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Motivation

® Real-world problems often have multiple classes:
text, speech, image, biological sequences.

B Algorithms studied so far: designed for binary
classification problemes.

® How do we design multi-class classification
algorithms?

® can the algorithms used for binary classification
be generalized to multi-class classification?

® can we reduce multi-class classification to binary
classification?
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Multi-Class Classification Problem

® Training data: sample drawn i.i.d. from set X
according to some distribution D,

S=((1,91)s -, (Tm,Ym)) EX XY,
® mono-label case: Card(Y)=k.
e multi-label case:Y ={—1,+1}"
B Problem:find classifier h: X —Y in H with small
generalization error,
® mono-label case: R(h)=E.p[lh)£f(2)]-
o multi-label case:R(h)=E.p [£ 37 Tin@) £, )
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Notes

® |[n most tasks considered, number of classesk < 100.

® Fork large, problem often not treated as a multi-
class classification problem (ranking or density
estimation, e.g., automatic speech recognition).

B Computational efficiency issues arise for largerks.

® |n general, classes not balanced.
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Multi-Class Classification - Margin

B Hypothesis set H:
® functionsh: X xY —R.

® |abel returned:x — argmaxh(z,y).
yey

® Margin:
® ru(,y) = h(z,y) —maxh(z,y’).
® error: 1ph(aj,y)§0 < (I)p(ph(ajay))

® empirical margin loss:
~ 1 —

R,(h) = m Z D, (pn(wis yi))-
1=1
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Multi-Class Margin Bound
(MM et al. 2012; Kuznetsov, MM, and Syed, 2014)
B Theorem:letH C R**YwithY = {1,...,k}. Fixp>0.
Then, for any § >0, with probability at least1—¢, the
following multi-class classification bound holds for
allhe H:
4k log %

R(h) < R,(h) + — R (M (H)) +1] 5

)

withIly(H) = {z — h(z,y): y €Y, h e H}.
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Kernel-Based Hypotheses

B Hypothesis set Hy ,:
® & feature mapping associated to PDS kernel K.
e functions(z,y) — w, - ®(x),y € {1,...,k}.
® |abel returned: x — argmax w, - ®(x).

e{l,....k
® foranyp > 1, Vet }

Hy, ={(z,y) € Xx[1,k] — w,-®(z): W = (w1,...,wg) ', ||W]|m, <A}

7“2 A2

m

R (1 (Hk p)) <
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Multi-Class Margin Bound - Kernels
(MM et al. 2012)
B Theorem:letK: X x X —R be a PDS kernel and
let®: X — Hbe a feature mapping associated tokX.
Fix p>0.Then, for anyd >0, with probability at
least1— 4, the following multiclass bound holds for
allh € Hg
2 A2 1
R(h) < B, (h) + 4k | 2 1 ([ 1982

0’m 2m

)

2

where r“ = sup K (x, ).

re X
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Approaches

| Single classifier:
® Multi-class SVMs.
® AdaBoost.MH.
® Conditional Maxent.

® Decision trees.

B Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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Multi-Class SVMs

(Weston and Watkins, 1999; Crammer and Singer, 2001)

# Optimization problem°

mm — Z w; ]| + CZ&
subject to: wy, - X; + 0y, 1 > W, - X; + 1 =&
& >0, (i, l) c [1, m] XY.
B Decision function:

h: x+— argmax (w; - X).
leY
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Notes

B Directly based on generalization bounds.

B Comparison with (weston andWatkins, 1999): single slack
variable per point, maximum of slack variables

(penalty for worst class):
k
k
> - max .
=1 B
& PDS kernel instead of inner product

B Optimization: complex constraints,mk-size problem.

® specific solution based on decomposition intom
diSjOint sets of constraints (Crammer and Singer, 2001).
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Dual Formulation

m Optimization problem: a; ith row of matrixa € R7***
max S e e, i( (% - %)
X 7" i = Q; - O ) (X; - Xy

subject to: Vi € [1,m], (0 < a;y, < C)A (V] # yi,aij <0)A(a; -1 =0).

B Decision function:

h(x) = argmax (Za” ))

1€[1,K]
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AdaBoost

® Training data (multi-label case):
(Z1,Y1)s -+, (Tins Ym ) €EX x {—1, 117,

® Reduction to binary classification:

(Schapire and Singer, 2000)

® each example leads to k binary examples:
(:Eia y’L) — ((337,, 1)7 yz[l])v SRR ((337,, k)v y’t[k])az S [17 m]
® apply AdaBoost to the resulting problem.

® choice of o4.

® Computational cost: mkdistribution updates at
each round.
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AdaBoost.MH

HC({~1,+1}7)),

ADABOOST.MH(S=((z1,y1), .., (Tm, Ym)))

1 fori+1to m do
for [ — 1 to k do
D1 (Z, Z) — ﬁ
fort«+1to 1 do
h: < base classifier in H with small error ¢, =Prp, [he (s, 1) #y;|l]]
oy < choose > to minimize Z;
Ly Zi,l Dy(1,1) exp(—auy;[l|hi(zi, 1))
for 2 <— 1 to m do

for [ — 1 to k do
Dt—|—1(i, l) o D:(@,1) exp(=ayi[llhe (zi,0))

T “
fT H thl ot hy
12 return hp = sgn(fr)

O© 00 ~J O O i W b

[
_ O
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Bound on Empirical Error

B Theorem:The empirical error of the classifier
output by AdaBoost.MH verifies:

T
R(h) <[] 2.
t=1
B Proof: similar to the proof for AdaBoost.

B Choice of a;:
o forH C({—1,+1}*)**)as for AdaBoost, a; = log :==.

e forH C([-1,1]%)**ysame choice: minimize upper
bound.

® other cases: numerical/approximation method.
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Notes

O Objective function°

>1>1 _yz fn(xzal)—> >k‘ _yz Zt 1Oétht(i’3z,l).

=1 [=1

B All comments and analysis given for AdaBoost
apply here.

m Alternative: Adaboost.MR, which coincides with a
special case of RankBoost (ranking lecture).
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Decision Trees
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Different Types of Questions

B Decision trees
® X € {blue, white, red}: categorical questions.

e X <a:continuous variables.

B Binary space partition (BSP) trees:

e Y  «;X;<a:partitioning with convex
bolyhedral regions.

| Sphere trees:

® ||X — agl| <a: partitioning with pieces of spheres.
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Hypotheses

& |n each region Ry,

® classification: majority vote - ties broken
arbitrarily,
Yy = argmax |[{z; € Ry: 1 € [1,m]|,y; = y}|.
yey
® regression: average value,

yt ‘SHR” Z y’L

) 1m
® Form of hypotheses: i

h:x— Z@\tleRt'
t
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Training

® Problem: general problem of determining partition
with minimum empirical error is NP-hard.

B Heuristics: greedy algorithm.

e forallje[l, N],0eR, R"(j,0)
R™(j,0)

{2; € R: mlj]>6,i€]1,m]}
{z; € R: x;|5]<0,1€[1,m]}.
DECISION-TREES(S = ((%1, Y1)y -+, (Tm,Ym)))

1 P« {S} p>initial partition

2 for each region R € P such that Pred(R) do

3 (J,0) « argmin; 4y error(R~ (j,0)) + error(R* (4, 0))
4 P—P—-RU{R (j,0),RT(4,0)}
D

return P
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Splitting/Stopping Criteria

® Problem: larger trees overfit training sample.

B Conservative splitting:

® split node only if loss reduced by some fixed
valuen > 0.

® issue: seemingly bad split dominating useful splits.
® Grow-then-prune technique (CART):

® grow very large tree, Pred(R): |R|>|no|-

® prune tree based on:F(T)=Loss(T)+a|T|,a>0

parameter determined by cross-validation.
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Decision Tree Tools

® Most commonly used tools for learning decision
trees:

® CART (classification and regression tree) (Breiman
et al., 1984).

® C4.5 (Quinlan, 1986, 1993) and C5.0 (RuleQuest
Research) a commercial system.

B Differences: minor between latest versions.
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Approaches

| Single classifier:
® SVM-type algorithm.
® AdaBoost-type algorithm.
® Conditional Maxent.

® Decision trees.

@ Combination of binary classifiers:
® One-vs-all.
® One-vs-one.

® Error-correcting codes.
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One-vs-All

B Technique:
® for each class /€Y learn binary classifierh; =sgn(f;).

® combine binary classifiers via voting mechanism,

typically majority vote: h: x — argmax f;(x).
ley

® Problem: poor justification (in general).
® calibration: classifier scores not comparable.

® nevertheless: simple and frequently used in
practice, computational advantages in some cases.
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One-vs-One

B Technique:

® for each pair (/,1"') €Y, 11’ learn binary
classifier h;; : X —{0,1}.

® combine binary classifiers via majority vote:

h(z) = argmax |{l : hy (z) = 1}|.
l'ey

& Problem:
® computational: train k(k — 1)/2 binary classifiers.

® overfitting: size of training sample could become
small for a given pair.
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Computational Comparison

Training Testing
One'VS'a” O(kBtrain(m)) O(kBtest)
O(km*®)
O(k? Birain k
One-vs-one (F” Birain(m/£)) O(k” Btest)
(on average)
|O(k2_o‘mo‘) smaller Ngy per B

Time complexity for SVMs, & less than 3.
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Error-Correcting Code Approach

(Dietterich and Bakiri, 1995)

A |dea;

® assign F-long binary code word to each class:
—> M = [My;] € {0, L}

® |earn binary classifier f;: X — {0, 1} for each
column. Example zin class [ labeled with M.

® classifier output( (x)=(f1(=), .--,fF(fE))),

h: z+— argmin dgamming (Ml : f(x)) :
leYy
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lllustration

| 8 classes, code-length: 6.

f1(x

fa(x

f3(x

fa(x

f5(iU

fG(l’

0

codes

1 12|13 |4|5]6
llolo|o|I1|0]oO
211 l0|l0|0]0]oO
13]ol1 1 lol1]o
2l 4 1]11]0]0]0]0
Sls|li]1lololi1]o
6lo|o0 |1 |1]0]1
71olo|1]0]0/oO
slol1|o|1]0]oO
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Error-Correcting Codes - Design

B Main ideas:

® independent columns: otherwise no effective
discrimination.

® distance between rows: if the minimal Hamming
distance between rows is d, then the multi-class
can correct | 1| (classification) errors.

® columns may correspond to features selected
for the task.

® one-vs-all and one-vs-one (with ternary codes)
are special cases.
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Extensions

(Allwein et al., 2000)
® Matrix entries in{—1,0, +1}:

® examples marked with 0 disregarded during
training.

® —— one-vs-one becomes also a special case.

® Margin loss L: function of yf(x), e.g., hinge loss.
® Hamming loss: »
h(x) = argmin Z 5
® Margin loss: i
h(x) = argmin ZL(Mljfj (2)).

le{1,...k}
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Applications

® One-vs-all approach is the most widely used
combination method.

® No clear empirical evidence of the superiority of
other approaches (Rifkin and Klautau, 2004).

® except perhaps on small data sets with relatively
large error rate.

® [arge structured multi-class problems: often
treated as ranking problems (see ranking lecture).

Mehryar Mohri - Foundations of Machine Learning page 3|



References

® Erin L.Allwein, Robert E. Schapire and Yoram Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. Journal of Machine Learning Research, 1:113-141,
2000.

e K.Crammer andY. Singer. Improved output coding for classification using continuous
relaxation. In Proceedings of NIPS, 2000.

® Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265-292,2001.

® Koby Crammer and Yoram Singer. On the Learnability and Design of Output Codes for
Multiclass Problems. Machine Learning 47,2002.

® Thomas G. Dietterich, Ghulum Bakiri: Solving Multiclass Learning Problems via Error-
Correcting Output Codes. Journal of Artificial Intelligence Research (JAIR) 2:263-286, 1995.

®  Mehryar Mohri,Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine
Learning, the MIT Press, 2012.

® John C.Platt, Nello Cristianini, and John Shawe-Taylor. Large Margin DAGS for Multiclass
Classification. In Advances in Neural Information Processing Systems |2 (NIPS 1999), pp.

547-553,2000.

Mehryar Mohri - Foundations of Machine Learning page 32


http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bakiri:Ghulum.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair2.html#DietterichB95

References

® Ryan Rifkin.“Everything Old Is New Again: A Fresh Look at Historical Approaches in
Machine Learning.” Ph.D.Thesis, MIT, 2002.

® Rifkin and Klautau.“In Defense of One-Vs-All Classification.” Journal of Machine Learning
Research, 5:101-141,2004.

® Robert E. Schapire. The boosting approach to machine learning: An overview. In D.D.
Denison, M. H. Hansen, C. Holmes, B. Mallick, B.Yu, editors, Nonlinear Estimation and
Classification. Springer, 2003.

® Robert E. Schapire,Yoav Freund, Peter Bartlett and Wee Sun Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651-1686, 1998.

® Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text
categorization. Machine Learning, 39(2/3):135-168, 2000.

® Jason Weston and Chris Watkins. SupportVector Machines for Multi-Class Pattern
Recognition. Proceedings of the Seventh European Symposium On Artificial Neural Networks
(ESANN “99), 1999.

Mehryar Mohri - Foundations of Machine Learning page 33


http://www.middleangle.com/rif/Pubs/thesis.ps
http://www.middleangle.com/rif/Pubs/thesis.ps
http://www.middleangle.com/rif/Pubs/thesis.ps
http://www.middleangle.com/rif/Pubs/ovadefense.ps

