199

CHAPTER 4
Statistical Natural Language
Processing
4.0 Introduction 199
4.1 Preliminaries e 200
4.2 Algorithms 201
421 Composition oL 201
4.2.2 Determinization 0L 206
4.2.3 Weight pushing 209
4.2.4 Minimization 0oL 211
4.3 Application to speech recognition 213
4.3.1 Statistical formulation 214
4.3.2 Statistical grammar 215
4.3.3 Pronunciation model, 217
4.3.4 Context-dependency transduction 218
4.3.5 Acousticmodel L. 219
4.3.6 Combination and search 220
4.3.7 Optimizations 222
Notes o o e 225

4.0. Introduction

The application of statistical methods to natural language processing has been
remarkably successful over the past two decades. The wide availability of text
and speech corpora has played a critical role in their success since, as for all
learning techniques, these methods heavily rely on data. Many of the compo-
nents of complex natural language processing systems, e.g., text normalizers,
morphological or phonological analyzers, part-of-speech taggers, grammars or
language models, pronunciation models, context-dependency models, acoustic
Hidden-Markov Models (HMMs), are statistical models derived from large data
sets using modern learning techniques. These models are often given as weighted
automata or weighted finite-state transducers either directly or as a result of the
approximation of more complex models.

Weighted automata and transducers are the finite automata and finite-state

Version June 23, 2004

200 Statistical Natural Language Processing

SEMIRING _ || SET | & |®] 0 |T
Boolean {0,1} vV o [A] 0 |1
Probability R4 + X 0 1
Log RU{—00,+00} | Biog | + | +o0 | O
Tropical RU{—00,+00} | min | + | +o0 | 0

Table 4.1. Semiring examples. Biog is defined by: x Biog y = —log(e™ +e7Y).

transducers described in Chapter 1 Section 1.5 with the addition of some weight
to each transition. Thus, weighted finite-state transducers are automata in
which each transition, in addition to its usual input label, is augmented with
an output label from a possibly different alphabet, and carries some weight. The
weights may correspond to probabilities or log-likelihoods or they may be some
other costs used to rank alternatives. More generally, as we shall see in the next
section, they are elements of a semiring set. Transducers can be used to define
a mapping between two different types of information sources, e.g., word and
phoneme sequences. The weights are crucial to model the uncertainty of such
mappings. Weighted transducers can be used for example to assign different
pronunciations to the same word but with different ranks or probabilities.

Novel algorithms are needed to combine and optimize large statistical models
represented as weighted automata or transducers. This chapter reviews several
recent weighted transducer algorithms, including composition of weighted trans-
ducers, determinization of weighted automata and minimization of weighted
automata, which play a crucial role in the construction of modern statistical
natural language processing systems. It also outlines their use in the design
of modern real-time speech recognition systems. It discusses and illustrates
the representation by weighted automata and transducers of the components of
these systems, and describes the use of these algorithms for combining, search-
ing, and optimizing large component transducers of several million transitions
for creating real-time speech recognition systems.

4.1. Preliminaries

This section introduces the definitions and notation used in the following.

A system (K, ®,®,0,1) is a semiring if (K,®,0) is a commutative monoid
with identity element 0, (K,®,1) is a monoid with identity element 1, ® dis-
tributes over @, and 0 is an annihilator for ®: foralla € K,a®0=0® a = 0.
Thus, a semiring is a ring that may lack negation. Table 4.1 lists some familiar
semirings. In addition to the Boolean semiring, and the probability semiring
used to combine probabilities, two semirings often used in text and speech pro-
cessing applications are the log semiring which is isomorphic to the probability
semiring via the negative-log morphism, and the tropical semiring which is de-
rived from the log semiring using the Viterbi approzimation. A left semiring is
a system that verifies all the axioms of a semiring except from the right ditribu-
tivity. In the following definitions, K will be used to denote a left semiring or a

Version June 23, 2004

4.2. Algorithms 201

semiring.

A semiring is said to be commutative when the multiplicative operation ®
is commutative. It is said to be left divisible if for any = # 0, there exists
y € K such that y ® o = 1, that is if all elements of K admit a left inverse.
(K, ®,®,0,1) is said to be weakly left divisible if for any x and y in K such that
r®y # 0, there exists at least one z such that r = (r®y) ® 2. The ®-operation
is cancellative if z is unique and we can write: z = (z @ y)~!'z. When 2 is not
unique, we can still assume that we have an algorithm to find one of the possible
z and call it (z @ y)~'z. Furthermore, we will assume that z can be found in
a consistent way, that is: (u®) ® (u®y)) Hu®) = (r ®y) ‘o for any
x,y,u € K such that u # 0. A semiring is zero-sum-free if for any and y in K,
@y =0 implies x = y = 0.

A weighted finite-state transducer ¥ over a semiring K is an 8-tuple ¥ =
(A,B,Q,I,F E,)\ p) where: A is the finite input alphabet of the transducer; B
is the finite output alphabet; @ is a finite set of states; I C @ the set of initial
states; F' C @ the set of final states; E C Q x (AU{e}) x (BU{e}) xKx Q a finite
set of transitions; A : I — K the initial weight function; and p : F' — K the final
weight function mapping F to K. E[q] denotes the set of transitions leaving a
state ¢ € Q. |Z| denotes the sum of the number of states and transitions of ¥.

Weighted automata are defined in a similar way by simply omitting the input
or output labels. Let IT; (%) (II3(%)) denote the weighted automaton obtained
from a weighted transducer ¥ by omitting the input (resp. output) labels of ¥.

Given a transition e € E, let p[e] denote its origin or previous state, n|e]
its destination state or next state, i[e] its input label, o[e] its output label,
and wle] its weight. A path m = ey --- ey, is an element of E* with consecutive
transitions: nle;—1] = plei], ¢ = 2,...,k. n, p, and w can be extended to
paths by setting: n[r] = nlex] and p[r] = ple1] and by defining the weight of
a path as the ®-product of the weights of its constituent transitions: wr| =
wlel] ® -+ - @ wleg]. More generally, w is extended to any finite set of paths R
by setting: w[R] = @, . w[r]. Let P(q,q') denote the set of paths from ¢ to
¢ and P(q,z,y,q’) the set of paths from ¢ to ¢’ with input label x € A* and
output label y € B*. These definitions can be extended to subsets R, R’ C Q,
by: P(R,x,y,R') = Uger, ger P(q,2,y,¢"). A transducer ¥ is regulated if the
weight associated by ¥ to any pair of input-output string (z,y) given by:

[Fl@y)= @ Al @ wr) @ plnx]] (4.1.1)

neP(I,z,y,F)
is well-defined and in K. [T](z,y) = 0 when P(I,z,y,F) = . In particular,

when it does not have any e-cycle, ¥ is always regulated.

4.2. Algorithms

4.2.1. Composition

Composition is a fundamental algorithm used to create complex weighted trans-
ducers from simpler ones. It is a generalization of the composition algorithm

Version June 23, 2004

202 Statistical Natural Language Processing

presented in Chapter 1 Section 1.5 for unweighted finite-state transducers. Let
K be a commutative semiring and let ¥; and ¥y be two weighted transducers
defined over K such that the input alphabet of %5 coincides with the output al-
phabet of T;. Assume that the infinite sum @, %1 (x, 2)®%2(z,y) is well-defined
and in K for all (z,y) € A* xC*. This condition holds for all transducers defined
over a closed semiring such as the Boolean semiring and the tropical semiring
and for all acyclic transducers defined over an arbitrary semiring. Then, the
result of the composition of ¥; and T5 is a weighted transducer denoted by
%1 0%, and defined for all z,y by:

[T10%](x,y) = QB Ti(z,2) ® Ta(z,y) (4.2.1)

Note that we use a matriz notation for the definition of composition as opposed
to a functional notation. There exists a general and efficient composition al-
gorithm for weighted transducers. States in the composition T; o T of two
weighted transducers ¥; and %5 are identified with pairs of a state of ¥; and
a state of To. Leaving aside transitions with € inputs or outputs, the following
rule specifies how to compute a transition of ¥;0%5 from appropriate transitions
of ¥1 and Ts:

(‘hv a, bv wy, QQ) and (qllv ba ¢, W2, ql2) = ((Q1a qll)v a, c, w1 @ wa, (qu qg)) (422)

The following is the pseudocode of the algorithm in the e-free case.

WEIGHTED-COMPOSITION(%1, %5)

1 Q — Il X IQ
2 S« Il X Ig
3 while S # () do
4 (q1,42) — HBAD(S)
5 DEQUEUE(S)
6 if (q1,q2) € I; x I, then
7 I —TU{(q1,q)}
8 a1, q2) — Ai(q1) ® Aa(q2)
9 if (ql,qg) € I x Fy then
10 F—FU{(q1,9)}
11 p(a1,q2) < p1(q1) ® p2(q2)
12 for each (e1,e2) € E[q1] X F[gz] such that ole;] = i[e2] do
13 if (nle1],nles]) € Q then
14 Q — QU{(n[e] nle2])}
15 ENQUEUE(S, (n[e1], nlea]))
16 E — EU{((q1,42),i[er], ofez], wlea] @ wlea], (nfea], ne2]))}
17 return ¥

The algorithm takes as input ¥, = (A,B,Q1,11, F1,E1,\1,p1) and T, =
(B,C,Q2, Iz, F5, Ea, A2, p2), two weighted transducers, and outputs a weighted

Version June 23, 2004

4.2. Algorithms 203

a:a/0.6

0.0) azb/.01 (1,1)I b:a/.06 @ aa/.l 3.1) azb/.24 @

()

Figure 4.1. (a) Weighted transducer ¥; over the probabilityl semiring.
(b) Weighted transducer T2 over the probability semiring. (c¢) Composi-
tion of ¥; and T2. Initial states are represented by an incoming arrow,
final states with an outgoing arrow. Inside each circle, the first number
indicates the state number, the second, at final states only, the value of
the final weight function p at that state. Arrows represent transitions and
are labeled with symbols followed by their corresponding weight.

transducer ¥ = (A,C,Q, I, F, E, \, p) realizing the composition of ¥, and ¥,.
FE, I, and F are all assumed to be initialized to the empty set.

The algorithm uses a queue S containing the set of pairs of states yet to
be examined. The queue discipline of S can be arbitrarily chosen and does
not affect the termination of the algorithm. The set of states) is originally
reduced to the set of pairs of the initial states of the original transducers and S
is initialized to the same (lines 1-2). Each time through the loop of lines 3-16, a
new pair of states (qi, ¢2) is extracted from S (lines 4-5). The initial weight of
(g1, q2) is computed by ®-multiplying the initial weights of ¢; and g2 when they
are both initial states (lines 6-8). Similar steps are followed for final states (lines
9-11). Then, for each pair of matching transitions (e, e2), a new transition is
created according to the rules specified earlier (line 16). If the destination state
(nle1], nlez2]) has not been found before, it is added to @ and inserted in S (lines
14-15).

In the worst case, all transitions of ¥; leaving a state ¢; match all those
of Ty leaving state ¢f, thus the space and time complexity of composition is
quadratic: O(|%1||%2|). However, a lazy implementation of composition can
be used to construct just the part of the composed transducer that is needed.
Figures 4.1(a)-(c) illustrate the algorithm when applied to the transducers of
Figures 4.1(a)-(b) defined over the probability semiring.

More care is needed when ¥ admits output € labels and T5 input ¢ labels.
Indeed, as illustrated by Figure 4.2, a straightforward generalization of the e-

Version June 23, 2004

204 Statistical Natural Language Processing

Figure 4.2. Redundant e-paths. A straightforward generalization of
the e-free case could generate all the paths from (1,1) to (3,2) when
composing the two simple transducers on the right-hand side.

free case would generate redundant e-paths and, in the case of non-idempotent
semirings, would lead to an incorrect result. The weight of the matching paths
of the original transducers would be counted p times, where p is the number of
redundant paths in the result of composition.

To cope with this problem, all but one e-path must be filtered out of the com-
posite transducer. Figure 4.2 indicates in boldface one possible choice for that
path, which in this case is the shortest. Remarkably, that filtering mechanism
can be encoded as a finite-state transducer.

Let T; (%3) be the weighted transducer obtained from %7 (resp. %2) by
replacing the output (resp. input) € labels with o (resp. €1), and let § be the
filter finite-state transducer represented in Figure 4.3. Then fl 05052 = T10%,.
Since the two compositions in TNl o¥ 0‘3,:2 do not involve €’s, the e-free composition
already described can be used to compute the resulting transducer.

Intersection (or Hadamard product) of weighted automata and composition
of finite-state transducers are both special cases of composition of weighted
transducers. Intersection corresponds to the case where input and output la-
bels of transitions are identical and composition of unweighted transducers is
obtained simply by omitting the weights.

In general, the definition of composition cannot be extended to the case of
non-commutative semirings because the composite transduction cannot always
be represented by a weighted finite-state transducer. Consider for example, the
case of two transducers T; and To accepting the same set of strings (a, a)*, with
[%1](a,a) = z € K and [T2](a,a) = y € K and let 7 be the composite of the
transductions corresponding to ¥; and ¥o. Then, for any non-negative integer
n, 7(a™,a") = 2" ® y™ which in general is different from (x ® y)™ if x and y

Version June 23, 2004

4.2. Algorithms 205

Figure 4.3. Filter for composition §.

do not commute. An argument similar to the classical Pumping lemma can
then be used to show that 7 cannot be represented by a weighted finite-state
transducer.

When %7 and 5 are acyclic, composition can be extended to the case of non-
commutative semirings. The algorithm would then consist of matching paths
of ¥1 and Ty directly rather than matching their constituent transitions. The
termination of the algorithm is guaranteed by the fact that the number of paths
of 1 and %5 is finite. However, the time and space complexity of the algorithm
is then exponential.

The weights of matching transitions and paths are ®-multiplied in composi-
tion. One might wonder if another useful operation, x, can be used instead of
®, in particular when K is not commutative. The following proposition proves
that that cannot be.

ProrosiTION 4.2.1. Let (K, x,e) be a monoid. Assume that x is used in-
stead of ® in composition. Then, X coincides with ® and (K, ®,®,0,1) is a
commutative semiring.

Proof. Consider two sets of consecutive transitions of two paths: 7 =
(pla a,a,x, ql)(Qla b7 ba Y, Tl) and ™ = (p27 a, a,u, qQ)(qu ba b7 v, TQ)' Ma’tChing
these transitions using X result in the following;:

((plva)vaaavx X u, (qlan)) and ((91,612),1775,21 X v, (TlaTQ)) (423)

Since the weight of the path obtained by matching m; and me must also corre-
spond to the x-multiplication of the weight of 71, x ® y, and the weight of o,
u ® v, we have:

(zxu)@@yxv)=(Ry) X (uw) (4.2.4)

Version June 23, 2004

206 Statistical Natural Language Processing

This identity must hold for all z,y,u,v € K. Setting u =y = e and v = 1 leads
to z = x ® e and similarly z = e ® = for all z. Since the identity element of ®
is unique, this proves that e = 1.

With v = y = 1, identity 4.2.4 can be rewritten as: * ® v = x x v for all x
and v, which shows that x coincides with ®. Finally, setting z = v = 1 gives
u®y =1y X u for all y and u which shows that ® is commutative. L]

4.2.2. Determinization

This section describes a generic determinization algorithm for weighted au-
tomata. It is thus a generalization of the determinization algorithm for un-
weighted finite automata. When combined with the (unweighted) determiniza-
tion for finite-state transducers presented in Chapter 1 Section 1.5, it leads to
an algorithm for determinizing weighted transducers.’

A weighted automaton is said to be deterministic or subsequential if it has
a unique initial state and if no two transitions leaving any state share the same
input label. There exists a natural extension of the classical subset construc-
tion to the case of weighted automata over a weakly left divisible left semiring
called determinization.? The algorithm is generic: it works with any weakly left
divisible semiring. The pseudocode of the algorithm is given below with Q’, I,
F’, and E’ all initialized to the empty set.

WEIGHTED-DETERMINIZATION (2)
1 d —{(i,\(@) i € I}

2 N(@) 1

35— {i"}

4 while S # 0 do

5 p’ «— HEAD(S)

6 DEQUEUE(S)

7 for each x € i[E[Q[p]]] do

8 v —@{veow: (pv)ep, (pr,wq) € E}

9 ¢ —{g@®{w'ewaw): (pv)ep,(pr,wq) €E}):

q = nlel,ile] = z,¢ € EIQTI}

10 E' — E U{{@,z,v, ¢)}
11 if ¢ ¢ Q' then
12 QI — QI U {q/}
13 if Q[¢'|NF # 0 then
14 F— F' U{q}
15 p'(d) —D{vaple):(av) €d,q€ F}
16 ENQUEUE(S, ¢')

17 return ¥’

n reality, the determinization of unweighted and that of weighted finite-state transducers
can both be viewed as special instances of the generic algorithm presented here but, for clarity
purposes, we will not emphasize that view in what follows.

2We assume that the weighted automata considered are all such that for any string = € A*,
w[P(I,z,Q)] # 0. This condition is always satisfied with trim machines over the tropical
semiring or any zero-sum-free semiring.

Version June 23, 2004

4.2. Algorithms 207

A weighted subset p’ of Q is a set of pairs (¢,2) € Q x K. Q[p'] denotes the
set of states g of the weighted subset p’. E[Q[p']] represents the set of transitions
leaving these states, and i[E[Q[p']]] the set of input labels of these transitions.

The states of the output automaton can be identified with (weighted) subsets
of the states of the original automaton. A state r of the output automaton
that can be reached from the start state by a path 7 is identified with the
set of pairs (¢,x) € @ x K such that ¢ can be reached from an initial state
of the original machine by a path o with i[o] = i[r] and A[p[o]] ® wlo] =
Alp[r]] ® wir] ® . Thus, = can be viewed as the residual weight at state q.
When it terminates, the algorithm takes as input a weighted automaton A =
(A,Q,I,F, E,)\ p) and yields an equivalent subsequential weighted automaton
A =(AQ ,I'F'E', N, p).

The algorithm uses a queue S containing the set of states of the resulting
automaton ', yet to be examined. The queue discipline of S can be arbitrarily
chosen and does not affect the termination of the algorithm. 2’ admits a unique
initial state, 4/, defined as the set of initial states of 2 augmented with their
respective initial weights. Its input weight is 1 (lines 1-2). S originally contains
only the subset ¢’ (line 3). Each time through the loop of lines 4-16, a new
subset p’ is extracted from S (lines 5-6). For each x labeling at least one of
the transitions leaving a state p of the subset p’, a new transition with input
label z is constructed. The weight w’ associated to that transition is the sum of
the weights of all transitions in E[Q[p’]] labeled with x pre-®-multiplied by the
residual weight v at each state p (line 8). The destination state of the transition
is the subset containing all the states g reached by transitions in E[Q[p']] labeled
with z. The weight of each state g of the subset is obtained by taking the &-sum
of the residual weights of the states p ®-times the weight of the transition from
p leading to ¢ and by dividing that by w’. The new subset ¢’ is inserted in the
queue S when it is a new state (line 15). If any of the states in the subset ¢’
is final, ¢’ is made a final state and its final weight is obtained by summing
the final weights of all the final states in ¢/, pre-®-multiplied by their residual
weight v (line 14).

Figures 4.4(a)-(b) illustrate the determinization of a weighted automaton
over the tropical semiring. The worst case complexity of determinization is
exponential even in the unweighted case. However, in many practical cases
such as for weighted automata used in large-vocabulary speech recognition, this
blow-up does not occur. It is also important to notice that just like composition,
determinization admits a natural lazy implementation which can be useful for
saving space.

Unlike the unweighted case, determinization does not halt on all input
weighted automata. In fact, some weighted automata, non subsequentiable au-
tomata, do not even admit equivalent subsequential machines. But even for
some subsequentiable automata, the algorithm does not halt. We say that a
weighted automaton 2 is determinizable if the determinization algorithm halts
for the input 2. With a determinizable input, the algorithm outputs an equiv-
alent subsequential weighted automaton.

There exists a general twins property for weighted automata that provides a

Version June 23, 2004

208 Statistical Natural Language Processing

Figure 4.4. Determinization of weighted automata. (a) Weighted au-
tomaton over the tropical semiring 2. (b) Equivalent weighted automaton
B obtained by determinization of 2. (c) Non-determinizable weighted au-
tomaton over the tropical semiring, states 1 and 2 are non-twin siblings.

characterization of determinizable weighted automata under some general con-
ditions. Let 2 be a weighted automaton over a weakly left divisible left semiring
K. Two states ¢ and ¢’ of % are said to be siblings if there exist two strings x
and y in A* such that both ¢ and ¢’ can be reached from I by paths labeled
with 2 and there is a cycle at ¢ and a cycle at ¢’ both labeled with y. When
K is a commutative and cancellative semiring, two sibling states are said to be
twins iff for any string y:

w[P(q,y,q)] = w[P(d,y,q)] (4.2.5)

2 has the twins property if any two sibling states of 2 are twins. Figure 4.4(c)
shows an unambiguous weighted automaton over the tropical semiring that does
not have the twins property: states 1 and 2 can be reached by paths labeled
with a from the initial state and admit cycles with the same label b, but the
weights of these cycles (3 and 4) are different.

THEOREM 4.2.2. Let 2 be a weighted automaton over the tropical semiring.
If A has the twins property, then 2 is determinizable.

With trim unambiguous weighted automata, the condition is also necessary.

THEOREM 4.2.3. Let 2 be a trim unambiguous weighted automaton over the
tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.

2. 2 has the twins property.

3. 2 is subsequentiable.

There exists an efficient algorithm for testing the twins property for weighted
automata, which cannot be presented briefly in this chapter. Note that any
acyclic weighted automaton over a zero-sum-free semiring has the twins property
and is determinizable.

Version June 23, 2004

4.2. Algorithms 209

4.2.3. Weight pushing

The choice of the distribution of the total weight along each successful path of
a weighted automaton does not affect the definition of the function realized by
that automaton, but this may have a critical impact on the efficiency in many
applications, e.g., natural language processing applications, when a heuristic
pruning is used to visit only a subpart of the automaton. There exists an
algorithm, weight pushing, for normalizing the distribution of the weights along
the paths of a weighted automaton or more generally a weighted directed graph.
The transducer normalization algorithm presented in Chapter 1 Section 1.5 can
be viewed as a special instance of this algorithm.

Let 2 be a weighted automaton over a semiring K. Assume that K is zero-
sum-free and weakly left divisible. For any state ¢ € @), assume that the follow-
ing sum is well-defined and in K:

dl = @ (wlx] @ pln[x])) (4.2.6)
mweP(q,F)
d[q] is the shortest-distance from q to F'. d[q] is well-defined for all ¢ € Q when K
is a k-closed semiring. The weight pushing algorithm consists of computing each
shortest-distance d[q] and of reweighting the transition weights, initial weights
and final weights in the following way:

Ve € F s.t. dple]] # 0,wle] — d[ple]] * @ wle] ® d[n[e]] (4.2.7)
Vg € I, Mg] — Ag] @ d[g] (4.2.8)
Vg € F, s.t. dlq] #0,plq] — dlg] ™" ® plq] (4.2.9)

Each of these operations can be assumed to be done in constant time, thus
reweighting can be done in linear time O(%|2|) where T denotes the worst
cost of an ®-operation. The complexity of the computation of the shortest-
distances depends on the semiring. In the case of k-closed semirings such as the
tropical semiring, d[q], ¢ € @, can be computed using a generic shortest-distance
algorithm. The complexity of the algorithm is linear in the case of an acyclic
automaton: O(Card(Q)+(Te+%g) Card(E)), where To denotes the worst cost
of an @-operation. In the case of a general weighted automaton over the tropical
semiring, the complexity of the algorithm is O(Card(E)+Card(Q) log Card(Q)).

In the case of closed semirings such as (Ry,+, x,0,1), a generalization of
the Floyd-Warshall algorithm for computing all-pairs shortest-distances can be
used. The complexity of the algorithm is ©(Card(Q)*(Tg + T +T+)) where T,
denotes the worst cost of the closure operation. The space complexity of these
algorithms is ©(Card(Q)?). These complexities make it impractical to use the
Floyd-Warshall algorithm for computing d[g], ¢ € @, for relatively large graphs
or automata of several hundred million states or transitions. An approximate
version of a generic shortest-distance algorithm can be used instead to compute
d[q] efficiently.

Roughly speaking, the algorithm pushes the weights of each path as much as
possible towards the initial states. Figures 4.5(a)-(c) illustrate the application
of the algorithm in a special case both for the tropical and probability semirings.

Version June 23, 2004

210 Statistical Natural Language Processing

Figure 4.5. Weight pushing algorithm. (a) Weighted automaton 2.
(b) Equivalent weighted automaton % obtained by weight pushing in the
tropical semiring. (c¢) Weighted automaton € obtained from 2 by weight
pushing in the probability semiring. (d) Minimal weighted automaton
over the tropical semiring equivalent to 2.

Note that if d[g] = 0, then, since K is zero-sum-free, the weight of all paths
from g to F is 0. Let 2 be a weighted automaton over the semiring K. Assume
that K is closed or k-closed and that the shortest-distances d[g] are all well-
defined and in K—{0}. Note that in both cases we can use the distributivity over
the infinite sums defining shortest distances. Let €’ (7’) denote the transition e
(path 7) after application of the weight pushing algorithm. e’ (7’) differs from
e (resp. m) only by its weight. Let A’ denote the new initial weight function,
and p’ the new final weight function.

PROPOSITION 4.2.4. Let B = (A,Q,I,F,E' N, p') be the result of the weight
pushing algorithm applied to the weighted automaton 2, then
1. the weight of a successful path w is unchanged after application of weight
pushing:
Npl'l] ® wlx'] @ p'[n[x"]] = Alp[]] @ wln] @ pn[x]] (4.2.10)
2. the weighted automaton ‘B is stochastic, i.e.
VeeQ, @ wle=1 (4.2.11)
e'€Eq]
Proof. Let ' =e€]...e},. By definition of X and p’,
Nplr'l) @ win') @ p'[nfn']]) = Aplea]] @ dlpler]] © dlplen]] ™ © wler] ® dnfer]] ® - - -
®dpler]]”" © wlex] @ dlnfex]] ® dnler] " ® pln[x]]
= Ap[r]] @ wle] @ - - - @ wlex] @ p[n[n]]

which proves the first statement of the proposition. Let ¢ € @,
P wlel= P da " @ wle] @ dlne]]

e’€E’'[q] e€E[q]

=dlg '® @ wle] ® d[nle]]

e€E[q]

Version June 23, 2004

4.2. Algorithms 211

=dg e P uvlele P (winlepnlr])

e€E[q] mEP(nle],F)

=dlgd'® @ (wle] ® w(n] & p[n[n]])

e€E[q], 7€ P(nle],F)

=dlg ' ®dq =T

where we used the distributivity of the multiplicative operation over infinite
sums in closed or k-closed semirings. This proves the second statement of the
proposition. n

These two properties of weight pushing are illustrated by Figures 4.5(a)-(c): the
total weight of a successful path is unchanged after pushing; at each state of
the weighted automaton of Figure 4.5(b), the minimum weight of the outgoing
transitions is 0, and at at each state of the weighted automaton of Figure 4.5(c),
the weights of outgoing transitions sum to 1. Weight pushing can also be used
to test the equivalence of two weighted automata.

4.2.4. Minimization

A deterministic weighted automaton is said to be minimal if there exists no other
deterministic weighted automaton with a smaller number of states and realizing
the same function. Two states of a deterministic weighted automaton are said to
be equivalent if exactly the same set of strings with the same weights label paths
from these states to a final state, the final weights being included. Thus, two
equivalent states of a deterministic weighted automaton can be merged without
affecting the function realized by that automaton. A weighted automaton is
minimal when it admits no two distinct equivalent states after any redistribution
of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic au-
tomaton equivalent to a given weighted automaton. It is thus a generalization
of the minimization algorithms for unweighted finite automata. It can be com-
bined with the minimization algorithm for unweighted finite-state transducers
presented in Chapter 1 Section 1.5 to minimize weighted finite-state transduc-
ers.® It consists of first applying the weight pushing algorithm to normalize the
distribution of the weights along the paths of the input automaton, and then
of treating each pair (label, weight) as a single label and applying the classical
(unweighted) automata minimization.

THEOREM 4.2.5. Let 2 be a deterministic weighted automaton over a semiring
K. Assume that the conditions of application of the weight pushing algorithm
hold, then the execution of the following steps:

1. weight pushing,

2. (unweighted) automata minimization,

3In reality, the minimization of both unweighted and weighted finite-state transducers can
be viewed as special instances of the algorithm presented here, but, for clarity purposes, we
will not emphasize that view in what follows.

Version June 23, 2004

212 Statistical Natural Language Processing

Figure 4.6. Minimization of weighted automata. (a) Weighted automa-
ton 2’ over the probability semiring. (b) Minimal weighted automaton
B’ equivalent to 2’. (c) Minimal weighted automaton €’ equivalent to 21'.

lead to a minimal weighted automaton equivalent to 2.

The complexity of automata minimization is linear in the case of acyclic au-
tomata O(Card(Q) + Card(F)) and in O(Card(F)log Card(Q)) in the general
case. Thus, in view of the complexity results given in the previous section, in
the case of the tropical semiring, the total complexity of the weighted mini-
mization algorithm is linear in the acyclic case O(Card(Q) + Card(E)) and in
O(Card(E)log Card(Q)) in the general case.

Figures 4.5(a), 4.5(b), and 4.5(d) illustrate the application of the algorithm
in the tropical semiring. The automaton of Figure 4.5(a) cannot be further
minimized using the classical unweighted automata minimization since no two
states are equivalent in that machine. After weight pushing, the automaton
(Figure 4.5(b)) has two states (1 and 2) that can be merged by the classical
unweighted automata minimization.

Figures 4.6(a)-(c) illustrate the minimization of an automaton defined over
the probability semiring. Unlike the unweighted case, a minimal weighted au-
tomaton is not unique, but all minimal weighted automata have the same graph
topology, they only differ by the way the weights are distributed along each
path. The weighted automata B’ and €’ are both minimal and equivalent to
A’ 9B’ is obtained from 2’ using the algorithm described above in the probabil-
ity semiring and it is thus a stochastic weighted automaton in the probability
semiring.

For a deterministic weighted automaton, the first operation of the semir-
ing can be arbitrarily chosen without affecting the definition of the function
it realizes. This is because, by definition, a deterministic weighted automaton
admits at most one path labeled with any given string. Thus, in the algorithm
described in theorem 4.2.5, the weight pushing step can be executed in any
semiring K’ whose multiplicative operation matches that of K. The minimal
weighted automata obtained by pushing the weights in K’ is also minimal in K
since it can be interpreted as a (deterministic) weighted automaton over K.

In particular, 2l can be interpreted as a weighted automaton over the semir-
ing (R4, max, x,0,1). The application of the weighted minimization algorithm

Version June 23, 2004

4.3. Application to speech recognition 213

to ' in this semiring leads to the minimal weighted automaton €’ of Fig-
ure 4.6(c). ¢ is also a stochastic weighted automaton in the sense that, at any
state, the maximum weight of all outgoing transitions is one.

This fact leads to several interesting observations. One is related to the
complexity of the algorithms. Indeed, we can choose a semiring K’ in which
the complexity of weight pushing is better than in K. The resulting automaton
is still minimal in K and has the additional property of being stochastic in K'.
It only differs from the weighted automaton obtained by pushing weights in
K in the way weights are distributed along the paths. They can be obtained
from each other by application of weight pushing in the appropriate semiring.
In the particular case of a weighted automaton over the probability semiring,
it may be preferable to use weight pushing in the (max, x)-semiring since the
complexity of the algorithm is then equivalent to that of classical single-source
shortest-paths algorithms. The corresponding algorithm is a special instance of
the generic shortest-distance algorithm.

Another important point is that the weight pushing algorithm may not be
defined in K because the machine is not zero-sum-free or for other reasons.
But an alternative semiring K’ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the num-
ber of states of a deterministic weighted automaton. The following proposition
shows that minimizing the number of states coincides with minimizing the num-
ber of transitions.

PROPOSITION 4.2.6. Let 2 be a minimal deterministic weighted automaton,
then 2 has the minimal number of transitions.

Proof. Let 2 be a deterministic weighted automaton with the minimal number
of transitions. If two distinct states of 2 were equivalent, they could be merged,
thereby strictly reducing the number of its transitions. Thus, 2 must be a
minimal deterministic automaton. Since, minimal deterministic automata have
the same topology, in particular the same number of states and transitions, this
proves the proposition.

4.3. Application to speech recognition

Much of the statistical techniques now widely used in natural language process-
ing were inspired by early work in speech recognition. This section discusses
the representation of the component models of an automatic speech recogni-
tion system by weighted transducers and describes how they can be combined,
searched, and optimized using the algorithms described in the previous sec-
tions. The methods described can be used similarly in many other areas of
natural language processing.

Version June 23, 2004

214 Statistical Natural Language Processing

4.3.1. Statistical formulation

Speech recognition consists of generating accurate written transcriptions for spo-
ken utterances. The desired transcription is typically a sequence of words, but it
may also be the utterance’s phonemic or syllabic transcription or a transcription
into any other sequence of written units.

The problem can be formulated as a maximum-likelihood decoding problem,
or the so-called noisy channel problem. Given a speech utterance, speech recog-
nition consists of determining its most likely written transcription. Thus, if we
let 0 denote the observation sequence produced by a signal processing system, w
a (word) transcription sequence over an alphabet A, and P(w | o) the probabil-
ity of the transduction of o into w, the problem consists of finding w as defined
by:

w = argmax P(w | o) (4.3.1)
weA*
Using Bayes’ rule, P(w | 0) can be rewritten as: %. Since P(0) does
not depend on w, the problem can be reformulated as:

w = argmax P (o | w) P(w) (4.3.2)
weA*

where P(w) is the a priori probability of the written sequence w in the language
considered and P(o | w) the probability of observing o given that the sequence
w has been uttered. The probabilistic model used to estimate P(w) is called
a language model or a statistical grammar. The generative model associated
to P(o | w) is a combination of several knowledge sources, in particular the
acoustic model, and the pronunciation model. P(o | w) can be decomposed into
several intermediate levels e.g., that of phones, syllables, or other units. In most
large-vocabulary speech recognition systems, it is decomposed into the following
probabilistic models that are assumed independent:

e P(p | w), a pronunciation model or lexicon transducing word sequences w
to phonemic sequences p;

e P(c|p), a context-dependency transduction mapping phonemic sequences
p to context-dependent phone sequences c;

e P(d | ¢), a context-dependent phone model mapping sequences of context-
dependent phones ¢ to sequences of distributions d; and

e P(o0 | d), an acoustic model applying distribution sequences d to observa-
tion sequences.

Since the models are assumed to be independent,

P(o|w)=) Plo|dP(d|)P(c|p)P(p|w) (4.3.3)

d,c,p

AP(o | d)P(d | c) or P(o | d)P(d | ¢)P(c | p) is often called an acoustic model.

Version June 23, 2004

4.3. Application to speech recognition 215

Equation 4.3.2 can thus be rewritten as:

W = argmax Z Plo| dP(d | c)P(c|p)P(p | w)P(w) (4.3.4)
w d,c,p

The following sections discuss the definition and representation of each of these
models and that of the observation sequences in more detail. The transduction
models are typically given either directly or as a result of an approximation as
weighted finite-state transducers. Similarly, the language model is represented
by a weighted automaton.

4.3.2. Statistical grammar

In some relatively restricted tasks, the language model for P(w) is based on
an unweighted rule-based grammar. But, in most large-vocabulary tasks, the
model is a weighted grammar derived from large corpora of several million words
using statistical methods. The purpose of the model is to assign a probability
to each sequence of words, thereby assigning a ranking to all sequences. Thus,
the parsing information it may supply is not directly relevant to the statistical
formulation described in the previous section.

The probabilistic model derived from corpora may be a probabilistic context-
free grammmar. But, in general, context-free grammars are computationally
too demanding for real-time speech recognition systems. The amount of work
required to expand a recognition hypothesis can be unbounded for an unre-
stricted grammar. Instead, a regular approximation of a probabilistic context-
free grammar is used. In most large-vocabulary speech recognition systems, the
probabilistic model is in fact directly constructed as a weighted regular gram-
mar and represents an n-gram model. Thus, this section concentrates on a brief
description of these models.?

Regardless of the structure of the model, using the Bayes’s rule, the probabil-
ity of the word sequence w = wy - - - wy can be written as the following product
of conditional probabilities:

k

i=1

An n-gram model is based on the Markovian assumption that the probability
of the occurrence of a word only depends on the n — 1 preceding words, that is,
fori=1...n:

P(w; [w1+ wi—1) = P(w; | h;) (4.3.6)
where the conditioning history h; has length at most n — 1: |h;| < n — 1. Thus,

k

P(w) = [[P(w; | h) (4.3.7)

=1

5Similar probabilistic models are designed for biological sequences (see Chapter 6).

Version June 23, 2004

216 Statistical Natural Language Processing

bye/3.318

G a ‘ byeﬂ'625

hellof7.625

Figure 4.7. Katz back-off n-gram model. (a) Representation of a trigram
model with failure transitions labeled with ®. (b) Bigram model derived
from the input text hello bye bye. The automaton is defined over the log
semiring (the transition weights are negative log-probabilities). State 0 is
the initial state. State 1 corresponds to the word bye and state 3 to the
word hello. State 2 is the back-off state.

Let ¢(w) denote the number of occurrences of a sequence w in the corpus. c¢(h;)
and c(h;w;) can be used to estimate the conditional probability P(w; | h;).
When c(h;) # 0, the maximum likelihood estimate of P(w; | h;) is:

c(hiwi)
c(hi)

But, a classical data sparsity problem arises in the design of all n-gram models:
the corpus, no matter how large, may contain no occurrence of h; (c(h;) = 0).
A solution to this problem is based on smoothing techniques. This consists of
adjusting P to reserve some probability mass for unseen n-gram sequences.

Let P(w; | h;) denote the adjusted conditional probability. A smoothing
technique widely used in language modeling is the Katz back-off technique.
The idea is to “back-off” to lower order n-gram sequences when c(h;w;) = 0.
Define the backoff sequence of h; as the lower order n-gram sequence suffix of
h; and denote it by h}. h; = uhl for some word u. Then, in a Katz back-off
model, P(w; | h;) is defined as follows:

f’(wi | hl) if c(hiwi) >0

an, P(w; | h) otherwise (4.3.9)

P 1) = {

where o, is a factor ensuring normalization. The Katz back-off model admits a
natural representation by a weighted automaton in which each state encodes a

Version June 23, 2004

4.3. Application to speech recognition 217

ey:e/0.8 dx:e00.6

° d:g/1.0 e.e.e ax:data/1.0 @

ae:c/0.2 t:c/0.4

Figure 4.8. Section of a pronunciation model of English, a weighted
transducer over the probability semiring giving a compact representation
of four pronunciations of the word data due to two distinct pronunciations
of the first vowel a and two pronunciations of the consonant ¢ (flapped or
not).

conditioning history of length less than n. As in the classical de Bruijn graphs,
there is a transition labeled with w; from the state encoding h; to the state
encoding hiw; when c(h;w;) # 0. A so-called failure transition can be used to
capture the semantic of “otherwise” in the definition of the Katz back-off model
and keep its representation compact. A failure transition is a transition taken at
state ¢ when no other transition leaving ¢ has the desired label. Figure 4.3.2(a)
illustrates that construction in the case of a trigram model (n = 3).

It is possible to give an explicit representation of these weighted automata
without using failure transitions. However, the size of the resulting automata
may become prohibitive. Instead, an approximation of that weighted automaton
is used where failure transitions are simply replaced by e-transitions. This turns
out to cause only a very limited loss in accuracy.®.

In practice, for numerical instability reasons negative-log probabilities are
used and the language model weighted automaton is defined in the log semiring.
Figure 4.3.2(b) shows the corresponding weighted automaton in a very simple
case. We will denote by & the weighted automaton representing the statistical
grammar.

4.3.3. Pronunciation model

The representation of a pronunciation model P(p | w) (or lexicon) with weighted
transducers is quite natural. Each word has a finite number of phonemic tran-
scriptions. The probability of each pronunciation can be estimated from a cor-
pus. Thus, for each word z, a simple weighted transducer ¥, mapping x to its
phonemic transcriptions can be constructed.

Figure 4.8 shows that representation in the case of the English word data.
The closure of the union of the transducers ¥, for all the words x considered
gives a weighted transducer representation of the pronunciation model. We will
denote by P the equivalent transducer over the log semiring.

6An alternative when no offline optimization is used is to compute the explicit represen-
tation on-the-fly, as needed for the recognition of an utterance. There exists also a complex
method for constructing an exact representation of an m-gram model which cannot be pre-
sented in this short chapter.

Version June 23, 2004

218 Statistical Natural Language Processing

<4q:q/0 <4=:q/0

Figure 4.9. Context-dependency transducer restricted to two phones p and q.

4.3.4. Context-dependency transduction

The pronunciation of a phone depends on its neighboring phones. To design
an accurate acoustic model, it is thus beneficial to model a context-dependent
phone, i.e., a phone in the context of its surrounding phones. This has also
been corroborated by empirical evidence. The standard models used in speech
recognition are n-phonic models. A context-dependent phone is then a phone in
the context of its ny previous phones and ns following phones, with n14+ns+1 =
n. Remarkably, the mapping P(c | d) from phone sequences to sequences of
context-dependent phones can be represented by finite-state transducers. This
section illustrates that construction in the case of triphonic models (ny = ng =
1). The extension to the general case is straightforward.

Let P denote the set of context-independent phones and let C denote the
set of triphonic context-dependent phones. For a language such as English or
French, Card(P) =~ 50. Let ,,p,, denote the context-dependent phone corre-
sponding to the phone p with the left context p; and the right context ps.

The construction of the context-dependency transducer is similar to that of
the language model automaton. As in the previous case, for numerical instability
reasons, negative log-probabilities are used, thus the transducer is defined in the
log semiring. Each state encodes a history limited to the last two phones. There
is a transition from the state associated to (p,q) to (¢,r) with input label the
context-dependent phone , ¢, and output label g. More precisely, the transducer
T=(C,P,Q,I,F,E,)\, p) is defined by:

e Q={(p.q):peP,qePU{e}}U{(,C)};
o [={(¢,C)} and F = {(p,e) : p € P};

Version June 23, 2004

4.3. Application to speech recognition 219

ngE d31€

dliE
dy: Q do: Qd:r

Figure 4.10. Hidden-Markov Model transducer.

s EC {((p,Y), pQT;Q70; (q,T)) Y =qorY = C}

with all initial and final weights equal to zero. Figure 4.9 shows that transducer
in the simple case where the phonemic alphabet is reduced to two phones (P =
{p,q}). We will denote by € the weighted transducer representing the context-
dependency mapping.

4.3.5. Acoustic model

In most modern speech recognition systems, context-dependent phones are mod-
eled by three-state Hidden Markov Models (HMMSs). Figure 4.10 shows the
graphical representation of that model for a context-dependent model ,q,. The
context-dependent phone is modeled by three states (0,1, and 2) each mod-
eled with a distinct distribution (dp,d1,ds) over the input observations. The
mapping P(d | ¢) from sequences of context-dependent phones to sequences of
distributions is the transducer obtained by taking the closure of the union of
the finite-state transducers associated to all context-dependent phones. We will
denote by $ that transducer. Each distribution d; is typically a mixture of
Gaussian distributions with mean p and covariance matrix o:

1
(27T)N/2|O'|1/26

where w is an observation vector of dimension N. Observation vectors are
obtained by local spectral analysis of the speech waveform at regular intervals,
typically every 10 ms. In most cases, they are 39-dimensional feature vectors
(N = 39). The components are the 13 cepstral coefficients, i.e., the energy and
the first 12 components of the cepstrum and their first-order (delta cepstra) and
second-order differentials (delta-delta cepstra). The cepstrum of the (speech)
signal is the result of taking the inverse-Fourier transform of the log of its
Fourier transform. Thus, if we denote by x(w) the Fourier transform of the
signal, the 12 first coefficients ¢, in the following expression:

P(w) = —E(wmm e W (4.3.10)

log |z(w)| = Z cpe” (4.3.11)

n=—oo

are the coefficients used in the observation vectors. This truncation of the
Fourier transform helps smooth the log magnitude spectrum. Empirically, cep-
stral coefficients have shown to be excellent features for representing the speech

Version June 23, 2004

220 Statistical Natural Language Processing

DD

Figure 4.11. Observation sequence O = 01 - --0r. The time stamps t;,
i =0,...k, labeling states are multiples of 10 ms.

signal.” Thus the observation sequence o = o7 -- -0y can be represented by a
sequence of 39-dimensional feature vectors extracted from the signal every 10
ms. This can be represented by a simple automaton as shown in figure 4.11,
that we will denote by O.

We will denote by O % §) the weighted transducer resulting from the appli-
cation of the transducer $ to an observation sequence 9. O) is the weighted
transducer mapping O to sequences of context-dependent phones, where the
weights of the transitions are the negative log of the value associated by a dis-
tribution d; to an observation vector Oj, -log d;(O;).

4.3.6. Combination and search

The previous sections described the representation of each of the components
of a speech recognition system by a weighted transducer or weighted automa-
ton. This section shows how these transducers and automata can be combined
and searched efficiently using the weighted transducer algorithms previously
described, following Equation 4.3.4.

A so-called Viterbi approximation is often used in speech recognition. It
consists of approximating a sum of probabilities by its dominating term:

W = argmax »_ P(o| d)P(d | c)P(c | p)P(p | w)P(w) (4.3.12)

Y dep
A argiax max Plo | d)P(d | c)P(c|p)P(p| w)P(w) (4.3.13)

w ;CP
This has been shown to be empirically a relatively good approximation, though,
most likely, its introduction was originally motivated by algorithmic efficiency.
For numerical instability reasons, negative-log probabilities are used, thus the

equation can be reformulated as:

w:argmingnin—logP(o | d)—logP(d | ¢)—logP(c | p)—logP(p | w)—log P(w)
w G P

As discussed in the previous sections, these models can be represented by
weighted transducers. Using the composition algorithm for weighted trans-
ducers, and by definition of the x-operation and projection, this is equivalent

"Most often, the spectrum is first transformed using the Mel Frequency bands, which is a
non-linear scale approximating the human perception.

Version June 23, 2004

4.3. Application to speech recognition 221

ati CD phones CI phones rords)
observations O HMM Transducer $! CD Transducer € ! Pron. Model B words Grammar & worqs

Figure 4.12. Cascade of speech recognition transducers.

to:
W =argminIlx(OxHoCoPo®) (4.3.14)

Thus, speech recognition can be formulated as a cascade of composition of
weighted transducers illustrated by Figure 4.12. & labels the path of 20 =
I (O *H o CoPo &) with the lowest weight. The problem can be viewed as
a classical single-source shortest-paths algorithm over the weighted automaton
2. Any single-source shortest paths algorithm could be used to solve it. In
fact, since O is finite, the automaton 20 could be acyclic, in which case the clas-
sical linear-time single-source shortest-paths algorithm based on the topological
order could be used.

However, this scheme is not practical. This is because the size of 20 can
be prohibitively large even for recognizing short utterances. The number of
transitions of O for 10s of speech is 1000. If the recognition transducer ¥ =
Ho€oPod had in the order of just 100M transitions, the size of 2 would be
in the order of 1000 x 100M transitions, i.e., about 100 billion transitions!

In practice, instead of visiting all states and transitions, a heuristic pruning
is used. A pruning technique often used is the beam search. This consists of
exploring only states with tentative shortest-distance weights within a beam or
threshold of the weight of the best comparable state. Comparable states must
roughly correspond to the same observations, thus states of T are visited in the
order of analysis of the input observation vectors, i.e. chronologically. This
is referred to as a synchronous beam search. A synchronous search restricts
the choice of the single-source shortest-paths problem or the relaxation of the
tentative shortest-distances. The specific single-source shortest paths algorithm
then used is known as the Viterbi Algorithm, which is presented in Exercise
1.3.1.

The *-operation, the Viterbi algorithm, and the beam pruning techniques
are often combined into a decoder. Here is a brief description of the decoder.
For each observation vector o; read, the transitions leaving the current states of
¥ are expanded, the x-operation is computed on-the-fly to compute the acoustic
weights given by the application of the distributions to o;. The acoustic weights
are added to the existing weight of the transitions and out of the set of states

8Note that the Viterbi approximation can be viewed simply as a change of semiring, from
the log semiring to the tropical semiring. This does not affect the topology or the weights
of the transducers but only their interpretation or use. Also, note that composition does not
make use of the first operation of the semiring, thus compositions in the log and tropical
semiring coincide.

Version June 23, 2004

222 Statistical Natural Language Processing

reached by these transitions those with a tentative shortest-distance beyond a
pre-determined threshold are pruned out. The beam threshold can be used as a
means to select a trade-off between recognition speed and accuracy. Note that
the pruning technique used is non-admissible. The best overall path may fall
out of the beam due to local comparisons.

4.3.7. Optimizations

The characteristics of the recognition transducer ¥ were left out of the previous
discussion. They are however key parameters for the design of real-time large-
vocabulary speech recognition systems. The search and decoding speed critically
depends on the size of ¥ and its non-determinism. This section describes the
use of the determinization, minimization, and weight pushing algorithm for
constructing and optimizing ¥.

The component transducers described can be very large in speech recognition
applications. The weighted automata and transducers we used in the North
American Business news (NAB) dictation task with a vocabulary of just 40,000
words (the full vocabulary in this task contains about 500,000 words) had the
following attributes:

e ®: a shrunk Katz back-off trigram model with about 4M transitions;’

e ‘B : pronunciation transducer with about 70,000 states and more than
150,000 transitions;

e (: a triphonic context-dependency transducer with about 1,500 states and
80,000 transitions.

e 9: an HMM transducer with more than 7,000 states.

A full construction of ¥ by composition of such transducers without any
optimization is not possible even when using very large amounts of memory.
Another problem is the non-determinism of ¥. Without prior optimization, ¥ is
highly non-deterministic, thus, a large number of paths need to be explored at
the search and decoding time, thereby considerably slowing down recognition.

Weighted determinization and minimization algorithms provide a general
solution to both the non-determinism and the size problem. To construct an
optimized recognition transducer, weighted transducer determinization and min-
imization can be used at each step of the composition of each pair of component
transducers. The main purpose of the use of determinization is to eliminate
non-determinism in the resulting transducer, thereby substantially reducing
recognition time. But, its use at intermediate steps of the construction also
helps improve the efficiency of composition and reduce the size of the resulting
transducer. We will see later that it is in fact possible to construct offline the
recognition transducer and that its size is practical for real-time speech recog-
nition!

9Various shrinking methods can be used to reduce the size of a statistical grammar without
affecting its accuracy excessively.

Version June 23, 2004

4.3. Application to speech recognition 223

However, as pointed out earlier, not all weighted automata and transducers
are determinizable, e.g., the transducer Po® mapping phone sequences to words
is in general not determinizable. This is clear in presence of homophones. But
even in the absence of homophones, 3 0 & may not have the twins property and
be non-determinizable. To make it possible to determinize 3 o &, an auxiliary
phone symbol denoted by #(marking the end of the phonemic transcription of
each word can be introduced. Additional auxiliary symbols #; ...#x_1 can be
used when necessary to distinguish homophones as in the following example:

r eh d #¢ read
r eh d #1 red

At most D auxiliary phones, where D is the maximum degree of homophony,
are introduced. The pronunciation transducer augmented with these auxiliary
symbols is denoted by ‘i? For consistency, the context-dependency transducer
¢ must also accept all paths containing these new symbols. For further deter-
minizations at the context-dependent phone level and distribution level, each
auxiliary phone must be mapped to a distinct context-dependent phone. Thus,
self-loops are added at each state of € mapping each auxiliary phone to a new
auxiliary context-dependent phone. The augmented context-dependency trans-
ducer is denoted by ¢.

Similarly, each auxiliary context-dependent phone must be mapped to a new
distinct distribution. D self-loops are added at the initial state of $ with aux-
iliary distribution input labels and auxiliary context-dependency output labels
to allow for this mapping. The modified HMM transducer is denoted by 9.

It can be shown that the use of the auxiliary symbols guarantees the de-
terminizability of the transducer obtained after each composition. Weighted
transducer determinization is used at several steps of the construction. An n-
gram language model & is often constructed directly as a deterministic weighted
automaton with a back-off state — in this context, the symbol ¢ is treated as
a regular symbol for the definition of determinism. If this does not hold, & is
first determinized. 9 is then composed with & and determinized: det(‘ﬁ 0 ®).
The benefit of this determinization is the reduction of the number of alternative
transitions at each state to at most the number of distinct phones at that state
(= 50), while the original transducer may have as many as V outgoing transi-
tions at some states where V is the vocabulary size. For large tasks where the
vocabulary size can be more than several hundred thousand, the advantage of
this optimization is clear.

The inverse of the context-dependency transducer might not be determin-
istic.!® For example, the inverse of the transducer shown in Figure 4.9 is not
deterministic since the initial state admits several outgoing transitions with the
same input label p or q. To construct a small and efficient integrated transducer,
it is important to first determinize the inverse of €.11

10The inverse of a transducer is the transducer obtained by swapping input and output
labels of all transitions.

1 Triphonic or more generally n-phonic context-dependency models can also be constructed
directly with a deterministic inverse.

Version June 23, 2004

224 Statistical Natural Language Processing

¢ is then composed with the resulting transducer and determinized. Simi-
larly § is composed with the context-dependent transducer and determinized.
This last determinization increases sharing among HMM models that start with
the same distributions: at each state of the resulting integrated transducer,
there is at most one outgoing transition labeled with any given distribution
name. This leads to a substantial reduction of the recognition time.

As a final step, the auxiliary distribution symbols of the resulting trans-
ducer are simply replaced by e’s. The corresponding operation is denoted by
II.. The sequence of operations just described is summarized by the following
construction formula:

N = IL.(det($) o det(€ o det(P o B)))) (4.3.15)

where parentheses indicate the order in which the operations are performed.
Once the recognition transducer has been determinized, its size can be further
reduced by minimization. The auxiliary symbols are left in place, the minimiza-
tion algorithm is applied, and then the auxiliary symbols are removed:

N = IL. (min(det(H o det(€ o det(P o B))))) (4.3.16)

Weighted minimization can also be applied after each determinization step.
It is particularly beneficial after the first determinization and often leads to
a substantial size reduction. Weighted minimization can be used in different
semirings. Both minimization in the tropical semiring and minimization in the
log semiring can be used in this context. The results of these two minimiza-
tions have exactly the same number of states and transitions and only differ
in how weight is distributed along paths. The difference in weights arises from
differences in the definition of the key pushing operation for different semirings.

Weight pushing in the log semiring has a very large beneficial impact on
the pruning efficacy of a standard Viterbi beam search. In contrast, weight
pushing in the tropical semiring, which is based on lowest weights between
paths described earlier, produces a transducer that may slow down beam-pruned
Viterbi decoding many fold.

The use of pushing in the log semiring preserves a desirable property of
the language model, namely that the weights of the transitions leaving each
state be normalized as in a probabilistic automaton. Experimental results also
show that pushing in the log semiring makes pruning more effective. It has
been conjectured that this is because the acoustic likelihoods and the transducer
probabilities are then synchronized to obtain the optimal likelihood ratio test for
deciding whether to prune. It has been further conjectured that this reweighting
is the best possible for pruning. A proof of these conjectures will require a careful
mathematical analysis of pruning.

The result 91 is an integrated recognition transducer that can be constructed
even in very large-vocabulary tasks and leads to a substantial reduction of the
recognition time as shown by our experimental results. Speech recognition is
thus reduced to the simple Viterbi beam search described in the previous section
applied to .

Version June 23, 2004

Notes 225

In some applications such as for spoken-dialog systems, one may wish to
modify the input grammar or language model & as the dialog proceeds to ex-
ploit the context information provided by previous interactions. This may be
to activate or deactivate certain parts of the grammar. For example, after a
request for a location, the date sub-grammar can be made inactive to reduce
alternatives.

The offline optimization techniques just described can sometimes be ex-
tended to the cases where the changes to the grammar & are pre-defined and
limited. The grammar can then be factored into sub-grammars and an op-
timized recognition transducer is created for each. When deeper changes are
expected to be made to the grammar as the dialog proceeds, each component
transducer can still be optimized using determinization and minimization and
the recognition transducer 91 can be constructed on-demand using an on-the-fly
composition. States and transitions of 91 are then expanded as needed for the
recognition of each utterance.

This concludes our presentation of the application of weighted transducer
algorithms to speech recognition. There are many other applications of these
algorithms in speech recognition, including their use for the optimization of the
word or phone lattices output by the recognizer that cannot be covered in this
short chapter.

We presented several recent weighted finite-state transducer algorithms and
described their application to the design of large-vocabulary speech recognition
systems where weighted transducers of several hundred million states and tran-
sitions are manipulated. The algorithms described can be used in a variety of
other natural language processing applications such as information extraction,
machine translation, or speech synthesis to create efficient and complex sys-
tems. They can also be applied to other domains such as image processing,
optical character recognition, or bioinformatics, where similar statistical models
are adopted.

Notes

Much of the theory of weighted automata and transducers and their mathe-
matical counterparts, rational power series, was developed several decades ago.
Excellent reference books for that theory are Eilenberg (1974), Salomaa and
Soittola (1978), Berstel and Reutenauer (1984) and Kuich and Salomaa (1986).

Some essential weighted transducer algorithms such as those presented in
this chapter, e.g., composition, determinization, and minimization of weighted
transducers are more recent and raise new questions, both theoretical and algo-
rithmic. These algorithms can be viewed as the generalization to the weighted
case of the composition, determinization, minimization, and pushing algorithms
described in Chapter 1 Section 1.5. However, this generalization is not always
straightforward and has required a specific study.

The algorithm for the composition of weighted finite-state transducers was
given by Pereira and Riley (1997) and Mohri, Pereira, and Riley (1996). The

Version June 23, 2004

226 Statistical Natural Language Processing

composition filter described in this chapter can be refined to exploit information
about the composition states, e.g., the finality of a state or whether only e-
transitions or only non e-transitions leave that state, to reduce the number of
non-coaccessible states created by composition.

The generic determinization algorithm for weighted automata over weakly
left divisible left semirings presented in this chapter as well as the study of
the determinizability of weighted automata are from Mohri (1997). The deter-
minization of (unweighted) finite-state transducers can be viewed as a special
instance of this algorithm. The definition of the twins property was first formu-
lated for finite-state transducers by Choffrut (see Berstel (1979) for a modern
presentation of that work). The generalization to the case of weighted automata
over the tropical semiring is from Mohri (1997). A more general definition for
a larger class of semirings, including the case of finite-state transducers, as well
as efficient algorithms for testing the twins property for weighted automata and
transducers under some general conditions is presented by Allauzen and Mohri
(2003).

The weight pushing algorithm and the minimization algorithm for weighted
automata were introduced by Mohri 1997. The general definition of shortest-
distance and that of k-closed semirings and the generic shortest-distance algo-
rithm mentioned appeared in Mohri (2002). Efficient implementations of the
weighted automata and transducer algorithms described as well as many oth-
ers are incorporated in a general software library, AT&T FSM Library, whose
binary executables are available for download for non-commercial use (Mohri
et al. (2000)).

Bahl, Jelinek, and Mercer 1983 gave a clear statistical formulation of speech
recognition. An excellent tutorial on Hidden Markov Model and their applica-
tion to speech recognition was presented by Rabiner (1989). The problem of the
estimation of the probability of unseen sequences was originally studied by Good
1953 who gave a brilliant discussion of the problem and provided a principled
solution. The back-off n-gram statistical modeling is due to Katz (1987). See
Lee (1990) for a study of the benefits of the use of context-dependent models in
speech recognition.

The use of weighted finite-state transducers representations and algorithms
in statistical natural language processing was pioneered by Pereira and Riley
(1997) and Mohri (1997). Weighted transducer algorithms, including those de-
scribed in this chapter, are now widely used for the design of large-vocabulary
speech recognition systems. A detailed overview of their use in speech recogni-
tion is given by Mohri, Pereira, and Riley (2002). Sproat 1997 and Allauzen,
Mohri, and Riley 2004 describe the use of weighted transducer algorithms in the
design of modern speech synthesis systems. Weighted transducers are used in a
variety of other applications. Their recent use in image processing is described
by Culik IT and Kari (1997).

Version June 23, 2004

