Foundations of Machine Learning Reinforcement Learning

Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Reinforcement Learning

- Agent exploring environment.
- Interactions with environment:

Problem: find action policy that maximizes cumulative reward over the course of interactions.

- Contrast with supervised learning:
 - no explicit labeled training data.
 - distribution defined by actions taken.
- Delayed rewards or penalties.
- RL trade-off:
 - exploration (of unknown states and actions) to gain more reward information; vs.
 - exploitation (of known information) to optimize reward.

Applications

- Robot control e.g., Robocup Soccer Teams (Stone et al., 1999), helicopter flight, autonomous driving.
- Board games, e.g., TD-Gammon (Tesauro, 1995), Go (Silver et al., 2016).
- Elevator scheduling (Crites and Barto, 1996).
- Ads placement, patient treatment.
- Telecommunications.
- Inventory management.
- Dynamic radio channel assignment.

Mehryar Mohri - Foundations of Machine Learning

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Markov Decision Process (MDP)

Definition: a Markov Decision Process is defined by:

- a set of decision epochs $\{0, \ldots, T\}$.
- a set of states S, possibly infinite.
- a start state or initial state s_0 ;
- a set of actions A, possibly infinite.
- a transition probability $\Pr[s'|s, a]$: distribution over destination states $s' = \delta(s, a)$.
- a reward probability $\Pr[r'|s, a]$: distribution over rewards returned r' = r(s, a).

Model

- State observed at time $t : s_t \in S$.
- Action taken at time $t : a_t \in A$.
- State reached $s_{t+1} = \delta(s_t, a_t)$.
- **Reward received:** $r_{t+1} = r(s_t, a_t)$.

MDPs - **Properties**

- Finite MDPs: A and S finite sets.
- Finite horizon when $T < \infty$.
- **Reward** r(s, a) : often deterministic function.

Example - Robot Picking up Balls

Policy

- **Definition:** a policy is a mapping $\pi \colon S \to A$.
- Objective: find policy π maximizing expected return.
 - finite horizon return: $\sum_{t=0}^{T-1} r(s_t, \pi(s_t))$.
 - infinite horizon return: $\sum_{t=0}^{+\infty} \gamma^t r(s_t, \pi(s_t))$.
- Theorem: for any finite MDP, there exists an optimal policy (for any start state).

Policy Value

- **Definition:** the value of a policy π at state s is
 - finite horizon:

$$V_{\pi}(s) = \mathbf{E}\left[\sum_{t=0}^{T-1} r(s_t, \pi(s_t)) \middle| s_0 = s\right]$$

• infinite horizon: discount factor $\gamma\!\in\![0,1)$,

$$V_{\pi}(s) = \mathbf{E}\left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t}, \pi(s_{t})) \middle| s_{0} = s\right].$$

Problem: find policy π with maximum value for all states.

Policy Evaluation

Analysis of policy value:

$$V_{\pi}(s) = \mathbf{E} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t}, \pi(s_{t})) \middle| s_{0} = s \right].$$

= $\mathbf{E}[r(s, \pi(s))] + \gamma \mathbf{E} \left[\sum_{t=0}^{+\infty} \gamma^{t} r(s_{t+1}, \pi(s_{t+1})) \middle| s_{0} = s \right].$

$$= \mathbf{E}[r(s, \pi(s)] + \gamma \mathbf{E}[V_{\pi}(\delta(s, \pi(s)))].$$

Bellman equations (system of linear equations):

$$V_{\pi}(s) = E[r(s, \pi(s)] + \gamma \sum_{s'} \Pr[s'|s, \pi(s)] V_{\pi}(s').$$

Bellman Equation - Existence and Uniqueness

Notation:

- transition probability matrix $\mathbf{P}_{s,s'} = \Pr[s'|s, \pi(s)]$.
- value column matrix $\mathbf{V} = V_{\pi}(s)$.
- expected reward column matrix: $\mathbf{R} = \mathbf{E}[r(s, \pi(s)]]$.
- Theorem: for a finite MDP, Bellman's equation admits a unique solution given by

$$\mathbf{V}_0 = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathbf{R}.$$

Bellman Equation - Existence and Uniqueness

Proof: Bellman's equation rewritten as

$$\mathbf{V} = \mathbf{R} + \gamma \mathbf{P} \mathbf{V}.$$

• P is a stochastic matrix, thus,

$$\|\mathbf{P}\|_{\infty} = \max_{s} \sum_{s'} |\mathbf{P}_{ss'}| = \max_{s} \sum_{s'} \Pr[s'|s, \pi(s)] = 1.$$

• This implies that $\|\gamma \mathbf{P}\|_{\infty} = \gamma < 1$. The eigenvalues of $\gamma \mathbf{P}$ are all less than one and $(\mathbf{I} - \gamma \mathbf{P})$ is invertible.

Notes: general shortest distance problem (MM, 2002).

Optimal Policy

- Definition: policy π^* with maximal value for all states $s \in S$.
 - value of π^* (optimal value):

$$\forall s \in S, V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s).$$

 optimal state-action value function: expected return for taking action a at states and then following optimal policy.

$$Q^*(s,a) = \mathbb{E}[r(s,a)] + \gamma \mathbb{E}[V^*(\delta(s,a))]$$
$$= \mathbb{E}[r(s,a)] + \gamma \sum_{s' \in S} \Pr[s' \mid s,a] V^*(s').$$

Optimal Values - Bellman Equations

Property: the following equalities hold:

$$\forall s \in S, \ V^*(s) = \max_{a \in A} Q^*(s, a).$$

Proof: by definition, for all s, $V^*(s) \le \max_{a \in A} Q^*(s, a)$.

• If for some s we had $V^*(s) < \max_{a \in A} Q^*(s, a)$, then maximizing action would define a better policy.

Thus,

$$V^*(s) = \max_{a \in A} \Big\{ \operatorname{E}[r(s,a)] + \gamma \sum_{s' \in S} \Pr[s'|s,a] V^*(s') \Big\}.$$

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Known Model

- Setting: environment model known.
- Problem: find optimal policy.
- Algorithms:
 - value iteration.
 - policy iteration.
 - linear programming.

Value Iteration Algorithm

$$\Phi(\mathbf{V})(s) = \max_{a \in A} \left\{ \operatorname{E}[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a] V(s') \right\}.$$

$$\Phi(\mathbf{V}) = \max_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \}.$$

VALUEITERATION(\mathbf{V}_0)

- 1 $\mathbf{V} \leftarrow \mathbf{V}_0 \quad \triangleright \mathbf{V}_0$ arbitrary value
- 2 while $\|\mathbf{V} \mathbf{\Phi}(\mathbf{V})\| \ge \frac{(1-\gamma)\epsilon}{\gamma} \mathbf{do}$
- 3 $\mathbf{V} \leftarrow \mathbf{\Phi}(\mathbf{V})$
- 4 return $\Phi(\mathbf{V})$

VI Algorithm - Convergence

- Theorem: for any initial value V_0 , the sequence defined by $V_{n+1} = \Phi(V_n)$ converge to V^* .
- Proof: we show that Φ is γ -contracting for $\|\cdot\|_{\infty}$ \longrightarrow existence and uniqueness of fixed point for Φ .
 - for any $s \in S$, let $a^*(s)$ be the maximizing action defining $\Phi(\mathbf{V})(s)$. Then, for $s \in S$ and any U,

$$\begin{aligned} \boldsymbol{\Phi}(\mathbf{V})(s) - \boldsymbol{\Phi}(\mathbf{U})(s) &\leq \boldsymbol{\Phi}(\mathbf{V})(s) - \left(\operatorname{E}[r(s, a^*(s))] + \gamma \sum_{s' \in S} \Pr[s' \mid s, a^*(s)] \mathbf{U}(s') \right) \\ &= \gamma \sum_{s' \in S} \Pr[s' \mid s, a^*(s)] [\mathbf{V}(s') - \mathbf{U}(s')] \\ &\leq \gamma \sum_{s' \in S} \Pr[s' \mid s, a^*(s)] \|\mathbf{V} - \mathbf{U}\|_{\infty} = \gamma \|\mathbf{V} - \mathbf{U}\|_{\infty}. \end{aligned}$$

Mehryar Mohri - Foundations of Machine Learning

Complexity and Optimality

Complexity: convergence in $O(\log \frac{1}{\epsilon})$. Observe that $\|\mathbf{V}_{n+1} - \mathbf{V}_n\|_{\infty} \leq \gamma \|\mathbf{V}_n - \mathbf{V}_{n-1}\|_{\infty} \leq \gamma^n \|\mathbf{\Phi}(\mathbf{V}_0) - \mathbf{V}_0\|_{\infty}$. Thus, $\gamma^n \|\mathbf{\Phi}(\mathbf{V}_0) - \mathbf{V}_0\|_{\infty} \leq \frac{(1-\gamma)\epsilon}{\gamma} \Rightarrow n = O\left(\log \frac{1}{\epsilon}\right)$.

• ϵ -Optimality: let V_{n+1} be the value returned. Then,

$$\begin{split} \|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} &\leq \|\mathbf{V}^* - \Phi(\mathbf{V}_{n+1})\|_{\infty} + \|\Phi(\mathbf{V}_{n+1}) - \mathbf{V}_{n+1}\|_{\infty} \\ &\leq \gamma \|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} + \gamma \|\mathbf{V}_{n+1} - \mathbf{V}_n\|_{\infty}. \end{split}$$
Thus,

$$\|\mathbf{V}^* - \mathbf{V}_{n+1}\|_{\infty} \leq \frac{\gamma}{1-\gamma} \|\mathbf{V}_{n+1} - \mathbf{V}_n\|_{\infty} \leq \epsilon.$$

VI Algorithm - Example

$$\begin{aligned} \mathbf{V}_{n+1}(1) &= \max\left\{2 + \gamma \left(\frac{3}{4}\mathbf{V}_n(1) + \frac{1}{4}\mathbf{V}_n(2)\right), 2 + \gamma \mathbf{V}_n(2)\right\} \\ \mathbf{V}_{n+1}(2) &= \max\left\{3 + \gamma \mathbf{V}_n(1), 2 + \gamma \mathbf{V}_n(2)\right\}. \end{aligned}$$

For $\mathbf{V}_0(1) = -1$, $\mathbf{V}_0(2) = 1$, $\gamma = 1/2$, $\mathbf{V}_1(1) = \mathbf{V}_1(2) = 5/2$
But, $\mathbf{V}^*(1) = 14/3$, $\mathbf{V}^*(2) = 16/3$.

Policy Iteration Algorithm

PolicyIteration(π_0)

- 1 $\pi \leftarrow \pi_0 \triangleright \pi_0$ arbitrary policy
- 2 $\pi' \leftarrow \text{NIL}$
- 3 while $(\pi \neq \pi')$ do
- 4 $\mathbf{V} \leftarrow \mathbf{V}_{\pi}$ > policy evaluation: solve $(\mathbf{I} \gamma \mathbf{P}_{\pi})\mathbf{V} = \mathbf{R}_{\pi}$. 5 $\pi' \leftarrow \pi$
- 6 $\pi \leftarrow \operatorname{argmax}_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \} \triangleright \operatorname{greedy policy improvement.}$
- 7 return π

Pl Algorithm - Convergence

Theorem: $let(V_n)_{n \in \mathbb{N}}$ be the sequence of policy values computed by the algorithm, then,

$$\mathbf{V}_n \leq \mathbf{V}_{n+1} \leq \mathbf{V}^*$$

Proof: let π_{n+1} be the policy improvement at the *n*th iteration, then, by definition,

$$\mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_n \ge \mathbf{R}_{\pi_n} + \gamma \mathbf{P}_{\pi_n} \mathbf{V}_n = \mathbf{V}_n.$$

- therefore, $\mathbf{R}_{\pi_{n+1}} \geq (\mathbf{I} \gamma \mathbf{P}_{\pi_{n+1}}) \mathbf{V}_n$.
- note that $(\mathbf{I} \gamma \mathbf{P}_{\pi_{n+1}})^{-1}$ preserves ordering: $\mathbf{X} \ge \mathbf{0} \Rightarrow (\mathbf{I} - \gamma \mathbf{P}_{\pi_{n+1}})^{-1} \mathbf{X} = \sum_{k=0}^{\infty} (\gamma \mathbf{P}_{\pi_{n+1}})^k \mathbf{X} \ge \mathbf{0}.$
- thus, $\mathbf{V}_{n+1} = (\mathbf{I} \gamma \mathbf{P}_{\pi_{n+1}})^{-1} \mathbf{R}_{\pi_{n+1}} \ge \mathbf{V}_n$.

Notes

- Two consecutive policy values can be equal only at last iteration.
- The total number of possible policies is $|A|^{|S|}$, thus, this is the maximal possible number of iterations.
 - best upper bound known $O(\frac{|A|^{|S|}}{|S|})$.

Pl Algorithm - Example

Initial policy:
$$\pi_0(1) = b, \pi_0(2) = c$$
.
Evaluation: $V_{\pi_0}(1) = 1 + \gamma V_{\pi_0}(2)$
 $V_{\pi_0}(2) = 2 + \gamma V_{\pi_0}(2)$.
Thus, $V_{\pi_0}(1) = \frac{1+\gamma}{1-\gamma}$ $V_{\pi_0}(2) = \frac{2}{1-\gamma}$.

Mehryar Mohri - Foundations of Machine Learning

VI and PI Algorithms - Comparison

- Theorem: let $(\mathbf{U}_n)_{n \in \mathbb{N}}$ be the sequence of policy values generated by the VI algorithm, and $(\mathbf{V}_n)_{n \in \mathbb{N}}$ the one generated by the PI algorithm. If $\mathbf{U}_0 = \mathbf{V}_0$, then, $\forall n \in \mathbb{N}, \ \mathbf{U}_n < \mathbf{V}_n < \mathbf{V}^*$.
- Proof: we first show that Φ is monotonic. Let U and V be such that $U \leq V$ and let π be the policy such that $\Phi(U) = \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{U}$. Then,

$$\Phi(\mathbf{U}) \leq \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V} \leq \max_{\pi'} \{ \mathbf{R}_{\pi}' + \gamma \mathbf{P}_{\pi}' \mathbf{V} \} = \Phi(\mathbf{V}).$$

VI and PI Algorithms - Comparison

• The proof is by induction on n. Assume $U_n \leq V_n$, then, by the monotonicity of Φ ,

 $\mathbf{U}_{n+1} = \mathbf{\Phi}(\mathbf{U}_n) \le \mathbf{\Phi}(\mathbf{V}_n) = \max_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V}_n \}.$

• Let π_{n+1} be the maximizing policy:

$$\pi_{n+1} = \operatorname*{argmax}_{\pi} \{ \mathbf{R}_{\pi} + \gamma \mathbf{P}_{\pi} \mathbf{V}_n \}.$$

• Then,

$$\Phi(\mathbf{V}_n) = \mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_n \le \mathbf{R}_{\pi_{n+1}} + \gamma \mathbf{P}_{\pi_{n+1}} \mathbf{V}_{n+1} = \mathbf{V}_{n+1}.$$

Notes

- The PI algorithm converges in a smaller number of iterations than the VI algorithm due to the optimal policy.
- But, each iteration of the PI algorithm requires computing a policy value, i.e., solving a system of linear equations, which is more expensive to compute that an iteration of the VI algorithm.

Primal Linear Program

• LP formulation: choose $\alpha(s) > 0$, with $\sum_{s} \alpha(s) = 1$.

$$\min_{\mathbf{V}} \quad \sum_{s \in S} \alpha(s) V(s)$$

subject to $\forall s \in S, \forall a \in A, V(s) \ge E[r(s, a)] + \gamma \sum_{s' \in S} \Pr[s'|s, a] V(s').$

Parameters:

- number rows: |S||A|.
- number of columns: |S|.

Dual Linear Program

LP formulation:

$$\max_{\mathbf{x}} \sum_{s \in S, a \in A} \mathbb{E}[r(s, a)] x(s, a)$$

subject to $\forall s \in S, \sum_{a \in A} x(s', a) = \alpha(s') + \gamma \sum_{s \in S, a \in A} \Pr[s'|s, a] x(s', a)$
 $\forall s \in S, \forall a \in A, x(s, a) \ge 0.$

Parameters: more favorable number of rows.

- number rows: |S|.
- number of columns: |S||A| .

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Problem

- Unknown model:
 - transition and reward probabilities not known.
 - realistic scenario in many practical problems, e.g., robot control.
- Training information: sequence of immediate rewards based on actions taken.
- Learning approches:
 - model-free: learn policy directly.
 - model-based: learn model, use it to learn policy.

Learning Approaches

- Two broad families:
 - model-based approaches: use samples based on interactions to learn P and r explicitly; next, use value iteration to learn policy.
 - model-free approaches: do not seek to learn model; instead, use samples to learn Q function; policy readily derived from Q.

Problem

- How do we estimate reward and transition probabilities?
 - use equations derived for policy value and Qfunctions.
 - but, equations given in terms of some expectations.
 - instance of a stochastic approximation problem.

Stochastic Approximation

Problem: find solution of $\mathbf{x} = H(\mathbf{x})$ with $\mathbf{x} \in \mathbb{R}^N$ while

- $H(\mathbf{x})$ cannot be computed, e.g., H not accessible;
- i.i.d. sample of noisy observations $H(\mathbf{x}_i) + \mathbf{w}_i$, available, $i \in [1, m]$, with $E[\mathbf{w}] = 0$.
- Idea: algorithm based on iterative technique:

$$\mathbf{x}_{t+1} = (1 - \alpha_t)\mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t]$$
$$= \mathbf{x}_t + \alpha_t[H(\mathbf{x}_t) + \mathbf{w}_t - \mathbf{x}_t].$$

• more generally $\mathbf{x}_{t+1} = \mathbf{x}_t + \alpha_t D(\mathbf{x}_t, \mathbf{w}_t)$.

Mean Estimation

Theorem: Let X be a random variable taking values in [0, 1] and let x_0, \ldots, x_m be i.i.d. values of X. Define the sequence $(\mu_m)_{m \in \mathbb{N}}$ by

$$\mu_{m+1} = (1 - \alpha_m)\mu_m + \alpha_m x_m \quad \text{with } \mu_0 = x_0.$$

$$\text{Then, for } \alpha_m \in [0, 1] \text{, with} \sum_{m \ge 0} \alpha_m = +\infty \text{ and} \sum_{m \ge 0} \alpha_m^2 < +\infty,$$

$$\mu_m \xrightarrow{\mathrm{a.s}} \mathrm{E}[X].$$

Proof

Proof: By the independence assumption, for $m \ge 0$, $\operatorname{Var}[\mu_{m+1}] = (1 - \alpha_m)^2 \operatorname{Var}[\mu_m] + \alpha_m^2 \operatorname{Var}[x_m]$ $\leq (1 - \alpha_m) \operatorname{Var}[\mu_m] + \alpha_m^2.$

- We have $\alpha_m \to 0$ since $\sum_{m \ge 0} \alpha_m^2 < +\infty$.
- Let $\epsilon > 0$ and suppose there exists $N \in \mathbb{N}$ such that for all $m \ge N$, $\operatorname{Var}[\mu_m] \ge \epsilon$. Then, for $m \ge N$, $\operatorname{Var}[\mu_{m+1}] \le \operatorname{Var}[\mu_m] - \alpha_m \epsilon + \alpha_m^2$,

which implies $\operatorname{Var}[\mu_{m+N}] \leq \underbrace{\operatorname{Var}[\mu_N] - \epsilon \sum_{n=N}^{m+N} \alpha_n + \sum_{n=N}^{m+N} \alpha_n^2}_{N}$

contradicting $\operatorname{Var}[\mu_{m+N}] \ge 0$.

Mean Estimation

- Thus, for all $N \in \mathbb{N}$ there exists $m_0 \ge N$ such that $\operatorname{Var}[\mu_{m_0}] < \epsilon$. Choose N large enough so that $\forall m \ge N, \alpha_m \le \epsilon$. Then, $\operatorname{Var}[\mu_{m_0+1}] \le (1-\alpha_{m_0})\epsilon + \epsilon \alpha_{m_0} = \epsilon$.
- Therefore, $\mu_m \leq \epsilon$ for all $m \geq m_0$ (L_2 convergence).

Notes

- special case: $\alpha_m = \frac{1}{m}$.
 - Strong law of large numbers.
- Connection with stochastic approximation.

TD(0) Algorithm

Idea: recall Bellman's linear equations giving V

$$V_{\pi}(s) = \operatorname{E}[r(s,\pi(s)] + \gamma \sum_{s'} \Pr[s'|s,\pi(s)] V_{\pi}(s')$$
$$= \operatorname{E}_{s'} \left[r(s,\pi(s)) + \gamma V_{\pi}(s')|s \right].$$

- Algorithm: temporal difference (TD).
 - sample new state s'.
 - update: α depends on number of visits of s. $V(s) \leftarrow (1 - \alpha)V(s) + \alpha[r(s, \pi(s)) + \gamma V(s')]$ $= V(s) + \alpha[r(s, \pi(s)) + \gamma V(s') - V(s)].$

temporal difference of V values

TD(0) Algorithm

TD(0)()

- $\mathbf{V} \leftarrow \mathbf{V}_0 \triangleright \text{initialization}.$ 1 $\mathbf{2}$ for $t \leftarrow 0$ to T do $s \leftarrow \text{SELECTSTATE}()$ 3 for each step of epoch t do 4 5 $r' \leftarrow \text{REWARD}(s, \pi(s))$ $s' \leftarrow \text{NEXTSTATE}(\pi, s)$ 6 $V(s) \leftarrow (1 - \alpha)V(s) + \alpha[r' + \gamma V(s')]$ 7 $s \leftarrow s'$ 8
- 9 return V

Q-Learning Algorithm

Idea: assume deterministic rewards.

$$Q^*(s, a) = \mathbb{E}[r(s, a)] + \gamma \sum_{\substack{s' \in S}} \Pr[s' \mid s, a] V^*(s')$$
$$= \mathbb{E}_{s'}[r(s, a) + \gamma \max_{a \in A} Q^*(s', a)]$$

- Algorithm: $\alpha \in [0, 1]$ depends on number of visits.
 - sample new state s'.
 - update:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[r(s,a) + \gamma \max_{a' \in A} Q(s',a')].$$

Q-Learning Algorithm

(Watkins, 1989; Watkins and Dayan 1992)

Q-LEARNING(π) $Q \leftarrow Q_0 \quad \triangleright \text{ initialization, e.g., } Q_0 = 0.$ 1 for $t \leftarrow 0$ to T do 23 $s \leftarrow \text{SelectState}()$ for each step of epoch t do 4 $a \leftarrow \text{SELECTACTION}(\pi, s) \triangleright \text{ policy } \pi \text{ derived from } Q, \text{ e.g., } \epsilon \text{-greedy.}$ 56 $r' \leftarrow \text{REWARD}(s, a)$ 7 $s' \leftarrow \text{NEXTSTATE}(s, a)$ 8 $Q(s,a) \leftarrow Q(s,a) + \alpha \left[r' + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$ 9 $s \leftarrow s'$ 10return Q

Notes

- Can be viewed as a stochastic formulation of the value iteration algorithm.
- Convergence for any policy so long as states and actions visited infinitely often and parameter chosen as in mean estimation theorem.
- How to choose the action at each iteration? Maximize reward? Explore other actions?
- Q-learning is an off-policy method: no control over the policy; estimates and evaluates policy using experience from following different policy.

Policies

- Epsilon-greedy strategy:
 - with probability 1ϵ greedy action from s;
 - with probability ϵ random action.
- Epoch-dependent strategy (Boltzmann exploration):

$$p_t(a|s,Q) = \frac{e^{\frac{Q(s,a)}{\tau_t}}}{\sum_{a'\in A} e^{\frac{Q(s,a')}{\tau_t}}},$$

- $\tau_t \rightarrow 0$: greedy selection.
- larger τ_t : random action.

Convergence of Q-Learning

- Theorem: consider a finite MDP.Assume that for all $s \in S$ and $a \in A$, $\sum_{t=0}^{\infty} \alpha_t(s, a) = \infty$, $\sum_{t=0}^{\infty} \alpha_t^2(s, a) < \infty$ with $\alpha_t(s, a) \in [0, 1]$. Then, the Q-learning algorithm converges to the optimal value Q^* (with probability one).
 - note: the conditions on $\alpha_t(s, a)$ impose that each state-action pair is visited infinitely many times.

This Lecture

- Markov Decision Processes (MDPs)
- Planning
- Learning
- Multi-armed bandit problem

Multi-Armed Bandit Problem (Robbins, 1952)

- Problem: gambler must decide which arm of a N -slot machine to pull to maximize his total reward in a series of trials.
 - stochastic setting: *N* lever reward distributions.
 - adversarial setting: reward selected by adversary aware of all the past.

Applications

- Clinical trials.
- Adaptive routing.
- Ads placement on pages.
- Games.

Multi-Armed Bandit Game

For t=1 to T do

- adversary determines outcome $y_t \in Y$.
- player selects probability distribution p_t and pulls lever $I_t \in \{1, \ldots, N\}$, $I_t \sim p_t$.
- player incurs loss $L(I_t, y_t)$ (adversary is informed of p_t and I_t .

Objective: minimize regret

$$\text{Regret}(T) = \sum_{t=1}^{T} L(I_t, y_t) - \min_{i=1,...,N} \sum_{t=1}^{T} L(i, y_t).$$

Notes

- Player is informed only of the loss (or reward) corresponding to his own action.
- Adversary knows past but not action selected.
- Stochastic setting: loss $(L(1, y_t), \ldots, L(N, y_t))$ drawn according to some distribution $D = D_1 \otimes \cdots \otimes D_N$. Regret definition modified by taking expectations.
- Exploration/Exploitation trade-off: playing the best arm found so far versus seeking to find an arm with a better payoff.

Notes

- Equivalent views:
 - special case of learning with partial information.
 - one-state MDP learning problem.
- Simple strategy: ϵ -greedy: play arm with best empirical reward with probability $1 - \epsilon_t$, random arm with probability ϵ_t .

Exponentially Weighted Average

Algorithm: Exp3, defined for $\eta, \gamma > 0$ by

$$p_{i,t} = (1-\gamma) \frac{\exp\left(-\eta \sum_{s=1}^{t-1} \hat{l}_{i,t}\right)}{\sum_{i=1}^{N} \exp\left(-\eta \sum_{s=1}^{t-1} \hat{l}_{i,t}\right)} + \frac{\gamma}{N},$$

with
$$\forall i \in [1, N], \ \widehat{l}_{i,t} = \frac{L(I_t, y_t)}{p_{I_t,t}} \mathbb{1}_{I_t=i}.$$

Guarantee: expected regret of

$$O(\sqrt{NT\log N}).$$

Exponentially Weighted Average

Proof: similar to the one for the Exponentially Weighted Average with the additional observation that:

$$\mathbf{E}[\hat{l}_{i,t}] = \sum_{i=1}^{N} p_{i,t} \frac{L(I_t, y_t)}{p_{I_t,t}} \mathbf{1}_{I_t=i} = L(i, y_t).$$

References

- Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 2 vols. Belmont, MA: Athena Scientific, 2007.
- Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
- Martin L. Puterman *Markov decision processes: discrete stochastic dynamic programming.* Wiley-Interscience, New York, 1994.
- Robbins, H. (1952), "Some aspects of the sequential design of experiments", Bulletin of the American Mathematical Society 58 (5): 527–535.
- Sutton, Richard S., and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT Press, 1998.

References

- Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communications of the ACM 38 (3), 1995.
- Watkins, Christopher J. C. H. *Learning from Delayed Rewards*. Ph.D. thesis, Cambridge University, 1989.
- Christopher J. C. H. Watkins and Peter Dayan. *Q-learning*. Machine Learning, Vol. 8, No. 3-4, 1992.