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Bayesian Learning



Bayes’ Formula/Rule
B Terminology:

likelihood  prior

Pr[X | Y] Pr[Y]

Pr[Y | X] =

- Pr| X
posterior .

probability evidence
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Loss Function

®m Definition: function L: ) x Y — R, indicating the
penalty for an incorrect prediction.

® L(y,y): loss for prediction of ¥ instead of y.

B Examples:

® zero-one loss: standard loss function in
classification; L(y,y’) = 1,2, fory,y" € Y.

® non-symmetric losses: e.g., for spam

—_—

classification; L(@, spam) < L(spam, ham).

® squared loss: standard loss function in
regression; L(y,y') = (y —y)*.

Mehryar Mohri - Introduction to Machine Learning page 4



Classification Problem

® |nput space X :e.g., set of documents.
e feature vector ®(z) € R" associated toz € X.
® notation: feature vector x € RY.
® example: vector of word counts in document.

® Output or target space ): set of classes; e.g., sport,

business, art.

® Problem: given x, predict the correct classy € V
associated tox.
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Bayesian Prediction

B Definition: the expected conditional loss of
predictingy € ) is

LIyl =) L(7,y) Prlylx].
yey

B Bayesian decision: predict class minimizing
expected conditional loss, that is

y* = argmin L[y|x| = argmin Z L(y,y) Prly|x].
® zero-one loss: y™ = argmax Pr|y|x].
y
—>» Maximum a Posteriori (MAP) principle.
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Binary Classification - lllustration

Prly, | x]
Prlys | x|
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Maximum a Posteriori (MAP)

® Definition: the MAP principle consists of predicting
according to the rule

y = argmax Pr|y|x].
yey

® Equivalently, by the Bayes formula:

P P
y = argmax rixly] Prly =|argmax Pr[x|y| Pr|y]|
yey PT[X] yey

—» How do we determine Pr[x|y]| and Pr|y]| ?
Density estimation problem.
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Application - Maximum a Posteriori

B Formulation: hypothesis set .

) Pr[O|h]Pr[h
h = argmax Pr[h|O] = argmax rlO[A[PriA] = argmax Pr[O|h|Pr[h].
heH heH Pr|O] heH

B Example: determine if a patient has a rare
disease H={d, nd}, given laboratory test O={pos, neg}.
With Pr[d] =.005, Pr[pos|d] = .98, Pr[neg|nd] = .95, if the test
is positive, what should be the diagnosis?

Pr|pos|d] Pr|d]=.98 x .005=.0049.
Prlpos|nd| Pr[nd]=(1 — .95) x .(1 — .005)=.04975 > .0049.
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Density Estimation

® Data: sample drawn i.i.d. from set X according to
some distribution D),

T1yenorTim € X.

® Problem: find distribution p out of a set P that
best estimates ).

® Note: we will study density estimation
specifically in a future lecture.
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Maximum Likelihood

| Likelihood: probability of observing sample under
distribution p € P, which, given the independence
assumption is

Prlzy,...,zm] = Hp(a:z)

B Principle: select distribution maximizing sample
probability

m
P = argmax Hp(%),
PEP =1

m
or Py = argmaxz log p(x;).
PeEP =1
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Example: Bernoulli Trials

® Problem: find most likely Bernoulli distribution,
given sequence of coin flips

HT,T.HT HT H HHT.T,... H.
m Bernoulli distribution: p(H) =6,p(T) =1 — 6.

® Likelihood: I(p) = log 6N ) (1 — §)N(T)
= N(H)logf + N(T)log(1 —6).
®m Solution: [ is differentiable and concave;

di(p) _ N(H) N(T) _ .

do 0 1—0 N(H)+ N(T)
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Example: Gaussian Distribution

B Problem: find most likely Gaussian distribution,
given sequence of real-valued observations

3.18,2.35,.95,1.175, . ..

1 L 2
B Normal distribution: p(x) = exp Gt ) .
202 20°
oali : 1 2 — (i — p)?
B Likelihood: |(p) = —§mlog(27m ) — ; T

®m Solution: [is differentiable and concave;

Op(x) 1 Zm Op(z) 1
— O <> = — i — 2 — 2 . 2.
o - mi:laz o2 V<o mzx@ a

Mehryar Mohri - Introduction to Machine Learning page |3



ML Properties

B Problems:

® the underlying distribution may not be among
those searched.

® overfitting: number of examples too small wrt
number of parameters.

® Pr[y] =0 if class y does not appear in sample!

—» smoothing techniques.
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Additive Smoothing

B Definition: the additive or Laplace smoothing for

estimating Pr[y], ¥y € )V, from a sample of size m is
defined by
yl + o

m+ a|Y|
a = 0: ML estimator (MLE).

MLE after adding o to the count of each class.

Prly] =

Bayesian justification based on Dirichlet prior.

poor performance for some applications, such as
n-gram language modeling.
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Estimation Problem

® Conditional probability: Pr|x | y] = Pr|x1,...,zn | y].

® for large N, number of features, difficult to
estimate.

® even if features are Boolean, that is z; € {0,1},
there are 2" possible feature vectors!

—>» may need very large sample.
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Naive Bayes

B Conditional independence assumption: for
any y € ),

Prizy,...,an [y] = Prlz. [ y]... Prlzy |yl

® given the class, the features are assumed to be
independent.

® strong assumption, typically does not hold.
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Example - Document Classification

B Features: presence/absence of word z;.

| Estimation of Pr(z; | y|: frequency of word z; among
documents labeled with v, or smooth estimate.

| Estimation of Pr[y|: frequency of classy in sample.

m C(Classification:
N

y = argmax Pr|y] H Prlz; | y.
yey i=1
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Naive Bayes - Binary Classification

® Classes:y = {-1,+1}

® Decision based on sign of log Pr{ I % in terms of
log-odd ratios:
Pr|+1 | x| Pr|+1| Pr|x | +1]
log = log ———
Pr|—1 | x| Pr|—1| Pr|x | —1]
| Pr|+1] fil Prlz; | +1]
= 108 — ——
Pr{—1 fil Prlz; | —1]
.. N
Pr|+1 Prlz; | +1]
=] —— l .
08 Pr|—1] z_: 08 Prlz; | —1]

contribution of feature/expert ¢ to decision/
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Naive Bayes = Linear Classifier

® Theorem:assume that z; € {0,1}for all i € [1, N].
Then, the Naive Bayes classifier is defined by

X — sgn(w - x + b),

Priz;=1|+1] Pr[a;=0]+1]
where w; = log Pr-wz_” i1 — 108 bz, o1
B Pr[+ PI‘ [z;=0|4+1]
and b= 10g Pr_—l - Zz 1 PI‘ [x;=0|—-1]"

® Proof: observe that for any i € [1, N,

Prrs | 1] _ (1 Prles =111y, Pels =0 41
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Summary

| Bayesian prediction:
® requires solving density estimation problems.
e often difficult to estimate Pr[x | y] for x € RY,

® but, simple and easy to apply; widely used.

® Naive Bayes:

® strong assumption.

® straightforward estimation problem.
® specific linear classifier.
o

sometimes surprisingly good performance.
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