorial identities. Section 4 presents some
existing identities and gives the proof of novel ones usefulfor the computation of the vari-
ance. Section 5 gives the reduced expressions for the expected value and variance of the
AUC for a fixed error rate. These can be efficiently computed and used to determine our
confidence intervals for the AUC (Section 6). Section 7 reports the result of the comparison
of our method with previous approaches, including empirical results for several standard
tasks.

2 Definition and Properties of the AUC

TheReceiver Operating Characteristics(ROC) curves were originally introduced in signal
detection theory [6] in connection with the study of radio signals, and have been used
since then in many other applications, in particular for medical decision-making. Over the
last few years, they have found increased interest in the machine learning and data mining
communities for model evaluation and selection [14, 13, 7, 12, 16, 3]. The ROC curve for
a binary classification problem plots the true positive rateas a function of the false positive
rate. The points of the curve are obtained by sweeping the classification threshold from the
most positive classification value to the most negative. Fora fully random classification,
the ROC curve is a straight line connecting the origin to(1, 1). Any improvement over
random classification results in an ROC curve at least partially above this straight line. The
AUC is defined as the area under the ROC curve.

Consider a binary classification task withm positive examples andn negative examples.
Let C be a fixed classifier that outputs a strictly ordered list for these examples. Let
x1, . . . , xm be the output ofC on the positive examples andy1, . . . , yn its output on the
negative examples and denote by1X the indicator function of a setX . Then, the AUC, A,
associated toC is given by:

A =

∑m
i=1

∑n
j=1 1xi>yj

mn
(1)

which is the value of theWilcoxon-Mann-Whitney statistic[10]. Thus, the AUC is closely
related to the ranking quality of the classification. It can be viewed as a measure based on
pairwise comparisons between classifications of the two classes. It is an estimate of the
probabilityPxy that the classifier ranks a randomly chosen positive examplehigher than
a negative example. With a perfect ranking, all positive examples are ranked higher than
the negative ones andA = 1. Any deviation from this ranking decreases the AUC, and the
expected AUC value for a random ranking is 0.5.



3 Overview of Related Work

This section briefly describes some previous distribution-dependent approaches presented
in the statistical literature to derive confidence intervals for the AUC and compares them
to our method. The starting point for these analyses is a formula giving the variance of the
AUC, A, for a fixed distribution of the scoresPx of the positive examples andPy of the
negative examples [10, 1]:

σ2
A =

A(1 − A) + (m − 1)(Pxxy − A2) + (n − 1)(Pxyy − A2)

mn
(2)

wherePxxy is the probability that the classifier ranks two randomly chosen positive exam-
ples higher than a negative one, andPxyy the probability that it ranks two randomly chosen
negative examples lower than a positive one. To compute the variance exactly using Equa-
tion 2, the distributionsPx andPy must be known.

Hanley and McNeil [10] argue in favor of exponential distributions, loosely claiming that
this upper-bounds the variance of normal distributions with various means and ratios of
variances. They show that for exponential distributionsPxxy = A

2−A
andPxyy = 2A2

1+A
.

The resulting confidence intervals are of course relativelytight, but their validity is ques-
tionable since they are based on a strong assumption about the distributions of the positive
and negative scores that may not hold in many cases.

An alternative considered by several authors to the exact computation of the variance is to
determine instead the maximum of the variance over all possible continuous distributions
with the same expected value of the AUC. For all such distributions, one can fixm and
n and compute the expected AUC and its variance. The maximum variance is denoted by
σ2

max and is given by [5, 2]:

σ2
max =

A(1 − A)

min {m, n} ≤ 1

4 min {m, n} (3)

Unfortunately, this often yields loose confidence intervals of limited practical use.

Our approach for computing the mean and variance of the AUC isdistribution-independent
and inspired by the machine learning literature where analyses typically center on the error
rate. We require only that the error rate be measured and compute the mean and variance of
the AUC over all distributionsPx andPy that maintain the same error rate. Our approach
is in line with that of [5, 2] but it crucially avoids considering the maximum of the vari-
ance. We show that it is possible to compute directly the meanand variance of the AUC
assigning equal weight to all the possible distributions. Of course, one could argue that not
all distributionsPx andPy are equally probable, but since these distributions are highly
problem-dependent, we find it risky to make any general assumption on the distributions
and thereby limit the validity of our results. Our approach is further justified empirically
by the experiments reported in the last section.

4 Combinatorial Analysis

The analysis of the statistical properties of the AUC given afixed error rate requires various
combinatorial calculations. This section describes several of the combinatorial identities
that are used in our computation of the confidence intervals.For all q ≥ 0, let Xq(k, m, n)
be defined by:

Xq(k, m, n) =

k
∑

x=0

xq

(

M

x

)(

M ′

x′

)

(4)



whereM = m− (k − x) + x, M ′ = n + (k − x) − x, andx′ = k − x. In previous work,
we derived the following two identities which we used to compute the expected value of
the AUC [4]:

X0(k, m, n) =

k
∑

x=0

(

n + m + 1

x

)

X1(k, m, n) =

k
∑

x=0

(k − x)(m − n) + k

2

(

n + m + 1

x

)

To simplify the expression of the variance of the AUC, we needto computeX2(k, m, n).

Proposition 1 Letk, m, n be non-negative integers such thatk ≤ min{m, n}, then:

X2(k, m, n) =

k
∑

x=0

P2(k, m, n, x)

(

m + n + 1

x

)

(5)

whereP2 is the following 4th-degree polynomial:P2(k, m, n, x) = (k − x)/12(−2x3 +
2x2(2m − n + 2k − 4) + x(−3m2 + 3nm + 3m − 5km − 2k2 + 2 + k + nk + 6n) +
(3(k − 1)m2 − 3nm(k − 1) + 6km + 5m + k2m + 8n + 8 − 9nk + 3k + k2 + k2n)).

Proof. The computation ofX2 is based on a recurrence relation givingX2 in func-
tion of X0 andX1. Using the absorption identity commonly used in combinatorics [9],
X2(k, m, n) can be rewritten as:

∑k

x=0 x2
(

M
x

)(

M ′

x′

)

=
∑k

x=1 Mx
(

M−1
x−1

)(

M ′

x′

)

, which, af-
ter the change of variablex → x − 1 and the substitutions of the expressions forM and
M ′, leads to

k−1
X

x=0

(m − k + 2x + 2)(x + 1)

 

m − (k − 1) + 2x

x

! 

n + (k − 1) − 2x − 1

(k − 1) − x

!

(6)

The second-degree polynomial in this expression can be expanded as:

(m − k + 2x + 2)(x + 1) = 2x2 + (m − k + 4)x + (m − k + 2)

Thus, we have the following recurrence relation:

X2(k, m, n) = 2X2(k−1, m, n−1)+(m−k+4)X1(k−1, m,n−1)+(m−k+2)X0(k, m, n−1)

Unwrapping the recurrence and usingX2(0, m, n) = 0 for all m andn yield:

X2(k, m, n) =
k
X

i=1

2i−1[(m−k+3+ i)X1(k− i,m, n− i)+(m−k+ i+1)X0(k− i, m,n− i)]

X0 andX1 are both given as a sum. Thus, determiningX2 requires the calculation of two
double sums that can be treated in the following way (case ofX0):
k
X

i=1

2i−1(m − k + i + 1)
k−i
X

x=0

 

m + n − i + 1

x

!

=
k
X

i=1

2i−1(m − k + i + 1)
k
X

x=i

 

m + n − i + 1

x − i

!

=
X

1≤i≤x≤k

2i−1(m − k + i + 1)

 

m + n − i + 1

x − i

!

The new expression forX2 becomes:

X2(k, m,n)=
k
X

x=1

x
X

i=1

[
m − k + i + 3

2
((k−x)(m−n+i)+(k−i+2))−2]

 

m + n − i + 1

x − i

!

(7)

which requires the computation of terms of the type:
∑x

i=1 iq2i−1
(

m+n−i+1
x−i

)

, for q =

0, 1, 2, or, after the change of variablei → x − i, of the following terms:Yq(k, m, n, x) =
∑x−1

j=0 jq2x−j−1
(

m+n+1−x+j
j

)

, for q = 0, 1, 2. Equation 7, combined with the identities
of the following Lemma 1 and the change of variablej → j + 1 lead to Equation 5.



Lemma 1 The following identities hold forYq(k, m, n, x), q = 0, 1, 2:

• Y0(k, m, n, x) =
∑x−1

j=0

(

m+n+1
j

)

• Y1(k, m, n, x) =
∑x−1

j=0 (2j − (x − 1))
(

m+n+1
j

)

• Y2(k, m, n, x) =
∑x−1

j=0 (4j2 − (4x − 6)j + (x − 1)(x − 3))
(

m+n+1
j

)

Proof. Using the upper negation identity [9],

Y0(k, m, n, x) =

x−1
∑

j=0

2(x−1)−j

(

(x − 1) − m − n − 1

j

)

(8)

Given this expression, the first statement of the lemma follows from the application of the
identity related to partial sums of binomial series [9, p. 166]. The two other statements of
the lemma are proved similarly using the upper negation identity and that of the partial sum
of binomial series.

5 Expectation and Variance of the AUC

This section presents the expression of the expectation andvariance of the AUC for a fixed
error ratek/N assuming that all classifications or rankings withk errors are equiprobable.
For a given classification, there may bex, 0 ≤ x ≤ k, false positive examples. Since the
number of errors is fixed, there arex′ = k−x false negative examples. The expressionXq

discussed in the previous section represents theq-th moment ofx over all classifications
with exactlyk errors. In previous work, we gave the exact expression of theexpectation of
the AUC for a fixed number of errorsk:

Proposition 2 ([4]) Assume that a binary classification task withm positive examples
and n negative examples is given. Then, the expected value of the AUC, A, over all
classifications withk errors is given by:

E[A] = 1 − k

m + n
− (n − m)2(m + n + 1)

4mn

(

k

m + n
−

∑k−1
x=0

(

m+n
x

)

∑k

x=0

(

m+n+1
x

)

)

.

Note that the two sums in this expression cannot be further simplified since they are known
not to admit a closed form [9]. We also gave the expression of the variance of the AUC in
terms of the functionF defined for allY by:

F (Y ) =

∑k

x=0

(

M
x

)(

M ′

x′

)

Y
∑k

x=0

(

M
x

)(

M ′

x′

)
. (9)

The following proposition reproduces that result:

Proposition 3 ([4]) Assume that a binary classification task withm positive examples
and n negative examples is given. Then, the variance of the AUCA over all classifica-

tions with k errors is given by:σ2(A) = F ((1 −
x
n + k−x

m

2 )2) − F ((1 −
x
n + k−x

m

2 ))2 +

F (mx2+n(k−x)2+(m(m+1)x+n(n+1)(k−x))−2x(k−x)(m+n+1)
12m2n2 ).

Because of the products of binomial terms, the computation of the variance using this
expression is inefficient even for relatively small values of m andn. This expression can
however be reduced using the identities presented in the previous section which leads to
significantly more efficient computations that we have been using in all our experiments.



Corollary 1 ([4]) Assume that a binary classification task withm positive examples andn
negative examples is given. Then, the variance of the AUCA over all classifications with
k errors is given by:σ2(A) = (m+n+1)(m+n)(m+n−1)T ((m+n−2)Z4−(2m−n+3k−10)Z3)

72m2n2 +
(m+n+1)(m+n)T (m2−nm+3km−5m+2k2−nk+12−9k)Z2

48m2n2 − (m+n+1)2(m−n)4Z2
1

16m2n2 −
(m+n+1)Q1Z1

72m2n2 + kQ0

144m2n2 with:

Zi =
Pk−i

x=0 (m+n+1−i
x )

Pk
x=0 (m+n+1

x )
, T = 3((m − n)2 + m + n) + 2, and:

Q0 = (m + n + 1)Tk2 + ((−3n2 + 3mn + 3m + 1)T − 12(3mn + m + n) − 8)k + (−3m2 +
7m + 10n + 3nm + 10)T − 4(3mn + m + n + 1)

Q1 = Tk3 + 3(m − 1)Tk2 + ((−3n2 + 3mn − 3m + 8)T − 6(6mn + m + n))k + (−3m2 +
7(m + n) + 3mn)T − 2(6mn + m + n)

Proof. The expression of the variance given in Proposition 3 requires the computation
of Xq(k, m, n), q = 0, 1, 2. Using the identities giving the expressions ofX0 andX1 and
Proposition 1, which provides the expression ofX2, σ2(A) can be reduced to the expression
given by the corollary.

6 Theory and Analysis

Our estimate of the confidence interval for the AUC is based ona simple and natural as-
sumption. The main idea for its computation is the following. Assume that a confidence
intervalE = [e1, e2] is given for the error rate of a classifierC over a sampleS, with the
confidence level1− ε. This interval may have have been derived from a binomial model of
C, which is a standard assumption for determining a confidenceinterval for the error rate,
or from any other model used to compute that interval. For a given error ratee ∈ E, or
equivalently for a given number of misclassifications, we can use the expectation and vari-
ance computed in the previous section and Chebyshev’s inequality to predict a confidence
intervalAe for the AUC at the confidence level1 − ε′. Since our equiprobable model for
the classifications is independent of the model used to compute the interval of confidence
for the error rate, we can useE andAe, e ∈ E, to compute a confidence interval of the
AUC at the level(1 − ε)(1 − ε′).

Theorem 1 Let C be a binary classifier and letS be a data sample of sizeN with m
positive examples andn negative examples,N = m + n. LetE = [e1, e2] be a confidence
interval for the error rate ofC over S at the confidence level1 − ε. Then, for anyε′,
0 ≤ ε′ ≤ 1, we can compute a confidence interval for the AUC value of the classifierC at
the confidence level(1 − ε)(1 − ε′) that depends only onε, ε′, m, n, and the intervalE.

Proof. Let k1 =Ne1 andk2 =Ne2 be the number of errors associated to the error rates
e1 ande2, and letIK be the intervalIK = [k1, k2]. For a fixedk ∈ IK , by Propositions
2 and Corollary 1, we can compute the exact value of the expectationE[Ak] and variance
σ2(Ak) of the AUCAk. Using Chebyshev’s inequality, for anyk ∈ IK and anyεk > 0,

P

(

|Ak − E[Ak]| ≥ σ(Ak)√
εk

)

≤ εk (10)

whereE[Ak] andσ(Ak) are the expressions given in Propositions 2 and Corollary 1,which
depend only onk, m, andn. Let α1 andα2 be defined by:

α1 = min
k∈IK

{

E[Ak] − σ(Ak)√
εk

}

α2 = max
k∈IK

{

E[Ak] +
σ(Ak)√

εk

}

(11)
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Figure 1:Comparison of the standard deviations for three different methods with: (a)m = n = 500;
(b) m = 400 andn = 200. The curves are obtained by computing the expected AUC and its standard
deviations for different values of the error rate using the maximum-variance approach (Eq. 3), our
distribution-independent method, and the distribution-dependent approach of Hanley [10].

α1 andα2 only depend onIK (i.e., one1 ande2), and onk, m, andn. Let IA be the
confidence interval defined byIA = [α1, α2] and letεk = ε′ for all k ∈ IK . Using the
fact that the confidence intervalE is independent of our equiprobability model for fixed-k
AUC values and the Bayes’ rule:

P(A ∈ IA) =
∑

k∈R+

P (A ∈ IA | K = k)P (K = k) (12)

≥
∑

k∈IK

P (A ∈ IA | K = k)P (K = k) (13)

≥ (1 − ε′)
∑

k∈IK

P (K = k) ≥ (1 − ε′)(1 − ε) (14)

where we used the property of Eq. 10 and the definitions of the intervalsIK andIA. Thus,
IA constitutes a confidence interval for the AUC value ofC at the confidence level(1 −
ε)(1 − ε′).
In practice, the confidence intervalE is often determined as a result of the assumption that
C follows a binomial law. This leads to the following theorem.

Theorem 2 LetC be a binary classifier, letS be a data sample of sizeN with m positive
examples andn negative examples,N = m+n, and letk0 be the number of misclassifica-
tions ofC onS. Assume thatC follows a binomial law, then, for anyε, 0 ≤ ε ≤ 1, we can
compute a confidence interval of the AUC value of the classifier C at the confidence level
1 − ε that depends only onε, k0, m, andn.

Proof. Assume thatC follows a binomial law with coefficientp. Then, Chebyshev’s
inequality yields:

P(|C − E[C]| ≥ η) ≤ p(1 − p)

Nη2
≤ 1

4Nη2
(15)

Thus,E = [k0

N
− 1

2
√

(1−
√

1−ε)N
, k0

N
+ 1

2
√

(1−
√

1−ε)N
] forms a confidence interval for the

error rate ofC at the confidence level
√

1 − ε. By Theorem 1, we can compute for the
AUC value a confidence interval at the level(1− (1−

√
1 − ε))(1− (1−

√
1 − ε)) = 1− ε

depending only onε, m, n, and the intervalE, i.e.,k0, N = m + n, andε.
For largeN , we can use the normal approximation of the binomial law to determine a finer
intervalE. Indeed, for largeN ,

P(|C − E[C]| ≥ η) ≤ 2Φ(2
√

Nη) (16)



NAME m + n n
m+n

AUC k
m+n

σindep σA σdep σmax

pima 368 0.63 0.70 0.24 0.0297 0.0440 0.0269 0.0392
yeast 700 0.67 0.63 0.26 0.0277 0.0330 0.0215 0.0317
credit 303 0.54 0.87 0.13 0.0176 0.0309 0.0202 0.0281
internet-ads 1159 0.17 0.85 0.05 0.0177 0.0161 0.0176 0.0253
page-blocks 2473 0.10 0.84 0.03 0.0164 0.0088 0.0161 0.0234
ionosphere 201 0.37 0.85 0.13 0.0271 0.0463 0.0306 0.0417

Table 1:Accuracy and AUC values for AdaBoost [8] and estimated standard deviations for several
datasets from the UC Irvine repository.σindep is a distribution-independent standard deviation ob-
tained using our method (Theorem 2).σA is given by Eq. (2) with the values ofA, Pxxy , andPxyy

derived from data.σdep is the distribution-dependent standard deviation of Hanley [10], which is
based on assumptions that may not always hold.σmax is defined by Eq. (3). All results were obtained
on a randomly selected test set of sizem + n.

with Φ(u) =
∫∞

u
e−x2/2

√
2π

dx. Thus,E = [k0

N
− Φ−1( 1−

√
1−ε

2
)

2
√

N
, k0

N
+

Φ−1( 1−
√

1−ε
2

)

2
√

N
] is the

confidence interval for the error rate at the confidence level
√

1 − ε.

For simplicity, in the proof of Theorem 2,εk was chosen to be a constant (εk = ε′) but, in
general, it can be another function ofk leading to tighter confidence intervals. The results
presented in the next section were obtained withεk = a0 exp((k − k0)

2/2a2
1), wherea0

anda1 are constants selected so that the inequality 14 be verified.

7 Experiments and Comparisons

The analysis in the previous section provides a principled method for computing a confi-
dence interval of the AUC value of a classierC at the confidence level1 − ε that depends
only onk, n andm. As already discussed, other expressions found in the statistical liter-
ature lead to either too loose or unsafely narrow confidence intervals based on question-
able assumptions on the probability functionsPx andPy [10, 15]. Figure 1 shows a
comparison of the standard deviations obtained using the maximum-approach (Eq. 3), the
distribution-dependent expression from [10], and our distribution-independent method for
various error rates. Form = n = 500, our distribution-independent method consistently
leads to tighter confidence intervals (Fig. 1 (a)). It also leads to tighter confidence inter-
vals for AUC values more than.75 for the uneven distributionm = 400 andn = 200
(Fig. 1 (b)). For lower AUC values, the distribution-dependent approach produces tighter
intervals, but its underlying assumptions may not hold.

A different comparison was made using several datasets available from the UC Irvine repos-
itory (Table 1). The table shows that our estimates of the standard deviations (σindep) are in
general close to or tighter than the distribution-dependent standard deviationσdep of Hanley
[10]. This is despite we do not make any assumption about the distributions of positive
and negative examples. In contrast, Hanley’s method is based on specific assumptions
about these distributions. Plots of the actual ranking distribution demonstrate that these
assumptions are often violated however. Thus, the relatively good performance of Han-
ley’s approach on several data sets can be viewed as fortuitous and is not general. Our
distribution-independent method provides tight confidence intervals, in some cases tighter
than those derived fromσA, in particular because it exploits the information provided by
the error rate. Our analysis can also be used to determine if the AUC values produced by



two classifiers are statistically significant by checking ifthe AUC value of one falls within
the confidence interval of the other.

8 Conclusion

We presented principled techniques for computing useful confidence intervals for the AUC
from simple parameters: the error rate, and the negative andpositive sample sizes. We
demonstrated the practicality of these confidence intervals by comparing them to previous
approaches in several tasks. We also derived the exact expression of the variance of the
AUC for a fixedk, which can be of interest in other analyses related to the AUC.

The Wilcoxon-Mann-Whitney statistic is a general measure of the quality of a ranking that
is an estimate of the probability that the classifier ranks a randomly chosen positive ex-
ample higher than a negative example. One could argue that accuracy at the top or the
bottom of the ranking is of higher importance. This, however, contrarily to some belief,
is already captured to a certain degree by the definition of the Wilcoxon-Mann-Whitney
statistic which penalizesmoreerrors at the top or the bottom of the ranking. It is how-
ever an interesting research problem to determine how to incorporate this bias in a stricter
way in the form of a score-specific weight in the ranking measure, a weighted Wilcoxon-
Mann-Whitney statistic, or how to compute the corresponding expected value and standard
deviation in a general way and design machine learning algorithms to optimize such a mea-
sure. A preliminary analysis suggests, however, that the calculation of the expectation and
the variance are likely to be extremely complex in that case.Finally, it could also be in-
teresting but difficult to adapt our results to the distribution-dependent case and compare
them to those of [10].
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