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Reinforcement Learning

Agent exploring environment.

Interactions with environment:

Problem: find action policy that maximizes 
cumulative reward over the course of interactions.

EnvironmentAgent

action

state

reward
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Key Features

Contrast with supervised learning: 

• no explicit labeled training data.

• distribution defined by actions taken.
Delayed rewards or penalties.
RL trade-off:

• exploration (of unknown states and actions) to 
gain more reward information; vs.

• exploitation (of known information) to optimize 
reward.
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Applications

Robot control e.g., Robocup Soccer Teams (Stone et 

al., 1999), helicopter flight, autonomous driving.

Board games, e.g., TD-Gammon (Tesauro, 1995), Go 
(Silver et al., 2016).

Elevator scheduling (Crites and Barto, 1996).

Ads placement, patient treatment.

Telecommunications.

Inventory management.

Dynamic radio channel assignment.
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This Lecture

Markov Decision Processes (MDPs)

Planning

Learning

Multi-armed bandit problem
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Markov Decision Process (MDP)

Definition:  a Markov Decision Process is defined by:

• a set of decision epochs              .

• a set of states   , possibly infinite.

• a start state or initial state    ;

• a set of actions   , possibly infinite.

• a transition probability              : distribution over 
destination states               .

• a reward probability              : distribution over 
rewards returned               .
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Model

State observed at time   : 

Action taken at time   :

State reached                    .

Reward received:                     .
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t st � S.

t at � A.

st st+1 st+2

at/rt+1 at+1/rt+2

EnvironmentAgent

action

state

reward
st+1 =�(st, at)

rt+1 =r(st, at)
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MDPs - Properties

Finite MDPs:    and   finite sets.

Finite horizon when         .

Reward          : often deterministic function.
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Example - Robot Picking up Balls

start  search/[.1, R1]

other

search/[.9, R1]  carry/[.5, R3]

carry/[.5, -1] pickup/[1, R2]
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Policy

Definition: a policy is a mapping 

Objective: find policy    maximizing expected 
return.

• finite horizon return:                          .

• infinite horizon return:                            .

Theorem: for any finite MDP, there exists an 
optimal policy (for any start state).
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Policy Value

Definition: the value of a policy   at state   is

• finite horizon:

• infinite horizon: discount factor            ,

Problem: find policy    with maximum value for all 
states.
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Policy Evaluation

Analysis of policy value:

Bellman equations (system of linear equations):
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Bellman Equation - Existence and Uniqueness

Notation:

• transition probability matrix 

• value column matrix

• expected reward column matrix: 

Theorem: for a finite MDP, Bellman’s equation 
admits a unique solution given by

13

Ps,s� =Pr[s�|s, �(s)].

V0 =(I� �P)�1R.

V=V�(s).

R=E[r(s, �(s)].
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Bellman Equation - Existence and Uniqueness

Proof: Bellman’s equation rewritten as 

•    is a stochastic matrix, thus,

• This implies that                       The eigenvalues 
of      are all less than one and             is 
invertible.

Notes: general shortest distance problem (MM, 2002).
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Optimal Policy

Definition: policy     with maximal value for all 
states 

• value of     (optimal value):

• optimal state-action value function: expected 
return for taking action   at state   and then 
following optimal policy.
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Optimal Values - Bellman Equations

Property: the following equalities hold:

Proof: by definition, for all   ,                              . 

• If  for some   we had                             , then 
maximizing action would define a better policy.

Thus,
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This Lecture

Markov Decision Processes (MDPs)

Planning

Learning

Multi-armed bandit problem
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Known Model

Setting: environment model known.

Problem: find optimal policy.

Algorithms:

• value iteration.

• policy iteration.

• linear programming.

18
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Value Iteration Algorithm

19

ValueIteration(V0)
1 V � V0 � V0 arbitrary value
2 while �V��(V)� � (1��)�

� do
3 V � �(V)
4 return �(V)

�(V) = max
�

{R� + �P�V}.

�(V)(s) = max
a�A

�
E[r(s, a)] + �

�

s��S

Pr[s�|s, a]V (s�)
�

.
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VI Algorithm - Convergence

Theorem: for any initial value     , the sequence 
defined by                     converge to    .
Proof: we show that     is   -contracting for         
existence and uniqueness of fixed point for    .

• for any        , let         be the maximizing action 
defining             . Then, for         and any    ,
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Complexity and Optimality

Complexity: convergence in             . Observe that

 -Optimality: let         be the value returned. Then,
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VI Algorithm - Example

1

a/[3/4, 2]

2

a/[1/4, 2]

b/[1, 2]
d/[1, 3]

c/[1, 2]

Vn+1(1) = max
�
2 + �

�3
4
Vn(1) +

1
4
Vn(2)

�
, 2 + �Vn(2)

�

Vn+1(2) = max
�
3 + �Vn(1), 2 + �Vn(2)

�
.

For                                             ,V0(1) = �1,V0(2) = 1, � = 1/2 V1(1) = V1(2) = 5/2.

But,                                             
,

V�(1) = 14/3,V�(2) = 16/3.
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Policy Iteration Algorithm

23

PolicyIteration(�0)
1 � � �0 � �0 arbitrary policy
2 �� � nil
3 while (� �= ��) do
4 V� V� � policy evaluation: solve (I� �P�)V = R�.
5 �� � �
6 � � argmax�{R� + �P�V} � greedy policy improvement.
7 return �
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PI Algorithm - Convergence

Theorem: let             be the sequence of policy 
values computed by the algorithm, then,

Proof: let        be the policy improvement at the   th 
iteration, then, by definition,

• therefore, 

• note that                      preserves ordering:

• thus, 
24

(Vn)n�N

Vn � Vn+1 � V�.

�n+1 n

R�n+1 + �P�n+1Vn � R�n + �P�nVn = Vn.

R�n+1 � (I� �P�n+1)Vn.

X � 0� (I� �P�n+1)�1X =
��

k=0(�P�n+1)kX � 0.

(I� �P�n+1)�1

Vn+1 = (I� �P�n+1)
�1R�n+1 � Vn.
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Notes

Two consecutive policy values can be equal only at 
last iteration.
The total number of possible policies is        , thus, 
this is the maximal possible number of iterations.

• best upper bound known             .

25

|A||S|

O
� |A||S|

|S|
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PI Algorithm - Example

1

a/[3/4, 2]

2

a/[1/4, 2]

b/[1, 2]
d/[1, 3]

c/[1, 2]

Initial policy:                            .
V�0(1) = 1 + �V�0(2)
V�0(2) = 2 + �V�0(2).

�0(1) = b, �0(2) = c

Evaluation:

Thus,V�0(1) =
1 + �

1� �
V�0(2) =

2
1� �

.
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VI and PI Algorithms - Comparison

Theorem: let             be the sequence of policy 
values generated by the VI algorithm, and             
the one generated by the PI algorithm. If            , 
then,

Proof: we first show that    is monotonic. Let     
and    be such that           and let    be the policy 
such that                              . Then,
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(Un)n�N
(Vn)n�N
U0 =V0

�n � N, Un � Vn � V�.

� U
V U � V �

�(U) = R� + �P�U

�(U) � R� + �P�V � max
��

{R�
� + �P�

�V} = �(V).



pageMehryar Mohri - Foundations of Machine Learning

VI and PI Algorithms - Comparison

• The proof is by induction on   . Assume             , 
then, by the monotonicity of    ,

• Let        be the maximizing policy:

• Then, 
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n Un�Vn

�

Un+1 = �(Un) � �(Vn) = max
�

{R� + �P�Vn}.

�n+1

�n+1 = argmax
�

{R� + �P�Vn}.

�(Vn) = R�n+1 + �P�n+1Vn � R�n+1 + �P�n+1Vn+1 = Vn+1.



pageMehryar Mohri - Foundations of Machine Learning

Notes

The PI algorithm converges in a smaller number of 
iterations than the VI algorithm due to the optimal 
policy.

But, each iteration of the PI algorithm requires 
computing a policy value, i.e., solving a system of 
linear equations, which is more expensive to 
compute that an iteration of the VI algorithm.

29
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Primal Linear Program

LP formulation: choose            , with                .

Parameters:

• number rows:         .

• number of columns:     .

30

|S||A|
|S|

min
V

�

s�S

�(s)V (s)

subject to �s � S, �a � A, V (s) � E[r(s, a)] + �
�

s��S

Pr[s�|s, a]V (s�).

�(s)>0
�

s �(s)=1
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Dual Linear Program

LP formulation:

Parameters: more favorable number of rows.

• number rows:     .

• number of columns:          .

31

|S|
|S||A|

max
x

�

s�S,a�A

E[r(s, a)] x(s, a)

subject to �s � S,
�

a�A

x(s�, a) = �(s�) + �
�

s�S,a�A

Pr[s�|s, a] x(s�, a)

�s � S, �a � A, x(s, a) � 0.
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This Lecture

Markov Decision Processes (MDPs)

Planning

Learning

Multi-armed bandit problem
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Problem

Unknown model:

• transition and reward probabilities not known.

• realistic scenario in many practical problems, e.g., 
robot control.

Training information: sequence of immediate 
rewards based on actions taken.
Learning approches:

• model-free: learn policy directly.

• model-based: learn model, use it to learn policy.

33
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Learning Approaches

Two broad families:

• model-based approaches: use samples based on 
interactions to learn  and  explicitly; next, use 
value iteration to learn policy.

• model-free approaches: do not seek to learn 
model; instead, use samples to learn  function; 
policy readily derived from .

P r

Q
Q

34
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Problem

How do we estimate reward and transition 
probabilities?

• use equations derived for policy value and Q-
functions.

• but, equations given in terms of some 
expectations.

•        instance of a stochastic approximation 
problem.

35



pageMehryar Mohri - Foundations of Machine Learning

Stochastic Approximation

Problem: find solution of              with           while        

•         cannot be computed, e.g.,    not accessible;

• i.i.d. sample of noisy observations               , 
available,             , with            .

Idea: algorithm based on iterative technique:

• more generally                                   .

36

x=H(x) x�RN

H(x) H

H(xi)+wi

i� [1, m] E[w]=0

xt+1 = (1� �t)xt + �t[H(xt) + wt]
= xt + �t[H(xt) + wt � xt].

xt+1 = xt + �tD(xt,wt)



pageMehryar Mohri - Foundations of Machine Learning

Mean Estimation

Theorem: Let    be a random variable taking values 
in       and let                be i.i.d. values of   . Define 
the sequence             by                                

37

X
[0, 1] X

µm
a.s��� E[X ].

�m� [0, 1]Then, for              , with                  and

(µm)m�N

x0, . . . , xm

�

m�0

�m =+�

µm+1=(1�↵m)µm+↵mxm with µ0=x0.
X

m�0

↵2
m<+1,
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Proof

Proof: By the independence assumption, for         ,

• We have            since                       .

• Let        and suppose there exists         such that 
for all         ,                . Then, for          ,
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Var[µm+1] = (1� �m)2Var[µm] + �2
mVar[xm]

� (1� �m)Var[µm] + �2
m.

�m�0
�

m�0 �2
m <+�

m�0

which implies

�>0 N �N
m�N Var[µm]��

Var[µm+1] � Var[µm]� �m� + �2
m,

contradicting                     .Var[µm+N ]�0

Var[µm+N ] � Var[µN ]� �
�m+N

n=N �n +
�m+N

n=N �2
n� �� �

��� when m��

,

m�N
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Mean Estimation

• Thus, for all         there exists           such that

• Therefore,           for all           (    convergence).

39

Choose    large enough so that 
Then, 

µm�� m�m0

N

N �N m0�N

Var[µm0 ]<�.
�m�N, �m��.

Var[µm0+1]�(1��m0)�+��m0=�.

L2
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Notes

special case:            .

• Strong law of large numbers.

Connection with stochastic approximation.

40

�m = 1
m
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TD(0) Algorithm

Idea: recall Bellman’s linear equations giving   

Algorithm: temporal difference (TD).

• sample new state   .

• update:    depends on number of visits of   .

41

V

V�(s) = E[r(s, �(s)] + �
�

s�

Pr[s�|s, �(s)]V�(s�)

= E
s�

�
r(s, �(s)) + �V�(s�)|s

�
.

s�

V (s)� (1 � �)V (s) + �[r(s, �(s)) + �V (s�)]
= V (s) + �[r(s, �(s)) + �V (s�)� V (s)� �� �

temporal di�erence of V values

].

� s
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TD(0) Algorithm

42

TD(0)()
1 V� V0 � initialization.
2 for t� 0 to T do
3 s� SelectState()
4 for each step of epoch t do
5 r� � Reward(s, �(s))
6 s� � NextState(�, s)
7 V (s)� (1� �)V (s) + �[r� + �V (s�)]
8 s� s�

9 return V
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Q-Learning Algorithm

Idea: assume deterministic rewards.

Algorithm:              depends on number of visits.

• sample new state   .

• update:

43

s�

� � [0, 1]

Q�(s, a) = E[r(s, a)] + �
�

s��S

Pr[s� | s, a]V �(s�)

= E
s�
[r(s, a) + � max

a�A
Q�(s�, a)]

<latexit sha1_base64="ew4/7ZO5gZyCZ/Fb3TkWM9t6ZVs="></latexit>

Q(s, a) (1� ↵)Q(s, a) + ↵[r(s, a) + �max
a02A

Q(s0, a0)].
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Q-Learning Algorithm

44

(Watkins, 1989; Watkins and Dayan 1992)

Q-Learning(�)
1 Q� Q0 � initialization, e.g., Q0 = 0.
2 for t� 0 to T do
3 s� SelectState()
4 for each step of epoch t do
5 a� SelectAction(�, s) � policy � derived from Q, e.g., �-greedy.
6 r� � Reward(s, a)
7 s� � NextState(s, a)
8 Q(s, a)� Q(s, a) + �

�
r� + � maxa� Q(s�, a�)�Q(s, a)

�

9 s� s�

10 return Q
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Notes

Can be viewed as a stochastic formulation of the 
value iteration algorithm.

Convergence for any policy so long as states and 
actions visited infinitely often and parameter 
chosen as in mean estimation theorem.

How to choose the action at each iteration? 
Maximize reward? Explore other actions? 

Q-learning is an off-policy method: no control over 
the policy; estimates and evaluates policy using 
experience from following different policy.

45
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Policies

Epsilon-greedy strategy:

• with probability       greedy action from   ;

• with probability   random action.

Epoch-dependent strategy (Boltzmann exploration):

•          : greedy selection.

• larger    : random action.

46

1�� s

�

pt(a|s, Q) =
e

Q(s,a)
�t

�
a��A e

Q(s,a�)
�t

,

�t � 0
�t



pageMehryar Mohri - Foundations of Machine Learning

Convergence of Q-Learning

Theorem: consider a finite MDP. Assume that for 
all        and        ,                                               
with                    . Then, the Q-learning algorithm 
converges to the optimal value     (with probability 
one).

• note: the conditions on           impose that each 
state-action pair is visited infinitely many times.

47

Q�

s�S a�A
��

t=0 �t(s, a) =�,
��

t=0 �2
t (s, a) <�

�t(s, a)� [0, 1]

�t(s, a)
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This Lecture

Markov Decision Processes (MDPs)

Planning

Learning

Multi-armed bandit problem
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Multi-Armed Bandit Problem

Problem: gambler must decide which arm of a   
-slot machine to pull to maximize his total reward 
in a series of trials.

• stochastic setting:    lever reward distributions.

• adversarial setting: reward selected by adversary 
aware of all the past.

49

N

N

(Robbins, 1952)
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Applications

Clinical trials.

Adaptive routing.

Ads placement on pages.

Games.

50
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Multi-Armed Bandit Game

For        to    do

• adversary determines outcome         .

• player selects probability distribution     and pulls 
lever                    ,          .

• player incurs loss            (adversary is informed 
of    and   .

Objective: minimize regret

51

t=1 T

pt

L(It, yt)
pt

It�{1, . . . , N} It�pt

It

yt � Y

Regret(T ) =
T�

t=1

L(It, yt)� min
i=1,...,N

T�

t=1

L(i, yt).
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Notes

Player is informed only of the loss (or reward) 
corresponding to his own action.

Adversary knows past but not action selected.

Stochastic setting: loss                                drawn 
according to some distribution                            . 
Regret definition modified by taking expectations.

Exploration/Exploitation trade-off: playing the best 
arm found so far versus seeking to find an arm 
with a better payoff.

52

D = D1 � · · ·�DN

(L(1, yt), . . . , L(N, yt))
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Notes

Equivalent views:

• special case of learning with partial information.

• one-state MDP learning problem.

Simple strategy:   -greedy: play arm with best 
empirical reward with probability        , random 
arm with probability    .

53

�

1��t

�t
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Exponentially Weighted Average

Algorithm: Exp3, defined for           by

Guarantee: expected regret of 

54

pi,t = (1� �)
exp

�
� �

�t�1
s=1

�li,t
�

�N
i=1 exp

�
� �

�t�1
s=1

�li,t
� +

�

N
,

with

�, � >0

�i � [1, N ], �li,t = L(It,yt)
pIt,t

1It=i.

O(
�

NT log N).
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Exponentially Weighted Average

Proof: similar to the one for the Exponentially 
Weighted Average with the additional observation 
that:
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E[�li,t] =
�N

i=1 pi,t
L(It,yt)

pIt,t
1It=i = L(i, yt).
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