Motivation

- Real-world problems often have multiple classes: text, speech, image, biological sequences.

- Algorithms studied so far: designed for binary classification problems.

- How do we design multi-class classification algorithms?
 - can the algorithms used for binary classification be generalized to multi-class classification?
 - can we reduce multi-class classification to binary classification?
Multi-Class Classification Problem

- **Training data:** sample drawn i.i.d. from set X according to some distribution D,
 \[S = ((x_1, y_1), \ldots, (x_m, y_m)) \in X \times Y, \]
 - mono-label case: $\text{Card}(Y) = k$.
 - multi-label case: $Y = \{-1, +1\}^k$.

- **Problem:** find classifier $h : X \to Y$ in H with small generalization error,
 - mono-label case: $R(h) = E_{x \sim D}[1_{h(x) \neq f(x)}]$.
 - multi-label case: $R(h) = E_{x \sim D} \left[\frac{1}{k} \sum_{l=1}^{k} 1_{[h(x)]_l \neq [f(x)]_l} \right]$.

\[X \]

\[Y, \]
Notes

- In most tasks considered, number of classes $k \leq 100$.

- For k large, problem often not treated as a multi-class classification problem (ranking or density estimation, e.g., automatic speech recognition).

- Computational efficiency issues arise for larger ks.

- In general, classes not balanced.
Multi-Class Classification - Margin

- **Hypothesis set** H:
 - functions $h: X \times Y \to \mathbb{R}$.
 - label returned: $x \mapsto \arg\max_{y \in Y} h(x, y)$.

- **Margin**:
 - $\rho_h(x, y) = h(x, y) - \max_{y' \neq y} h(x, y')$.
 - error: $1_{\rho_h(x, y) \leq 0} \leq \Phi_\rho(\rho_h(x, y))$.
 - empirical margin loss:
 \[
 \hat{R}_\rho(h) = \frac{1}{m} \sum_{i=1}^{m} \Phi_\rho(\rho_h(x, y)).
 \]
Multi-Class Margin Bound

Theorem: let \(H \subseteq \mathbb{R}^{X \times Y} \) with \(Y = \{1, \ldots, k\} \). Fix \(\rho > 0 \). Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \), the following multi-class classification bound holds for all \(h \in H \):

\[
R(h) \leq \widehat{R}_\rho(h) + \frac{4k}{\rho} \mathcal{R}_m(\Pi_1(H)) + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},
\]

with \(\Pi_1(H) = \{x \mapsto h(x, y) : y \in Y, h \in H\} \).
Kernel Based Hypotheses

- **Hypothesis set** \(H_{K,p} : \)
 - \(\Phi \) feature mapping associated to PDS kernel \(K \).
 - **functions** \((x, y) \mapsto w_y \cdot \Phi(x), y \in \{1, \ldots, k\} \).
 - **label returned:** \(x \mapsto \arg\max_{y \in \{1, \ldots, k\}} w_y \cdot \Phi(x) \).
 - **for any** \(p \geq 1, \)

\[
H_{K,p} = \{(x, y) \in X \times [1, k] \mapsto w_y \cdot \Phi(x) : W = (w_1, \ldots, w_k)\top, \|W\|_{H,p} \leq \Lambda\}.
\]
Multi-Class Margin Bound - Kernels

Theorem: let $K: X \times X \rightarrow \mathbb{R}$ be a PDS kernel and let $\Phi: X \rightarrow \mathbb{H}$ be a feature mapping associated to K. Fix $\rho > 0$. Then, for any $\delta > 0$, with probability at least $1 - \delta$, the following multiclass bound holds for all $h \in H_{K,p}$:

$$R(h) \leq \hat{R}_\rho(h) + 4k \sqrt{\frac{r^2 \Lambda^2}{\rho^2 m}} + \sqrt{\frac{\log \frac{1}{\delta}}{2m}},$$

where $r^2 = \sup_{x \in X} K(x, x)$.

(MM et al. 2012)
Approaches

- Single classifier:
 - Multi-class SVMs.
 - AdaBoost.MH.
 - Conditional Maxent.
 - Decision trees.

- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

- Optimization problem:

\[
\min_{\mathbf{w}, \xi} \frac{1}{2} \sum_{l=1}^{k} \| \mathbf{w}_l \|^2 + C \sum_{i=1}^{m} \xi_i
\]

subject to:

\[
\mathbf{w}_{y_i} \cdot \mathbf{x}_i + \delta_{y_i,l} \geq \mathbf{w}_l \cdot \mathbf{x}_i + 1 - \xi_i
\]

\((i, l) \in [1, m] \times Y.\)

- Decision function:

\[
h : \mathbf{x} \mapsto \arg\max_{l \in Y} (\mathbf{w}_l \cdot \mathbf{x}).
\]
Notes

- Directly based on generalization bounds.

- **Comparison with** (Weston and Watkins, 1999): single slack variable per point, maximum of slack variables (penalty for worst class):

\[
\sum_{l=1}^{k} \xi_{il} \rightarrow \max_{l=1}^{k} \xi_{il}.
\]

- PDS kernel instead of inner product

- Optimization: complex constraints, \(m^k\)-size problem.
 - specific solution based on decomposition into \(m\) disjoint sets of constraints (Crammer and Singer, 2001).
Dual Formulation

- **Optimization problem:** \(\alpha \) \textit{ith row of matrix} \(\alpha \in \mathbb{R}^{m \times k} \)

\[
\max_{\alpha = [\alpha_{ij}]} \sum_{i=1}^{m} \alpha_i \cdot e_{y_i} - \frac{1}{2} \sum_{i=1}^{m} (\alpha_i \cdot \alpha_j)(x_i \cdot x_j)
\]

subject to: \(\forall i \in [1, m], (0 \leq \alpha_{iy_i} \leq C) \land (\forall j \neq y_i, \alpha_{ij} \leq 0) \land (\alpha_i \cdot 1 = 0). \)

- **Decision function:**

\[
h(x) = \arg\max_{l=1}^{k} \left(\sum_{i=1}^{m} \alpha_{il}(x_i \cdot x) \right).
\]
AdaBoost

Training data (multi-label case):

\[(x_1, y_1), \ldots, (x_m, y_m) \in X \times \{-1, 1\}^k.\]

Reduction to binary classification:

- each example leads to \(k\) binary examples:

\[(x_i, y_i) \rightarrow ((x_i, 1), y_i[1]), \ldots, ((x_i, k), y_i[k]), i \in [1, m].\]

- apply AdaBoost to the resulting problem.

- choice of \(\alpha_t\).

Computational cost: \(mk\) distribution updates at each round.
AdaBoost.MH

\(H \subseteq \{-1, +1\}^k \times X \times Y \).

AdaBoost.MH

\[S = ((x_1, y_1), \ldots, (x_m, y_m)) \]

1. for \(i \leftarrow 1 \) to \(m \) do
2. for \(l \leftarrow 1 \) to \(k \) do
3. \[D_1(i, l) \leftarrow \frac{1}{mk} \]
4. for \(t \leftarrow 1 \) to \(T \) do
5. \(h_t \leftarrow \) base classifier in \(H \) with small error \(\epsilon_t = \Pr_{D_t}[h_t(x_i, l) \neq y_i[l]] \)
6. \(\alpha_t \leftarrow \) choose \[\triangleright \text{to minimize } Z_t \]
7. \(Z_t \leftarrow \sum_{i,l} D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l)) \)
8. for \(i \leftarrow 1 \) to \(m \) do
9. for \(l \leftarrow 1 \) to \(k \) do
10. \[D_{t+1}(i, l) \leftarrow \frac{D_t(i, l) \exp(-\alpha_t y_i[l] h_t(x_i, l))}{Z_t} \]
11. \(f_T \leftarrow \sum_{t=1}^{T} \alpha_t h_t \)
12. return \(h_T = \text{sgn}(f_T) \)
Bound on Empirical Error

Theorem: The empirical error of the classifier output by AdaBoost.MH verifies:

\[\hat{R}(h) \leq \prod_{t=1}^{T} Z_t. \]

Proof: similar to the proof for AdaBoost.

Choice of \(\alpha_t \):

- for \(H \subseteq (\{-1, +1\}^k)^X \times Y \), as for AdaBoost, \(\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t} \).
- for \(H \subseteq ([-1, 1]^k)^X \times Y \), same choice: minimize upper bound.
- other cases: numerical/approximation method.
Objective function:

\[
F(\alpha) = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l]f_n(x_i,l)} = \sum_{i=1}^{m} \sum_{l=1}^{k} e^{-y_i[l]} \sum_{t=1}^{n} \alpha_t h_t(x_i,l).
\]

All comments and analysis given for AdaBoost apply here.

Alternative: Adaboost.MR, which coincides with a special case of RankBoost (ranking lecture).
Decision Trees
Different Types of Questions

- Decision trees
 - $X \in \{\text{blue, white, red}\}$: categorical questions.
 - $X \leq a$: continuous variables.

- Binary space partition (BSP) trees:
 - $\sum_{i=1}^{n} \alpha_i X_i \leq a$: partitioning with convex polyhedral regions.

- Sphere trees:
 - $||X - a_0|| \leq a$: partitioning with pieces of spheres.
In each region R_t,

- **classification**: majority vote - ties broken arbitrarily,
 \[\hat{y}_t = \arg\max_{y \in Y} \left| \{ x_i \in R_t : i \in [1, m], y_i = y \} \right|. \]

- **regression**: average value,
 \[\hat{y}_t = \frac{1}{|S \cap R_t|} \sum_{\substack{x_i \in R_t \atop i \in [1, m]}} y_i. \]

- **Form of hypotheses**:
 \[h : x \mapsto \sum_t \hat{y}_t 1_{x \in R_t}. \]
Training

Problem: general problem of determining partition with minimum empirical error is NP-hard.

Heuristics: greedy algorithm.

- for all $j \in [1, N]$, $\theta \in \mathbb{R}$,
 \[
 R^+(j, \theta) = \{x_i \in R : x_i[j] \geq \theta, i \in [1, m]\},
 \]
 \[
 R^-(j, \theta) = \{x_i \in R : x_i[j] < \theta, i \in [1, m]\}.
 \]

Decision-Trees($S = ((x_1, y_1), \ldots, (x_m, y_m))$)

1. $P \leftarrow \{S\} \triangleright$ initial partition
2. for each region $R \in P$ such that Pred(R) do
3.
 $(j, \theta) \leftarrow \text{argmin}_{(j, \theta)} \text{error}(R^-(j, \theta)) + \text{error}(R^+(j, \theta))$
4.
 $P \leftarrow P - R \cup \{R^-(j, \theta), R^+(j, \theta)\}$
5. return P
Splitting/Stopping Criteria

- **Problem**: larger trees overfit training sample.

- **Conservative splitting**:
 - split node only if loss reduced by some fixed value $\eta > 0$.
 - issue: seemingly bad split dominating useful splits.

- **Grow-then-prune technique (CART)**:
 - grow very large tree, $\text{Pred}(R): |R| > |n_0|$.
 - prune tree based on: $F(T) = \widehat{\text{Loss}}(T) + \alpha |T|$, $\alpha \geq 0$ parameter determined by cross-validation.
Decision Tree Tools

Most commonly used tools for learning decision trees:

- **CART** (classification and regression tree) (Breiman et al., 1984).
- **C4.5** (Quinlan, 1986, 1993) and **C5.0** (RuleQuest Research) a commercial system.

Differences: minor between latest versions.
Approaches

- Single classifier:
 - SVM-type algorithm.
 - AdaBoost-type algorithm.
 - Conditional Maxent.
 - Decision trees.

- Combination of binary classifiers:
 - One-vs-all.
 - One-vs-one.
 - Error-correcting codes.
One-vs-All

- **Technique:**
 - for each class \(l \in Y \) learn binary classifier \(h_l = \text{sgn}(f_l) \).
 - combine binary classifiers via voting mechanism, typically majority vote: \(h : x \mapsto \arg\max_{l \in Y} f_l(x) \).

- **Problem:** poor justification (in general).
 - calibration: classifier scores not comparable.
 - nevertheless: simple and frequently used in practice, computational advantages in some cases.
One-vs-One

Technique:

- for each pair $(l, l') \in Y, l \neq l'$ learn binary classifier $h_{ll'} : X \rightarrow \{0, 1\}$.
- combine binary classifiers via majority vote:
 \[
 h(x) = \arg\max_{l': Y} \left| \left\{ l : h_{ll'}(x) = 1 \right\} \right|.
 \]

Problem:

- computational: train $k(k - 1)/2$ binary classifiers.
- overfitting: size of training sample could become small for a given pair.
Computational Comparison

<table>
<thead>
<tr>
<th></th>
<th>Training</th>
<th>Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-vs-all</td>
<td>$O(kB_{\text{train}}(m))$</td>
<td>$O(kB_{\text{test}})$</td>
</tr>
<tr>
<td></td>
<td>$O(km^\alpha)$</td>
<td></td>
</tr>
<tr>
<td>One-vs-one</td>
<td>$O(k^2B_{\text{train}}(m/k))$</td>
<td>$O(k^2B_{\text{test}})$</td>
</tr>
<tr>
<td></td>
<td>(on average)</td>
<td>smaller N_{SV} per B</td>
</tr>
<tr>
<td></td>
<td>$O(k^{2-\alpha}m^\alpha)$</td>
<td></td>
</tr>
</tbody>
</table>

Time complexity for SVMs, α less than 3.
Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

Idea:

- assign F-long binary code word to each class:
 \[M = [M_{lj}] \in \{0, 1\}^{[1,k]} \times [1,F]. \]

- learn binary classifier $f_j: X \rightarrow \{0, 1\}$ for each column. Example x in class l labeled with M_{lj}.

- classifier output: \(f(x) = (f_1(x), \ldots, f_F(x)) \),

\[h: x \mapsto \arg\min_{l \in Y} \text{d}_{\text{Hamming}}(M_l, f(x)). \]
Illustration

- **8 classes, code-length: 6.**

<table>
<thead>
<tr>
<th>codes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$f_1(x)$</th>
<th>$f_2(x)$</th>
<th>$f_3(x)$</th>
<th>$f_4(x)$</th>
<th>$f_5(x)$</th>
<th>$f_6(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

new example x
Error-Correcting Codes - Design

Main ideas:

- independent columns: otherwise no effective discrimination.
- distance between rows: if the minimal Hamming distance between rows is d, then the multi-class can correct $\left\lfloor \frac{d-1}{2} \right\rfloor$ errors.
- columns may correspond to features selected for the task.
- one-vs-all and one-vs-one (with ternary codes) are special cases.
Extensions

Matrix entries in \{-1, 0, +1\}:
- examples marked with 0 disregarded during training.
- one-vs-one becomes also a special case.

Margin loss \(L\): function of \(y f(x)\), e.g., hinge loss.
- Hamming loss:
 \[h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} \frac{1 - \text{sgn} (M_{lj} f_{j}(x))}{2}. \]
- Margin loss:
 \[h(x) = \arg\min_{l \in \{1, \ldots, k\}} \sum_{j=1}^{F} L(M_{lj} f_{j}(x)). \]

(Allwein et al., 2000)
Applications

- One-vs-all approach is the most widely used.
- No clear empirical evidence of the superiority of other approaches (Rifkin and Klautau, 2004).
 - except perhaps on small data sets with relatively large error rate.
- Large structured multi-class problems: often treated as ranking problems (see ranking lecture).
References

References

