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Regression Problem

® Training data: sample drawn i.i.d. from set X
according to some distribution D,

S:(($1,y1), Cees (xm,ym))EXxY,

with Y CR is a measurable subset.

B |oss function: L: Y xY —R_a measure of closeness,

typically L(y,y") = (v —)* or L(y,y") =y’ —y|" for
some p> 1.

® Problem: find hypothesis h: X —R in H with small
generalization error with respect to target f

Rp(h) = E [L(h(z), f(z))].

x~D
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Notes
® Empirical error:
R 1
Rp(h) = — > L(h(zi),y:)-
1=1

® |In much of what follows:
®Y =R orY=[-M, M]for some M >0.

o L(y,y')= (¥ —y)’—> mean squared error.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, and

assume that L is bounded by M. Then, for any § >0,
with probability at least1—4,

log |H| + log 2

2m

Vh € H,R(h) < R(h) + M\/
& Proof: By the union bound,
Pr {sup R(h) — f{(h)‘ >e} < Z Pr [‘R(h) — f{(h)‘ >e].
heH e

By Hoeffding’s bound, for a fixed

2m62

Pr [‘R(h) — }A{(h)| >e} < 2e Mz,
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Rademacher Complexity of Lp Loss

B Theorem:Letp>1,H, ={z+— |h(z) — f(x)|P: h € H}.
Assume that sup,c x ycp |h(x) — f(2)| <M. Then, for
any sample S of size m,

AN

Rs(H,) < pMP~Rg(H).
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Proof

B Proof:LetH'={x +— h(x)— f(x): he H}.Then,
observe that H,={¢ o h: he H'} with ¢: x—|z|’.

® ¢is pMP~!- Lipschitz over [~ M, M], thus
R (Hp) < pMP~'Rg(H').

® Next, observe that:

%S(H):_E sggzaz £Lq +sz( )}

P

E supZaz xz}—l—g[sz(xi)}:?ﬁ H
i=1

-heH
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Rad. Complexity Regression Bound

B Theorem: Let p>1and assume that||h — f||cc <M
for all he H.Then, for any § >0, with probability at
least1 -4, for allhe H,

! log
E [\h(a:) } < EZ A(:) Y+ 2pMPT R, (H) + MP 2m5,
- MiS Z . 2m,

® Proof: Follows directly bound on Rademacher
complexity and general Rademacher bound.
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Notes

| As discussed for binary classification:

® estimating the Rademacher complexity can be
computationally hard for some Hs.

® can we come up instead with a combinatorial
measure that is easier to compute!
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Shattering

® Definition: Let G be a family of functions mapping
., T +is shattered by G if

fromX toR. A={x1,..
there exist %1, ..

14

to 4

?

., tm €R such that
Csgn (g(z1) —t1)

sgn (g(%)

_ tm)

ge G

1
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Pseudo-Dimension

B Definition: Let G
fromX toR.The
is the size of the

(Pollard, 1984)

be a family of functions mapping
bseudo-dimension of G, Pdim(G),
argest set shattered by G.

B Definition (equivalent, see also (Vapnik, 1995)):
Pdim(G) = VCdim({(x,t) — Lig(z)—t)>0: g € G})

i
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(x). f(x))
h(x), f(x)) > t)
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!
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Pseudo-Dimension - Properties

® Theorem: Pseudo-dimension of hyperplanes.
Pdim(x—w-x+b: weRY becR) =N + 1.

B Theorem: Pseudo-dimension of a vector space of
real-valued functions H:

Pdim(H) = dim(H).
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Generalization Bounds
Classification——>Regression

B [emma (Lebesgue integral): for f > 0 measurable,

Emmzéwgm@>Wt

D

® Assume that the loss function L is bounded by M.

mw—ﬂw=/§(mwwmﬂM>ﬂ—mwwmﬂm>®ﬁ

x~D r~S

< sup | Pr(L(h(z).f(@)) > 1) = Pr[L(h(z). f(x)) > 1]

=M sup ED[IL(h(x),f(x))>t]_ Es[lL(h(x),f(x)>>t]
te[0,M] 1~ o

Pr [Sllp [R(h) — R(h)| > 6] <Pr [ sup ‘R(lL(h,fbt) — R(1(h,p)>t)

€
> —|.
heH heH M]
te[0,M]

Standard classification generalization bound.
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Generalization Bound - Pdim

B Theorem: Let H be a family of real-valued functions.
Assume thatPdim({L(h, f): h€e H})=d< oo and that
the loss L is bounded by M. Then, for any § >0, with
probability at least1—¢, for any he H,

2d log =+

R(h) < R(h) + M\/ +M

m om

log %

® Proof: follows observation of previous slide and
VCDim bound for indicator functions of lecture 3.
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Notes

® Pdim bounds in unbounded case modulo
assumptions: existence of an envelope function or
moment assumptions.

B Other relevant capacity measures:
® covering numbers.
® packing numbers.

® fat-shattering dimension.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Linear Regression

® Feature mapping®: X —RY.

B Hypothesis set: linear functions.
{x—w- ®(x)+b:weRY beR}.
B Optimization problem: empirical risk minimization.
1

m

1 _ . ) _ 2
min F(w,b) = — % (w-®(z;) +b—y:)".
1=1
Ya
®
o ® °
o &0
®
®
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Linear Regression - Solution

® Rewrite objective function as F(W)= L IX™W —Y|?,
X = [‘I’(wl)---@(wm)] c RN+ xm m

1 1 _ —
" B(xy) 1 o Y1
with X'= ; W=| |Y=]:
w
_(I)(ajm)—r 1_ bN | Ym

® Convex and differentiable function.

VF(W) = 3X(XTW -Y).

m

VFW)=0X(X'"W-Y)=0& XX'W=XY.
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Linear Regression - Solution

A Solution:

(XXT)"1XY if XX invertible.

W =«
(XX")'XY  in general

\

e Computational complexity: O(mN + N?) if matrix
inversion in O(N?).

® Poor guarantees in general, no regularization.

® For output labels in R?, p>1, solve p distinct
linear regression problems.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Mean Square Bound - Kernel-Based Hypotheses

B Theorem:LetK: X x X —R be a PDS kernel and
let &: X —H be a feature mapping associated to K.
Let H = ﬁx WD (2): HWHHSA} AssumeK (z, ) < R2
and|f(z)| < ARfor all € X.Then, for any § >0, with
probability at least1—4§,for anyhe H,

R 2A2 1 ] 1
R(h) < B(h) + 2& (1+ °g5)

Jm 2\ "2
SRZA? ( Tr[K] 3 1og§)

=
=
A
g@
=

/m mR2 ' 4 2
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Mean Square Bound - Kernel-Based Hypotheses

B Proof: direct application of the Rademacher
Complexity Regression Bound (this lecture) and
bound on the Rademacher complexity of kernel-
based hypotheses (lecture 5):

A~ A\/Tr R2A2
Rs(H
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Ridge Regression
(Hoerl and Kennard, 1970)
® Optimization problem:

min F (w, b) = \||w||* + Z (W ®(x;)+b—ys),
1=1
where A\ >0 is a (regularization) parameter.

® directly based on generalization bound.
® generalization of linear regression.
® closed-form solution.

® can be used with kernels.
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Ridge Regression - Solution

B Assume b=0: often constant feature used (but not
equivalent to the use of original offset!).

B Rewrite objective function as
F(W)=AW[* +[X'W - Y]|*.
B Convex and diferentiable function.
VE(W) =2AW 4+ 2X(X'W - Y).
VFE(W) =0« (XX"+ X)W = XY.

® Solution: |W = (XXT+ AI)"1XY]|

A\ J/

S

always invertible.
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Ridge Regression - Equivalent Formulations

® Optimization problem:

m

migl (W - ®(z;) +b—y;)?
WP =1

subject to: ||[w|* < AZ.
# Optimization problem°

mm Zf

subject to: fi =w-®(z;)+b—y;
lwl]? < A
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Ridge Regression Equations

0 Lagrangiawassume b=0.Forall¢,,w,a’,\ > 0,
L w. o/, 252+Za i =G — w2 () +A(lw])” — A,

A KKT condltlons.

m 1 Tre
Ve, L =28 —a; =0 & = /2.

Vi € [Lm]?a;(y’& o fz — W (I)(ZBZ)):O
Allwl* =A%) = 0.
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Moving to The Dual

0 Plugging in the expression of wand §;s gives

_ il i — | o)’ ;A 'il a;a;q)(wi)T@(xj)+)\<ﬁH ia;@(wi)\\z—f\z)-
- P o P
® Thus,
L33t Y o= gy Y alol (e B(r,) - M
i,jzl
= —)\Za? + QZaiyi — Z az'Oéj‘I)(fUz‘)T(I’(CUj) — AAZ,
i=1 i=1 i,7=1

with o, =2\a; .
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RR - Dual Optimization Problem

® Optimization problem:

max “da'a+2a'y —a' X' X)a
aclR™

or max —a'(X"X + M) + 2a'y.
aclR™

A Solution:

h(x) = Zozq;@(xi) - P(x),

with a = (X'X + \I) " ly.
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Direct Dual Solution

B [emma:The following matrix identity always holds.
(XX + A7 X = X(X'X + AI) L

B Proof: Observe that(XX'

A)X = X(X'X

Left-multiplying by (XX' + AI)~'and right-
multiplying by (X'X + AI) " 'yields the statement.

B Dual solution: o such that
W = ZO@K(Q?@, ) —
=1

By lemma,W = (XX '+ AI)7'XY = X(X'X+ AI)"'Y]

1=1

AI).

This gives a=(X'X+ )Y

Mehryar Mohri - Foundations of Machine Learning
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Computational Complexity

Solution Prediction
Primal O(mN? + N?) O(N)
Dual O(km* +m?) O(km)
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Kernel Ridge Regression

(Saunders et al., 1998)
® Optimization problem:

max —da' a+2a'y — a' Ka
acR™

or max —a'(K+ MN)a +2a'y.
aclR™

A Solution:

E a; K 33'1,7

with o= (K + )\I)
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Notes

B Advantages:
® strong theoretical guarantees.

® generalization to outputs inR?: single matrix
Inversion (Cortes et al., 2007).

® use of kernels.

B Disadvantages:
® solution not sparse.

® training time for large matrices: low-rank
approximations of kernel matrix, e.g., Nystrom
approx., partial Cholesky decomposition.
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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Support Vector Regression

(Vapnik, 1995)
B Hypothesis set:

{x—w- ®(x)+b: weRY beR}.
B |oss function:e-insensitive loss.

L(y,y') =y — yle = max(0, |y’ — y| —€).

Fit ‘tube’ with
width € to data.
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Support Vector Regression (SVR)

(Vapnik, 1995)
B Optimization problem: similar to that of SVM.

1 m
Il +C Y [y — (w- @(2:) + ).
=1

@ Equivalent formulation:
1

Juin, o flwlf® + CY (& +E)
T i=1

subject to (w - ®(x;) +b) —y; < e+¢&;
vy — (W -®(x;) +b) <e+&
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SVR - Dual Optimization Problem

® Optimization problem:

1
max —e(a’ +a)' 1+ (o —a)'y—=(a/ —a)'K(a' — a)

a,o’

subject to: (0 < a<CIA0<La <C)A((a —a)'1=0).

A Solution:

h(z) = Z(a; — o)) K (x4,%) + b

with » = —Z£1(@}—&j)K(xj,xi)+yi+e when 0 < o; < C
_221(a;_@j)K($ja$i)+yi—e when 0 < o, < C.

| Support vectors: points strictly outside the tube.

Mehryar Mohri - Foundations of Machine Learning page 36



Notes

B Advantages:
® strong theoretical guarantees (for that loss).
® sparser solution.

® use of kernels.

B Disadvantages:
® selection of two parameters: C'and e. Heuristics:

® search C' near maximum y, ¢ near average
difference of ys, measure of no. of SVs.

® |arge matrices: low-rank approximations of
kernel matrix.
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Alternative Loss Functions

quadratic €-insensitive

8- z+—max(0, || — €)?
(- Huber
x? if [z] <c
€Tt
" 2c|z| — ¢ otherwise.
0 47 . iy
E-insensitive
r—max(0, |z| — €)
2_
O_
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SVR - Quadratic Loss

® Optimization problem:

max —e(a’ +a)' 1+ (@ —a)'y — %(a’ —a)' (K + lI) (o' — )

a,o’

subject to: (¢ > 0)A (> 0)A (e —a)'1=0).

A Solution:

f:oz — ;) K(x;,x)+ b

=1
a ) K(xj,z;)+y;+€¢ when0<a; A& =0
a;j)K(xj,z;) +y; —e when 0 < a; A = 0.

(

Wlthb{ > im1 (0 =
D> i (o —

| Support vectors: points strictly outside the tube.
B Fore=0, coincides with KRR.
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£-Insensitive Bound - Kernel-Based Hypotheses

B Theorem:LetK: X x X —R be a PDS kernel and
let®: X — H be a feature mapping associated to K.
Let H={x— w-®(z): |[|w| g <A}.AssumeK (z,r) < R?
and|f(x)| <T'Rfor all z € X.Then, for any § >0, with
probability at least1—4§,for anyhe H,

Elloz) - f@)ld) < Bllate) - F@d + T 2+ (5 +1) /252 .

Bllh(z)—f(5)].] < BllA(r)— F(@)|d+ e W TKI/RE | (5 ¥ 1) o ]

Y1\

vm m A
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£-Insensitive Bound - Kernel-Based Hypotheses

B Proof:Let H.={x+— |h(x) — f(x)|c:he H} and let H’
be defined by H' ={z+—h(z)— f(z): he H}.

® The function®.: x+— |z|. is |-Lipschitz
and ®.(0)=0.Thus, by the contraction lemma,

Rs(H.) < Re(H').

e Since i)A%S(H’) DA%S H) (see proof for
Rademacher Complexity of L, Loss), this shows
that Rs(H.) <R (H).

® The restis a direct application of the
Rademacher Complexity Regression Bound (this
lecture).
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On-line Regression

® On-line version of batch algorithms:
® stochastic gradient descent.
® primal or dual.

B Examples:

® Mean squared error function:Widrow-Hoff (or
LMS) algorithm (Widrow and Hoff, 1995).

® SVR e-insensitive (dual) linear or quadratic
function: on-line SVR.
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Widrow-Hoff

(Widrow and Hoff, 1988)

WIDROWHOFF(w)
1 wi; «— wg > typically wg =0
2 fort«—1to1 do
3 RECEIVE(x})
4 Yp — Wi - Xy
5 RECEIVE(y¢)
6 Wil < Wi +20(We - Xe —yp)x¢ >n>0
7 return wriq
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Dual On-Line SVR

( h— O) (Vijayakumar and Wu, 1988)
DUALSVR()
l a0
2 a0
3 fort<—1to1 do
4 RECEIVE(x¢)
5 G — D as (0 — ) K (w5, 1)
6 RECEIVE(y¢)
7 iy < a;p + min(max(n(y: — 4 —€), —a;),C — a)
8 i1 — ap + min(max(n(y: — yr — €), —ay), C — ay)
9 return Zthl ar K (x4, -)
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This Lecture

Generalization bounds
Linear regression
Kernel ridge regression

Support vector regression

Lasso
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LASSO
(Tibshirani, 1996)

B Optimization problem: ‘least absolute shrinkage
and selection operator’.

min F(w,b) = A|wli+ Y (w-xi +b—y,)",
1=1
where A>0 is a (regularization) parameter.
| Solution: equiv. convex quadratic program (QP).
® general: standard QP solvers.

® specific algorithm: LARS (least angle regression
procedure), entire path of solutions.
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Sparsity of LI regularization

|

Ll regularization L2 regularization
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Sparsity Guarantee

® Rademacher complexity of LI-norm bounded

linear hypotheses:

-~ 1
Rs(H) = —E sup ZO‘ZW X
||W||1<A17; 1
1
=—E H iX;
m o i:ZlO-X oo]
1
= — FE | max O;iT;i
m o |jE[l,N] ; ’ ]
1
= —FE | max max O;T;
m o Je[l | se{—1,+1} ; ‘7]
A 21og(2N
:_1E SungZZl] <TOOA1\/ Og( )
m o |zcA m

Mehryar Mohri - Foundations of Machine Learning
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Notes

B Advantages:

® theoretical guarantees.

® sparse solution.

® feature selection.

® Drawbacks:
® no natural use of kernels.

® no closed-form solution (not necessary, but can
be convenient for theoretical analysis).
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Regression

® Many other families of algorithms: including
® neural networks.
® decision trees (see multi-class lecture).

® boosting trees for regression.
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