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Motivation

PAC learning:

• distribution fixed over time (training and test).

• IID assumption.

On-line learning:

• no distributional assumption.

• worst-case analysis (adversarial).

• mixed training and test.

• Performance measure: mistake model, regret. 
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Prediction with expert advice

Linear classification

This Lecture
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General On-Line Setting

For        to    do

• receive instance 

• predict 

• receive label 

• incur loss 

Classification:

Regression: 

Objective: minimize total loss

4

t=1 T

xt � X.

�yt � Y.

yt � Y.

L(�yt, yt).

�T
t=1 L(⇥yt, yt).

Y ={0, 1}, L(y, y�)= |y��y|.

Y ⇥R, L(y, y�)=(y��y)2.
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Prediction with Expert Advice

For        to    do

• receive instance           and advice 

• predict 

• receive label 

• incur loss 

Objective: minimize regret, i.e., difference of total 
loss incurred and that of best expert.

5

t=1 T

�yt � Y.

yt � Y.

L(�yt, yt).

xt � X yt,i�Y, i� [1, N ].

Regret(T ) =
TX

t=1

L(byt, yt)�
N
min
i=1

TX

t=1

L(yt,i, yt).



pageMehryar Mohri - Foundations of Machine Learning

Mistake Bound Model

Definition: the maximum number of mistakes a 
learning algorithm   makes to learn   is defined by

Definition: for any concept class    the maximum 
number of mistakes a learning algorithm   makes is

6

L c

ML(c) = max
x1,...,xT

|mistakes(L, c)|.

C
L

ML(C) = max
c�C

ML(c).

A mistake bound is a bound    on           .ML(C)M
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Halving Algorithm

7

see (Mitchell, 1997)

Halving(H)
1 H1 � H
2 for t� 1 to T do
3 Receive(xt)
4 �yt �MajorityVote(Ht, xt)
5 Receive(yt)
6 if �yt �= yt then
7 Ht+1 � {c � Ht : c(xt) = yt}
8 return HT+1
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Halving Algorithm - Bound

Theorem: Let    be a finite hypothesis set, then

Proof: At each mistake, the hypothesis set is 
reduced at least by half.

8

MHalving(H) � log2 |H |.
H

(Littlestone, 1988)
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VC Dimension Lower Bound

Theorem: Let           be the optimal mistake bound 
for   . Then, 

Proof: for a fully shattered set, form a complete 
binary tree of the mistakes with height                .

9

(Littlestone, 1988)

opt(H)
H

VCdim(H)

VCdim(H) � opt(H) � MHalving(H) � log2 |H |.



pageMehryar Mohri - Foundations of Machine Learning

Weighted Majority Algorithm

10

(Littlestone and Warmuth, 1988)
� yt, yt,i�{0, 1}.

� � [0, 1).
Weighted-Majority(N experts)

1 for i� 1 to N do
2 w1,i � 1
3 for t� 1 to T do
4 Receive(xt)
5 �yt � 1PN

yt,i=1 wt�
PN

yt,i=0 wt
� weighted majority vote

6 Receive(yt)
7 if �yt �= yt then
8 for i� 1 to N do
9 if (yt,i �= yt) then

10 wt+1,i � �wt,i

11 else wt+1,i � wt,i

12 return wT+1
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Weighted Majority - Bound

Theorem: Let     be the number of mistakes made 
by the WM algorithm till time   and     that of the 
best expert. Then, for all  ,

• Thus, 

• Realizable case:

• Halving algorithm:         .

11

t
t

mt

mt � O(log N) + constant� best expert.

mt � O(log N).

mt �
log N + m�

t log 1
�

log 2
1+�

.

m�
t

� = 0
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Weighted Majority - Proof

Potential:                    

Upper bound: after each error, 

Lower bound: for any expert   ,

Comparison:

12

Thus,

i

�t =
�N

i=1 wt,i.

�t �
�
1 + �

2

�mt

N.

�t�wt,i =�mt,i .

�m�
t �

�
1+�

2

�mt

N

�m�
t log � � log N + mt log

�
1+�

2

�

�mt log
�

2
1+�

�
� log N + m�

t log 1
� .

�t+1 
⇥
1
2 + 1

2 ⇥ �
⇤
�t =


1 + �

2

�
�t.
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Weighted Majority - Notes

Advantage: remarkable bound requiring no 
assumption.

Disadvantage: no deterministic algorithm can 
achieve a regret                with the binary loss.

• better guarantee with randomized WM.

• better guarantee for WM with convex losses.

13

RT = o(T )
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Exponential Weighted Average

Algorithm:

• weight update:

• prediction:

Theorem: assume that   is convex in its first 
argument and takes values in       . Then, for any        
and any sequence                     , the regret at 
satisfies

14

�yt =
PN

i=1 wt,iyt,iPN
i=1 wt,i

.

L

[0, 1] �>0
y1, . . . , yT � Y

Regret(T ) � log N

�
+

�T

8
.

For � =
�

8 log N/T,

Regret(T ) �
�

(T/2) logN.

total loss incurred by 
expert i up to time t

T

wt+1,i  wt,i e�⌘L(yt,i,yt) = e�⌘Lt,i .
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Exponential Weighted Avg - Proof

Potential: 

Upper bound:

15

�t = log
�N

i=1 wt,i.

�t � �t�1 = log

PN
i=1 wt�1,i e�⌘L(yt,i,yt)

PN
i=1 wt�1,i

= log

�
E

wt�1

[e�⌘L(yt,i,yt)
]

�

= log

✓
E

wt�1


exp

✓
�⌘

⇣
L(yt,i, yt)� E

wt�1

[L(yt,i, yt)]
⌘
� ⌘ E

wt�1

[L(yt,i, yt)]

◆�◆

 �⌘ E

wt�1

[L(yt,i, yt)] +
⌘2

8

(Hoeffding’s ineq.)

 �⌘L( E

wt�1

[yt,i], yt) +
⌘2

8

(convexity of first arg. of L)

= �⌘L(byt, yt) +
⌘2

8

.
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Exponential Weighted Avg - Proof

Upper bound: summing up the inequalities yields

Lower bound:

Comparison:

16

�T � �0 = log
N�

i=1

e��LT,i � log N ⇥ log Nmax
i=1

e��LT,i � log N

= ��
N

min
i=1

LT,i � log N.

�T � �0 ⇥ ��
T�

t=1

L(⇥yt, yt) +
�2T

8
.

��
N

min
i=1

LT,i � log N ⇥ ��
T�

t=1

L(⇥yt, yt) +
�2T

8

⇤
T�

t=1

L(⇥yt, yt)�
N

min
i=1

LT,i ⇥
log N

�
+

�T

8
.
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Exponential Weighted Avg - Notes

Advantage: bound on regret per bound is of the 
form                           .

Disadvantage: choice of    requires knowledge of 
horizon   .

17

�

T

RT
T = O

��
log(N)

T

�
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Doubling Trick

Idea: divide time into periods                  of length      
with                ,               , and choose                   
in each period.

Theorem: with the same assumptions as before, for 
any   , the following holds:

18

[2k, 2k+1�1] 2k

�k =
�

8 log N
2k

T

k=0, . . . , n T ⇥ 2n�1

Regret(T ) ⇥
⇤

2⇤
2� 1

�
(T/2) log N +

�
log N/2.
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Doubling Trick - Proof

By the previous theorem, for any                        ,

19

Ik =[2k, 2k+1�1]

Thus,

LIk �
N

min
i=1

LIk,i ⇥
�

2k/2 log N.

LT =
n�

k=0

LIk �
n�

k=0

N
min
i=1

LIk,i +
n�

k=0

⇤
2k (log N)/2

�
N

min
i=1

LT,i +
n�

k=0

2
k
2
⇥

(log N)/2.

with
n�

i=0

2
k
2 =

⇤
2

n+1 � 1⇤
2� 1

=
2(n+1)/2 � 1⇤

2� 1
⇥
⇤

2
⇤

T + 1� 1⇤
2� 1

⇥
⇤

2(
⇤

T + 1)� 1⇤
2� 1

⇥
⇤

2
⇤

T⇤
2� 1

+ 1.
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Notes

Doubling trick used in a variety of other contexts 
and proofs.

More general method, learning parameter function 
of time:                          . Constant factor 
improvement:

20

Regret(T ) � 2
�

(T/2) logN +
�

(1/8) logN.

�t =
�

(8 log N)/t
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Prediction with expert advice

Linear classification

This Lecture
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Perceptron Algorithm

22

(Rosenblatt, 1958)

Perceptron(w0)
1 w1 � w0 � typically w0 = 0
2 for t� 1 to T do
3 Receive(xt)
4 �yt � sgn(wt · xt)
5 Receive(yt)
6 if (�yt �= yt) then
7 wt+1 � wt + ytxt � more generally �ytxt, �>0
8 else wt+1 � wt

9 return wT+1
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Separating Hyperplane

23

Margin and errors

ρ

w·x=0

ρ

w·x=0

�yi(w · xi)
�w�
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Perceptron    Stochastic Gradient Descent

Objective function: convex but not differentiable.

Stochastic gradient: for each    , the update is

Here:

24

with

xt

f(w,x) = max
�
0,�y(w · x)

�
.

F (w) =
1
T

T�

t=1

max
�
0,�yt(w · xt)

�
= E

x� bD
[f(w,x)]

where        is a learning rate parameter.�>0

=

wt+1 �
�

wt + �ytxt if yt(wt · xt) < 0
wt otherwise.

wt+1 �
�

wt � ��wf(wt,xt) if di�erentiable
wt otherwise,
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Perceptron Algorithm - Bound

Theorem: Assume that             for all            and 
that for some        and         , for all            ,

Proof: Let   be the set of  s at which there is an 
update and let    be the total number of updates.

25

(Novikoff, 1962)

�xt��R t� [1, T ]
�>0 v�RN

� � yt(v · xt)
�v� .

t� [1, T ]

Then, the number of mistakes made by the 
perceptron algorithm is bounded by         .R2/�2

I t
M
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• Summing up the assumption inequalities gives:

26

M� �
v ·

�
t�I ytxt

�v�

=
v ·

�
t�I(wt+1 �wt)
�v� (definition of updates)

=
v · wT+1

�v�
� �wT+1� (Cauchy-Schwarz ineq.)
= �wtm + ytmxtm� (tm largest t in I)

=
�
�wtm�2 + �xtm�2 + 2 ytmwtm · xtm� �� �

�0

�1/2

�
�
�wtm�2 + R2

�1/2

�
�
MR2

�1/2
=
�

MR. (applying the same to previous ts in I)
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• Notes:

• bound independent of dimension and tight.

• convergence can be slow for small margin, it can 
be in          .

• among the many variants: voted perceptron 
algorithm. Predict according to

•              are the support vectors for the 
perceptron algorithm.

• non-separable case: does not converge.
27

�(2N )

where    is the number of iterations     survives.ct wt

{xt : t�I}

sign
�
(
�

t�I

ctwt) · x
�
,
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Perceptron - Leave-One-Out Analysis

Theorem: Let     be the hypothesis returned by the 
perceptron algorithm for sample                       
and let         be the number of updates defining    . 
Then,

Proof: Let              be a sample linearly separable 
and let        . If           misclassifies   , then   must 
be a ‘support vector’ for     (update at   ). Thus,

28

hS

M(S) hS

E
S�Dm

[R(hS)] � E
S�Dm+1

�
min(M(S), R2

m+1/�2
m+1)

m + 1

�
.

S =(x1, . . . , xT )�D

S�Dm+1

x�S hS�{x} x x
hS x

�Rloo(perceptron) � M(S)
m + 1

.
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Perceptron - Non-Separable Bound

Theorem: let   denote the set of rounds at which 
the Perceptron algorithm makes an update when 
processing                and let             . Then, 

29

I

x1, . . . ,xT MT = |I|

(MM and Rostamizadeh, 2013)

where R = maxt2I kxtk

MT  inf
⇢>0,kuk21

q
L⇢(u) +

R

⇢

�2
,

L⇢(u) =
P

t2I

�
1� yt(u·xt)

⇢

�
+
.
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• Proof: for any  ,                                   , summing 
up these inequalities for       yields:

by upper-bounding                   as in the proof 
for the separable case.

• solving the second-degree inequality

30

t 1� yt(u·xt)
� �

�
1� yt(u·xt)

�

�
+

t�I

�
t�I(ytu · xt)

gives

MT 
X

t2I

⇣
1� yt(u · xt)

⇢

⌘

+
+
X

t2I

yt(u · xt)

⇢

 L⇢(u) +

p
MTR

⇢
,

MT  L⇢(u) +

p
MTR

⇢
,

p
MT 

R
⇢ +

q
R2

⇢2 + 4L⇢(u)

2
 R

⇢
+

q
L⇢(u).
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Theorem: let   denote the set of rounds at which 
the Perceptron algorithm makes an update when 
processing                and let             . Then, 

• when             for all      , this implies

31

I

x1, . . . ,xT MT = |I|

�xt��R t�I

where L�(u) =
��

1� yt(u·xt)
�

�
+

�

t�I
.

(Freund and Schapire, 1998; MM and Rostamizadeh, 2013)

MT � inf
�>0,�u�2�1

�
R

�
+ �L�(u)�2

�2

,

Non-Separable Case - L2 Bound

MT � inf
�>0,�u�2�1

�
�L�(u)�2

2
+

�
�L�(u)�2

2

4
+

��
t�I �xt�2

�

�2

.
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• Proof: Reduce problem to separable case in higher 
dimension. Let                                 , for             .

• Mapping (similar to trivial mapping):

32

th component(N +t)

xt =

�

��
xt,1
...

xt,N

�

��� x�
t =

�

������������������

xt,1
...

xt,N

0
...
0
�
0
...
0

�

������������������

lt =
�
1� ytu·xt

�

�
+

1t�I t � [1, T ]

u� u� =

�

���������

u1
Z
...

uN
Z

y1�l1
�Z
...

yT �lT
�Z

�

���������

�u��=1 =� Z =

�
1+

�2�L�(u)�2
�2

.
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• Observe that the Perceptron algorithm makes the 
same predictions and makes updates at the same 
rounds when processing                .

• For any       ,

• Summing up and using the proof in the separable 
case yields:

33

x�
1, . . . ,x�

T

t � I

yt(u� · x�
t) = yt

�u · xt

Z
+ �

yt�lt
Z�

�

=
ytu · xt

Z
+

�lt
Z

=
1
Z

�
ytu · xt + [�� yt(u · xt)]+

�
� �

Z
.

MT
�

Z
�

�

t�I

yt(u� · x�
t) �

��

t�I

�x�
t�2.
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• The inequality can be rewritten as

• Selecting    to minimize the bound gives            
and leads to

• Solving the second-degree inequality

34

where

�

yields directly the first statement. The second one 
results from replacing   with           .r

�
MT R

MT �
�

MT� L�(u)�2 �
r

�
� 0

M2
T � r2

�2 + 2
�

MT �L�(u)�r
� + MT �L�(u)�2 = ( r

� +
�

MT �L�(u)�2)2.

M2
T �

� 1
�2

+
�L�(u)�2

�2

��
r2+MT �2

�
=

r2

�2
+

r2�L�(u)�2

�2
+

MT �2

�2
+MT� L�(u)�2,

�2 = ��L�(u)�2r�
MT

r =
��

t�I �xt�2.
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Dual Perceptron Algorithm

35

Dual-Perceptron(�0)
1 �� �0 � typically �0 = 0
2 for t� 1 to T do
3 Receive(xt)
4 �yt � sgn(

�T
s=1 �sys(xs · xt))

5 Receive(yt)
6 if (�yt �= yt) then
7 �t � �t + 1
8 return �
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Kernel Perceptron Algorithm

36

(Aizerman et al., 1964)

K PDS kernel.

Kernel-Perceptron(�0)
1 �� �0 � typically �0 = 0
2 for t� 1 to T do
3 Receive(xt)
4 �yt � sgn(

�T
s=1 �sysK(xs, xt))

5 Receive(yt)
6 if (�yt �= yt) then
7 �t � �t + 1
8 return �
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Winnow Algorithm

37

Winnow(�)
1 w1 � 1/N
2 for t� 1 to T do
3 Receive(xt)
4 �yt � sgn(wt · xt) � yt � {�1, +1}
5 Receive(yt)
6 if (�yt �= yt) then
7 Zt �

�N
i=1 wt,i exp(�ytxt,i)

8 for i� 1 to N do
9 wt+1,i � wt,i exp(�ytxt,i)

Zt

10 else wt+1 � wt

11 return wT+1

(Littlestone, 1988)
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Notes

Winnow   weighted majority:

• for                            ,                 coincides with 
the majority vote.

• multiplying by     or      the weight of correct or 
incorrect experts, is equivalent to multiplying   
by            the weight of incorrect ones.

Relationships with other algorithms: e.g., boosting 
and Perceptron (Winnow and Perceptron can be 
viewed as special instances of a general family).

38

=

yt,i =xt,i�{�1, +1} sgn(wt · xt)

e� e��

� =e�2�
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Winnow Algorithm - Bound

Theorem: Assume that                 for all            and 
that for some          and         ,        for all            ,

Proof: Let   be the set of  s at which there is an 
update and let    be the total number of updates.

39

t� [1, T ]
v�RN t� [1, T ]

Then, the number of mistakes made by the 
Winnow algorithm is bounded by                         .

I t
M

v�0
�xt���R�

��>0

�� � yt(v · xt)
�v�1

.

2 (R2
�/�2

�) log N
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Notes

Comparison with perceptron bound:

• dual norms: norms for     and   .

• similar bounds with different norms.

• each advantageous in different cases:

• Winnow bound favorable when a sparse set of 
experts can predict well. For example, if                  
and                ,         vs   .

• Perceptron favorable in opposite situation.

40

xt v

xt�{±1}N
v=e1

log N N
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Winnow Algorithm - Bound

Potential: 

Upper bound: for each   in  ,

41

(relative entropy)�t =
N�

i=1

vi

�v� log
vi/�v�

wt,i
.

t I

�
t+1

� �
t

=
P

N

i=1

vi
kvk1

log
wt,i

wt+1,i

=
P

N

i=1

vi
kvk1

log Zt
exp(⌘ytxt,i)

= logZ
t

� ⌘

P
N

i=1

vi
kvk1

y

t

x

t,i

 log
⇥P

N

i=1

w

t,i

exp(⌘y
t

x

t,i

)
⇤
� ⌘⇢1

= log E
wt

⇥
exp(⌘y

t

x

t

)
⇤
� ⌘⇢1

(Hoe↵ding)  log
⇥
exp(⌘2(2R1)2/8)

⇤
+ ⌘y

t

w

t

· x
t| {z }

0

�⌘⇢1

 ⌘

2

R

2

1/2� ⌘⇢1.
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Winnow Algorithm - Bound

Upper bound: summing up the inequalities yields

Lower bound: note that

Comparison:                                            For    
we obtain

42

and for all  ,          (property of relative entropy).t �t�0

�T+1 � �1 � M(�2R2
�/2� ���).

Thus, �T+1 � �1 � 0� log N = � log N.

� log N �M(�2R2
�/2� ���). �= ��

R2
�

M � 2 logN R2
�

�2
�

.

�1 =
N�

i=1

vi
�v�1

log vi/�v�1
1/N = log N +

N�

i=1

vi
�v�1

log vi
�v�1

� log N
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Conclusion

On-line learning:

• wide and fast-growing literature.

• many related topics, e.g., game theory, text 
compression, convex optimization.

• online to batch bounds and techniques.

• online version of batch algorithms, e.g., 
regression algorithms (see regression lecture).

43
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SVMs - Leave-One-Out Analysis

Theorem: let     be the optimal hyperplane for a 
sample   and let            be the number of support 
vectors defining    . Then,

Proof: one part proven in lecture 4. The other part 
due to                  for    misclassified by SVMs. 
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Comparison

Bounds on expected error, not high probability 
statements.

Leave-one-out bounds not sufficient to distinguish 
SVMs and perceptron algorithm. Note however:

• same maximum margin        can be used in both.

• but different radius         of support vectors.

Difference: margin distribution.
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