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Motivation

B PAC learning:
® distribution fixed over time (training and test).

® |ID assumption.

® On-line learning:
no distributional assumption.
worst-case analysis (adversarial).

mixed training and test.

Performance measure: mistake model, regret.
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This Lecture

B Prediction with expert advice

B Linear classification
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General On-Line Setting

B Fort=1to7T do
® receive instance z; € X.
® predicty; €Y.
® receive label y; € Y.
®

incur loss L(¥:, y: ).
| (Classification: Y={0,1}, L(y,y") =y —y].
B Regression: YCR, L(y,y)= (v —y)?

® Objective: minimize total loss S, | L(Gy, ye).
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Prediction with Expert Advice

B Fort=1toT do
® receive instance z; € X and advice y,; €Y,i €1, N|.
® predicty; €Y.
® receive label y; € Y.
® incur loss L(¥y:, y:).

B Objective: minimize regret, i.e., difference of total

loss incurred and that of best expert.
T

Regret(T Z L(yt, yt) HllIl Ly, yt).
=1

Mehryar Mohri - Foundations of Machine Learning page 5



Mistake Bound Model

B Definition: the maximum number of mistakes a
learning algorithm L makes to learn c is defined by

My (c) = max |mistakes(L,c)|.

L1geeey T

B Definition: for any concept class C' the maximum
number of mistakes a learning algorithm L. makes is

ML(C) — I(%agML(C).

A mistake bound is a bound M on M (C).
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Halving Algorithm

see (Mitchell, 1997)

HALVING (H )
1 Hl — H
2 fort«<—1toT do
3 RECEIVE(x;)
4 Y: — MAJORITYVOTE(Hy, x¢)
5 RECEIVE(y;)
6 if y; # y; then
7 Hiv1 «— {ce Hy: c(xr) =yt }
8 return Hrpq
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Halving Algorithm - Bound

(Littlestone, 1988)
B Theorem:Let H be a finite hypothesis set, then

MHalm'ng(H) < :.ng ‘H‘

B Proof: At each mistake, the hypothesis set is
reduced at least by half.
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VC Dimension Lower Bound
(Littlestone, 1988)

B Theorem: Let opt(H) be the optimal mistake bound
for H.Then,

VClel(H) < Opt(H) < MHalving(H) < 10g2 ‘H‘

B Proof: for a fully shattered set, form a complete
binary tree of the mistakes with height VCdim(H).
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Weighted Majority Algorithm
(Littlestone and Warmuth, |1988)
WEIGHTED-MAJORITY (N experts) > g,y €10, 1}.

1 fori<1to N do B el0,1).
2 Wi 4 < 1
3 fort+—1toT do
4 RECEIVE(:Ct)
5, Yp 1ZN LwEN _w, > weighted majority vot
6 RECEIVE(yt)
7 if y; # y; then
8 for 1 — 1 to N do
9 if (y:.: # y¢) then
10 Wt41,0 < Bwt,i
11 else Wt41,4 < Wt

12 return wp,
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Weighted Majority - Bound

B Theorem:Let m;be the number of mistakes made
by the WM algorithm till time ¢ and m; that of the
best expert. Then, for all ¢,

log N + mj log %

1z <
log 135

® Thus,m; < O(log N) + constant x best expert.
® Realizable case:m: < O(log N).

® Halving algorithm: 5 =0.
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Weighted Majority - Proof

B Potential:®, = Z,fvzl Wi ;.-

B Upper bound: after each error,

1+
P11 < [% +% X B}CI% — {TB} D, .

¢

Thus,®,; < {#} N.

B [ ower bound: for any expert i, ®; >w; ; =[50,

2
= my log B < log N 4+ my log [#}

= my log [ﬁ] <log N + m; log %

& Comparison: g™ < {ﬁ}mt]\f
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Weighted Majority - Notes

B Advantage: remarkable bound requiring no
assumption.

B Disadvantage: no deterministic algorithm can
achieve a regret R = o(T") with the binary loss.

® better guarantee with randomized WM.

® better guarantee for WM with convex losses.
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Exponential Weighted Average

total loss incurred by

O AlgOI”ithmZ expert i up to time \
® weight update: w1, < w; ;e TEWeiv) = e"”@.

N . .
® prediction: y; = 2yizy Wil

Z,,];V:l Wt,q
B Theorem:assume that Lis convex in its first

argument and takes values in [0, 1]. Then, for any >0
and any sequence yi,...,yr € Y, the regretat T

satisfies log N T
Regret(7T) < LEME

n 8

Forn = +/8log N/T,
Regret(T) < +/(T/2)log N|
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Exponential VWeighted Avg - Proof

B Potential: ®; = log Z,ﬁil Wi ;.

& Upper bound:

N —nL .
Zi:l W1, € nL(ye,i Yt )

S Wi

— 10g< E [e_nL(yt,iayt)]>

Wwe—1

P, — Py 1 = log

:1og( B [exp (‘n(L(yt,i,yt) - B [L(?/t»i>yt>]) _"thl[L(yt’i’yt)])D

We—1 We—1

<-—-n E |[L(yti,y)] + (Hoeffding’s ineq.)

”
Wt—1 8

”

8

< —nL( E |yei],yt) + (convexity of first arg. of L)

Wt—1

772
= —nL(Ys, ye) + e
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Exponential VWeighted Avg - Proof

B Upper bound: summing up the inequalities yields
T

. n*T
Cr — Pp < —HZL(yt,yt) Lt
A |Lower bour;{;lz -
N

O — Py = log E e~ M1 _Jog N > log max e~ M1 _Jog N
i=1 2;71
= —7 m_1{1 Lt ;—log N.

® Comparison:
N n>T
—nmmLTz log N < nZL (s, yt)—l——
t=1 8
logN nT

:>ZL Ut yt mmLTZ_ ” 2
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Exponential Weighted Avg - Notes

B Advantage: bound on regret per bound is of the
form £z = O(\/%) .

B Disadvantage: choice of  requires knowledge of
horizonT.
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Doubling Trick

B |dea: divide time into periods [2¥, 2*T! _1] of length 2"
Withk':(),...’n,Tan_]’and ChOOsenk: SIZ%N
in each period.

B Theorem: with the same assumptions as before, for
any T, the following holds:

2

Regret(T') < T/2)log N + +/log N/2.
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Doubling Trick - Proof

B By the previous theorem, for any I, =[2% 2¢+1_1],

N

Ly, —minLy, ; < 1/2/2 log N.

k

n

n N n
Thus, L = ];)L[k ngr?:ilqufk,i + kzo \/2’“C (log N)/2

=0

N mn
<min Lz, + ) 2%/(log N)/2.
= k=0

iﬁ:\/§n+1—1:2(”+1)/2—1<\/§\/T+1—1<\/5(\/7+1)—1<\/5\/T
— V2 -1 vV2—-1 = V2-1 7 V2 -1 T V2-1
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Notes

® Doubling trick used in a variety of other contexts
and proofs.

® More general method, learning parameter function
of time:n; = v/(8log N)/t. Constant factor
Improvement:

Regret(T) < 2+/(T/2)log N + +/(1/8)log N.
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This Lecture

B Prediction with expert advice

B L|inear classification
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Perceptron Algorithm

(Rosenblatt, 1958)

PERCEPTRON (W)
1 wi «— wy > typically wg = 0
2 fort+—1to T do
3 RECEIVE(X;)
4 Yt < sgn(wy - Xy)
5 RECEIVE (1)
0 if (y: # y;) then
7 Wi < Wi + 4y Xy D> more generally nyx:, >0
8 else w; 1 «— wy
9 return wr
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Separating Hyperplane

® Margin and errors
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Perceptron = Stochastic Gradient Descent

® Objective function: convex but not differentiable.
T
1
F(w) = Ezj max (0. ~yr(w - x)) = E_[f(w.)

with f(w, x) = max (0, —y(w - x)).

B Stochastic gradient: for each x;, the update is

(Wt —nVwf(we,x¢) if differentiable
Wil ¢ 9 ,
W otherwise,

\

where >0 is a learning rate parameter.

® Here; (Wt + nyexe  if ye(wy - xp) <0
Wip1 < 3

Wy otherwise.
\
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Perceptron Algorithm - Bound

(Novikoff, 1962)
B Theorem:Assume that|z;||<R for allt€[1,T]and
that for some p>0andveR", for all te[1,7],

Then, the number of mistakes made by the
perceptron algorithm is bounded by|R*/p?.

B Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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® Summing up the assumption inequalities gives:

M,O A Ztej Yt Xt
N [v]]
% Wiil — W
L ’( ‘t’+1 2 (definition of updates)
v
_ V-Wri1q
[v]]
< ||lwri1]| (Cauchy-Schwarz ineq.)
= ||we, + ye, Xz || (t,, largest ¢ in 1)
, , 1/2
= Ilwe, [I7 4+ %, 17 + 2 ye,, Wi, 'Xtmj}
1/2 B
< |||W¢,, >4 Rﬂ =0
7L/
< |MR =V MR. (applying the same to previous ts in I)
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® Notes:
® bound independent of dimension and tight.

® convergence can be slow for small margin, it can
be in Q(27).

® among the many variants: voted perceptron
algorithm. Predict according to

sign((z CtWi) - X),
tel
where c; is the number of iterations w; survives.
® {z,: tcl}are the support vectors for the
perceptron algorithm.

® non-separable case: does not converge.
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Perceptron - Leave-One-Out Analysis

B Theorem: Let hgbe the hypothesis returned by the
perceptron algorithm for sample S=(z1,...,27)~D
and let M (S) be the number of updates defining /.
Then,

E [R(hg)] < E min(M (), Ry, 41/ Prs1)
S~Dm S~ DmH m + 1

B Proof:Let S~ D™ be a sample linearly separable
and let xe S. If hg_(xy misclassifies x, thenx must
be a ‘support vector’ for hg (update at x). Thus,

~ M (S)
loo(perceptron) ——
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Perceptron - Non-Separable Bound
(MM and Rostamizadeh, 201 3)

B Theorem:let I denote the set of rounds at which
the Perceptron algorithm makes an update when
processing X1, ...,xr and let Mr=|I|.Then,

R
My < f L,(u)+—| |
p>0 <1 [\/ () p}

where R = max;cr ||x¢||
Lp(u) = Ztel (1 — yt(l;)OXt))Jr'
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® Proof:for anyt,1— yt(‘;xt) <(1- yt(‘;'xt))+, summing

up these inequalities for t €I yields:

MTSZ(l— 11Xt> _I_Zytu Xt

tel tel

vVMrR

0
by upper-bounding > _;;(y:u-x:)as in the proof
for the separable case.

< L,(u)+

® solving the second-degree inequality
, VMR
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Non-Separable Case - L2 Bound

(Freund and Schapire, 1998; MM and Rostamizadeh, 201 3)

B Theorem:let I denote the set of rounds at which
the Perceptron algorithm makes an update when

processing X1, ...,xr and let Mr=|I|.Then,
_ 7 2
My < o |Ly(u)l2 | 1L, (w)]]3 | V2 rer 1%e)? |
~ p>0,flufl2<1 2 4 p

® when|x:|| <R for all t € [, this implies

R 2
Mo < inf (—+HLp<u>uz),

p>0,|[ull2<1 \ p

_ t(u-x¢)
where L ,(u) = [(1 — 4= )+L€I.
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® Proof: Reduce problem to separable case in higher
dimension. Let I; = (1 — #%%¢)  lier,fort e [1,7].

® Mapping (similar to trivial mapping):

Lt 1
(N +t)th component
-y -
Tt N 4
L 0 '
Lt 1 . un
o : ;- - ; 7
Xt — . — Xy = ' Uu—u =1 ypl
\O AZ
T .
i t,N_ A
0 yrplT
A7 A
O ||u/H:1 — Z:\/l_l_pQHLp(u)HQ

AZ
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® Observe that the Perceptron algorithm makes the
same predictions and makes updates at the same
rounds when processing X}, ..., X7 .

® Foranyt e ],

/ / u - Xy ytplt
: = + A )
yt(u Xt) yt( - A
yia - Xy ply

-z Z

1
E(ytu - X¢ + [p—ye(u- Xt)]+) > %

® Summing up and using the proof in the separable
case Yields:

0
M2 <3y x) < ST g

tel tel
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® The inequality can be rewritten as

1 ||L,(w)|? r2 r2||Ly(u)|]?  MpA?2
2 p 2 2\__ P 2
M2 < (p2+ 3 )(r +MrA )_p2+ NI e +Mr|| Ly(u)||3

wherer = /S5, %%

I Inimi : L,(u)|2r
® Selecting A to minimize the bound gives A2 = 2l 5\4;”
and leads to

r2 Mr||L,(u)||r (T
M3 < o 4 YRR 4 pp L, ()12 = (£ + V7| Ly (w)]|2)2.

® Solving the second-degree inequality

My — /Mr| Ly(u)[z — = <0

0
yields directly the first statement. The second one
results from replacing r with MrR.
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Dual Perceptron Algorithm

DUAL-PERCEPTRON(”)

1 a+—a > typically a® = 0

2 fort—1toldo
3 RECEIVE(x¢)

4 Gesen(N ) aw(xe - x0))
5 RECEIVE(y;)

0 if (:/y\t 7& yt) then

7 iy < Qp + 1

8 return o
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Kernel Perceptron Algorithm
(Aizerman et al., 1964)

K PDS kernel.

KERNEL-PERCEPTRON (")

1 a+—a’ > typically a® =0

2 fort«<—1to71 do
3 RECEIVE(x¢)
4 G sen(N ) awK (2., x))
5 RECEIVE(y;)

6 if (y; # y:) then

7 o — o + 1

& return o
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Winnow Algorithm

(Littlestone, 1988)

WINNOW (7))
1 w; «— 1/N
2 fort«<1to T do
3 RECEIVE(x;)
4 Yp < sgn(wy - Xy) > oy € {—1,+1}
5 RECEIVE(y;)
6 if (yr # y¢) then
! At Zi\il we,; €XP(NYtT4,i)
S for i — 1 to N do
) Wei1,i * wtaieXPZ(Z?ytwt,i)
10 else w; 1 «— wy

11 return wp,
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Notes

B Winnow =weighted majority:
® fory,,=x:;€{—1,+1},sgn(w; - x¢)coincides with
the majority vote.

® multiplying by ¢” ore™" the weight of correct or
incorrect experts, is equivalent to multiplying
by 3 =e~*"the weight of incorrect ones.

B Relationships with other algorithms: e.g., boosting
and Perceptron (Winnow and Perceptron can be
viewed as special instances of a general family).
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Winnow Algorithm - Bound

B Theorem:Assume that||z:| . < Rforallte[l1,T]and
that for some p, >0andveR",v>0for all te[1,T],

Then, the number of mistakes made by the
Winnow algorithm is bounded by|2 (R2_/p2. ) log N|.

B Proof: Let I be the set of ts at which there is an
update and let M be the total number of updates.
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Notes

B Comparison with perceptron bound:
® dual norms: norms for x; and v.
® similar bounds with different normes.
® cach advantageous in different cases:

® Winnow bound favorable when a sparse set of

experts can predict well. For example, if v=e;
and x; € {1}, log N vs N.

® Perceptron favorable in opposite situation.
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Winnow Algorithm - Bound

N
B Potential: o, = E HUZH log U’L/HVH, (relative entropy)
, A4 Wt 5
1=1 ’

® Upper bound:for each ¢ in/,

N Vi Wt 4
(I)t—l—l — (I)t = ZiZl Tv log ’

1 Wt41,4

o N vV Zy
- Zi:l ||V 1 log exp(nytivt,q;)
=log Zy — 0 )iy vttt

N
<log Y ., we;exp(myexr,i)] — Npoc
= log E [exp(nyss)| — npoc

(Hoeffding) < log [ exp(n”(2R0)?/8)] + NYtW1 = Xt —1Poo
<n*RZ,/2 — poo. <0
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Winnow Algorithm - Bound

B Upper bound: summing up the inequalities yields
Ory1 — Py < M(°R3,/2 = 1poo)-

a Lower bound: note that

N
vi/llvlL _
levlllbg I/N _logN+;an og iy = log N

and for all ¢, &, >0 (property of relative entropy).

Thus, dr,; —®; >0 —log N = —log N.

® Comparison: —log N < M(n*RZ_/2 — npso). For n= £

we obtain
M < QIOngTOO.
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Conclusion

B On-line learning;
® wide and fast-growing literature.

® many related topics, e.g., game theory, text
compression, convex optimization.

® online to batch bounds and techniques.

® online version of batch algorithms, e.g.,
regression algorithms (see regression lecture).
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Appendix
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SVMs - Leave-One-Out Analysis

(Vapnik, 1995)
B Theorem:let hgbe the optimal hyperplane for a
sample Sand let Ngv(S) be the number of support
vectors defining hgs. Then,
E [R(hs)] < E min(Nsv (S), By41/Pmt1)
S~Dm S~ D m + 1

® Proof: one part proven in lecture 4. The other part
due to a; > 1/R? . ,for x; misclassified by SVMs.
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Comparison

B Bounds on expected error, not high probability
statements.

B | eave-one-out bounds not sufficient to distinguish
SVMs and perceptron algorithm. Note however:

® same maximum margin pmm+1can be used in both.

® but different radius R,,, 1 of support vectors.

| Difference: margin distribution.
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