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Motivation

B Probabilistic models:
® density estimation.

e classification.
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This Lecture

Notions of information theory.
[htroduction to density estimation.

Maxent models.

Conditional Maxent models.
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Entropy

(Shannon, 1948)

B Definition: the entropy of a discrete random variableX with
probability mass distribution p(z) = Pr[X = z]is

H(X)=—E[logp(X)] = — Y p(z)logp(x
reX
@ Properties:

e H(X)>0.
® measure of uncertainty of X.

e maximal for uniform distribution. For a finite support, by
Jensen's inequality:

H(X) = E[log p&)] < 1ogE[$] _Jog N.
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Entropy

B Base of logarithm: not critical; for base 2, —log,(p(x)) is the
number of bits needed to represent p(x).

B Definition and notation: the entropy of a distribution p is
defined by the same quantity and denoted by H (p).

B Special case of Rényi entropy (rényi, 1961).

| Binary entropy: H(p) = —plogp — (1 — p)log(1 — p)

1.0

0.8t
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Relative Entropy

(Shannon, 1948; Kullback and Leibler, 1951)
B Definition: the relative entropy (or Kullback-Leibler divergence)
between two distributions p and q (discrete case) is

D(pllq)=FE llog ] > p(z)log g

reX

0
with Ologa = 0 and plog% = +400.

B Properties:
e asymmetric:in general, D(p || q) # D(q || p) forp # q.

® non-negative: D(p || q) > 0 for all pand q.
o definite:(D(p | q)=0) = (p=q).
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Non-Negativity of Rel. Entropy

B By the concavity of log and Jensen's inequality,

oundations of Machine Learning page

7



Bregman Divergence

(Bregman, 1967)
B Definition: let F' be a convex and differentiable function
defined over a convex setC'in a Hilbert space H. Then, the
Bregman divergence Br associated to F'is defined by

Br(x ||y) = F(x) — F(y) —(VF(y),r —y) .
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Bregman Divergence

B Examples:

Br(z || y) F(x)
Squared Lo-distance |x — y]|* 1|2
Mahalanobis distance (x — y)TK_l(x —y) x K- 1x
Unnormalized relative entropy D(x|y) D icr Tilogx; — x;

* note: relative entropy not a Bregman divergence since
not defined over an open set; but, on the simplex,
coincides with unnormalized relative entropy

D(plla)=> p= log[ ;]+(q(w)—p(x))-

reX
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Conditional Relative Entropy

B Definition: let p and q be two probability distributions
overX x ). Then, the conditional relative entropy of p andq
with respect to distribution r over X' is defined by

E,[D6e10) at10)] = X ) Y- ploloytos 25

reX yey ‘ )
=D(p || 9),

with p(z,y) = r(z)p(y|x), q(z,y) = r(x)q(y|x), and the
conventions 0log0 =0, Olog 3 = 0, and plog § = +o0.

* note: the definition of conditional relative entropy is not
intrinsic, it depends on a third distributionr.
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Density Estimation Problem

B Training data: sample S of size m drawn i.i.d. from set X
according to some distribution D,

S = (xl,...,xm).

B Problem: find distribution p out of hypothesis set P that
best estimates D.
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Maximum Likelihood Solution

B Maximum Likelihood principle: select distributionp € P
maximizing likelihood of observed sample S,

P = argmax Pr|S|p]
peP

m
= argmax H p(x;)
PEP 21

— argmax Z log p(z;).
PEP =1
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Relative Entropy Formulation

B [emma: let pg be the empirical distribution for sample S,
then

Pmr = argminD(/ﬁS H P)-
peP

l Proof
D(ps | p) = ZPS ) log ps(x ZPS ) log p(x

= —H(ps) — » Zi:;nx:mi log p(x)

ACOESESY 133,;% log p(x)

1=1

= —H(ps) — » log:;(xi).

1=1
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Maximum a Posteriori (MAP)

B Maximum a Posteriori principle: select distributionp € P
that is the most likely, given the observed sample .S and
assuming a prior distribution Pr|p]over P,

Paap = argmax Pr(p|S]
peP

_ aremax Pr[S|p] Pr(p]
pEP Pr[S]

= argmax Pr|S|p| Pr[p].
peEP

e note: for a uniform prior, ML = MAP.
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Density Estimation + Features

B Training data: sample S of size mdrawn i.i.d. from set X
according to some distribution D,

S = (xl,...,xm).
B Features: associated to elements of X,
. N
b: X =R B, (2)
r— P(xr) = [ : ] .
DN ()

B Problem: find distribution p out of hypothesis set P that
best estimates D.

e for simplicity, in what follows, X is assumed to be finite.
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Features

B Feature functions ®; assumed to be in H and || ®|| < A.

B Examples of H:

o family of threshold functions {x + 1, <¢: x € R",0 € R}
defined over N variables.

e functions defined via decision trees with larger depths.
e k-degree monomials of the original features.

® zero-one features (often used in NLP, e.g., presence/
absence of a word or POS tag).
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Maximum Entropy Principle

(E. T. Jaynes, 1957, 1983)

[Hea: empirical feature vector average close to expectation.
For anyéd > 0, with probability at least1 — 9

E [@()— B [$() 108 ;

H < 2R, (H) + A
x~D x~D o0

)

2m

Maxent principle: find distribution p that is closest to a
prior distribution po (typically uniform distribution) while

verifying | Eu,[®(2)] - B, _5[®()]| < 5.

Closeness is measured using relative entropy.

® note: no setPneeded to be specified.
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Maxent Formulation

B Optimization problem:

in D
min D(p || po)
subject to: | E [®(z)] — ES[<I>(x)]H < 8.
T~p T 00

® convex optimization problem, unique solution.
e [ =0:standard Maxent (or unregularized Maxent).

e (5 >0:regularized Maxent.
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Relation with Entropy

B Relationship with entropy: for a uniform prior po,

(p |l po) =) plx log ))

reX

=~ > p(z)logpo(z) + > p(z)logp(z
reX reEX

= log || — H(p).
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Maxent Problem

B Optimization: convex optimization problem.

mm Zp )log p(x

reEX
subject to: p(x) > 0,Vx € X

> plx) =

> p()@; () — - 3@y (wi)| < 5.V € [1,N].

Foundations of Machine Learning page 22



Gibbs Distributions

B Gibbs distributions: set Q of distributions pyw withw e RY,

] = PolEle (W @(@) _ pola]exp (2 5m1 w;®;(x))
W - Z - Z Y

with Z = Zpo z]exp (w - ®(z)).

® Rich family:

e forlinear and quadratic features: includes Gaussians

and other distributions with non-PSD quadratic forms in
exponents.

e for higher-degree polynomials of raw features: more
complex multi-modal distributions.
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Examples
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Dual Problems

B Regularized Maxent problem:

mpin F(p) =D(p | po) + IC(]E[(I)Da

D(p || po) = D(p || po) ifp € A, 400 otherwise;
ith —Jdu: [lu= -
with ¢ ¢ = {u: [ju - B[®] || < B};
Ic(x) =0if z € C, Ic(x) = 400 otherwise.

B Regularized Maximum Likelihood problem with Gibbs
distributions:

sup Glw) = - Y log | P24 | = jwl
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Duality Theorem

(Della Pietra et al., 1997; Dudik et al., 2007; Cortes et al.,
B Theorem: the regdlarized Maxent and ML with Gibbs

distributions problems are equivalent,

sup G(w) = min F(p).
wERN P

o furthemore, letp* = argmin F'(p), then, for anye >0,
P

(\G(w) — sup G(w)| < e) N (D(p* | pw) < e).

weRN
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Notes

B Maxent formulation:
* no explicit restriction to a family of distributions P.

* but solution coincides with regularized ML with a specific
family P!

* more general Bregman divergence-based formulation.
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L1-Regularized Maxent

(Kazama and Tsuijii, 2003)
B Optimization problem:

inf Bllwl — — Zlog pw 3]

wERN

where pw|z] = %exp (W - ®(z)).

B Bayesian interpretation: equivalent to MAP with Laplacian
Prior gprior (W) (Williams, 1994),

max log (ﬁ Pw 3] qprior(W))

1=1 N
. B;
with C]prior(VV) = H EJ eXp(—ﬁj‘ij.
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Generalization Guarantee

(Dudik et al., 2007)

B Notation: Lp(w) = x?p[— log pwlz]], Ls(W) = xES[— log pw|]].

B Theorem: Fixé > 0. Let w be the solution of the L1-reg.

Maxent problem for 5 = 2R,,(H) + A\/Iog(§)/2m . Then,
with probability at least1 — 4,

£(%) < infu Lo(w) + 2wl (2%, (8) + 4551 |
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Proof

B By Holder's inequality and the concentration bound for
average feature vectors,

Lp(W) — Ls(w) =w - [E[®] — B[]

< Wil [ E[®] - E[®]]loc < Bllwl]1-

B Since wis a minimizer,
Lp(W)—Lp(w)=Lp(W)— (A)—l—ﬁs( ) — Lp(w)
) —

< Blwll + Ls(W) = Lp(w)

< Blwlly + Ls(w) = Lp(w) < 25| w|.
(W minimizer of ||wl|; + Lg(w))
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L>-Regularized Maxent

(Chen and Rosenfeld, 2000; Lebanon and Lafferty, 2001)
B Different relaxations:

e |, constraints:

vj € [1,N],

E [®;(2)] - E [&,(2)]| <5

Tr~Dp

e |, constraints:

E [@(x)] - E[@()]| <B

r~p r~p
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L>-Regularized Maxent

B Optimization problem:

1 m
f — =N log pu ],
nf Bllwll3 = — > log pwlai]

where pw|z] = %exp (W - ®(z)).

B Bayesian interpretation: equivalent to MAP with Gaussian
Prior ¢prior (W) (Goodman, 2004),

Hl‘SJX log (H pw £Lj qprior(w)>

1=1

N
with qprior H

l\D

2W02
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Conditional Maxent Models

B Maxent models for conditional probabilities:

conditional probability modeling each class.
use in multi-class classification.
can use different features for each class.

a.k.a. multinomial logistic regression.

logistic regression: special case of two classes.

Foundations of Machine Learning
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Problem

B Data: sample drawn i.i.d. according to some distribution D,
S = ((ZEl, yl), Ceey (xm, ym)) S (X Xy)m.

e Y={1,...,k}, or Y={0,1}* in multi-label case.
M Features: mapping®: X x Y — RY.

B Problem: find accurate conditional probability
models Pr[- | z],x€ X, based on ®.
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Conditional Maxent Principle

(Berger et al., 1996, Cortes et al., 2015)

B [tea: empirical feature vector average close to expectation.
For anyd > 0, with probability at least1 — ¢,

log 2

H E [®(y)- E [«b(x,ynH < 9%, (H) + | 253

xr~p r~p . 2m
y~DI-|x] y~pl[-|x]

B Maxent principle: find conditional distributions p|-|x| that
are closest to priors po[-|z] (typically uniform distributions)
while verifying H E .5 [®,y)] —E .5 [CI)(:U,y)]H <8.

y~pl[-|x] y~pl-|x] >

B (Closeness is measured using conditional relative entropy
based on p.
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Cond. Maxent Formulation

(Berger et al., 1996, Cortes et al., 2015)
B Optimization problem: find distribution p solution of

min 3 plal D(pla || pol-la)

[-|x]€eA

reX
.t EA[ E [@@y)|- B [@@y]]| <8
z~p Ly~pl[|z] (z,y)~S 00

® convex optimization problem, unique solution.
e [ =0:unregularized conditional Maxent.

e (3> 0:regularized conditional Maxent.
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Dual Problems

B Regularized conditional Maxent problem:

~

F(p) = E_ lﬁ(p[°\w] | po[°\ﬂ3])+IA(p[-!x])] +Ic( E_ [‘P])-

Tr~p T~p
y~p|-|x]

B Regularized Maximum Likelihood problem with conditional
Gibbs distributions

pW (A ‘/I;'L
Zlog[ il ]] _ Blwll:
PO yz‘xz]
where V(x,y) € X x ),

B Poly|x] exp (W - P(x, y))
= Z poly|x| exp(w - ®(z,y)).

yey
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Duality Theorem
(Cortes et al., 2015)

B Theorem: the regularized conditional Maxent and ML with
conditional Gibbs distributions problems are equivalent,

sup G(w) = min F(p).
weRN P

o furthemore, let p* = argmin F(p), then, for any e > 0,
P

(IG(w) = sup G(w)|<e) = E_[D(p"[fa] | pwlfal)| <e
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Regularized Cond. Maxent

(Berger et al., 1996, Cortes et al., 2015)
B Optimization problem: convex optimizations, regularization
parameterA > 0.

min  A[|w|; — — Zlog Pw (Y| 74]

wERN

or wm%RnN )‘HWHQ - Zlog pw[yz‘xz]
where V(x,y) € X x ),

_ exp(w - @(z,y))
pW[y|x]_ Z(CC)

=Y exp(w - B(a,y)).

yey
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More Explicit Forms

B Optimization problem: multinomial logistic loss.

I [
min_ < + — ) log exp (W b(x;,y) — W-(I)(jS,yi)) .
2 At + i 2

Il [ ®
min < — W + — @ 3327%, _|_ log W (CUz y):|
28\ Al 3 3 2
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Related Problem

B Optimization problem: log-sum-exp replaced by makx.

AWl 1
min + — maX(W-(I)ZCZ', —W-Cbxi,i).

1= _y

N

—Pw(fﬂi 7y’£>
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Common Feature Choice

B Multi-class features:

0 (W1
0 Wy
C@y) = T(@)| w=|w, | =3 w B(,y)=w, L)
0 Wy+t1
- 0 L Wiy -

B |,-regularized cond. maxent optimization:

min A Y fwy 3 + Zloglzexp(wy (2) ~ Wy, T(a1)) |

yey yey
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Prediction

B Prediction with pw|y|z]= eXp(v}ggx’y)) ;

y(x) = argmax, cy Pw ly|x] = argmax, cy w - b(x,y).
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Binary Classification

B Simpler expression:

Z exp (w - <I>(:E7;, y) — W ‘I’(a% yz))
yey
_ ew'@(xi,+1)—w~<1>(asi,yi) _|_€W“I>(£Ui,—1)—W'CI>(SU7L,y7;)
— 1+ e—yiw-[<I>(a:¢,—|—1)—<I>(a:,,;,—1)]

— 1 + 6—in"I’(fci)7

with¥(z) = ®(z,+1) — ®(x, —1).

Foundations of Machine Learning page 45



Logistic Regression

(Berkson, 1944)
B Binary case of conditional Maxent.

B Optimization problem: regularized logistic loss.

: Allw[1 1 —yw- P (z;
min { + ;:1 og |l+e

weRN )\HWH%

® convex optimization.
e variety of solutions: SGD, coordinate descent, etc.

* coordinate descent: similar to AdaBoost with logistic

loss ¢(—u) =log,(1 +e7 ) > 1,<0 instead of exponential
loss.
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Generalization Bound

B Theorem: assume that £®, € Hfor all j € [1, N]. Then, for
any ¢ > 0, with probability at least 1 — § over the draw of a
sample Sof sizem, forall f: x — w - ®(x),

R(f) < —ZloguO(l—l—e s RE)) 4 dw ]|y R (H)

’[,_

log log, 2||w log 2
_|_\/ glog, 2| ||1_|_ g3
m m

)

whereug =1+ 1,

Foundations of Machine Learning page 47



Proof

B Proof: by the learning bound for convex ensembles holding
uniformly for all p, with probability at least1 — 4, for all f

andp > 0,
1 & 4 loglog, 2 log 2
S - Y, W xT; —|_ _mm H —|_ V p —l_ 5 .
m Z e 10 T (H) m m

® Choosing p = s and using Lu<i < log,, (1 +e™") yields
immediately the learning bound of the theorem.
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Logistic Regression

(Berkson, 1944)

B |ogistic model:
w-P(z,+1)

Z(x)

where Z(z) = W ®(z,+1) 4 owB(z,—1)

€

Prly=+1]z| =

B Properties:

* linear decision rule, sign of log-odds ratio:
Prly = +1 | z]
Prly=—1| z]

log =w- (®(z,+1) — ®(z,-1)) = w- T(x).
* |ogistic form:
1 1

Prly=+1]z] = - e wil@@A)-@(z,-1)] ] LewE(@)
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Logistic/Sigmoid Function

1

Jra 1+e® :
0sf
0.!5E
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Applications

B Natural language processing (Berger et al., 1996; Rosenfeld, 1996;
Pietra et al., 1997; Malouf, 2002; Manning and Klein, 2003; Mann et al., 2009;

Ratnaparkhi, 2010).

B Species habitat modeling (Phillips et al., 2004, 2006; Dudik et al., 2007;
Elith et al, 2011).

B Computer vision (Jeon and Manmatha, 2004).
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Extensions

B Extensive theoretical study of alternative regularizations:
(Dudik et al., 2007) (see also (Altun and Smola, 2006) though some
proofs unclear).

B Maxent models with other Bregman divergences (see for
example (Altun and Smola, 2006)).

B Structural Maxent models (Cortes et al., 2015):
® extension to the case of multiple feature families.
* empirically outperform Maxent and L1-Maxent.

e conditional structural Maxent: coincide with deep
boosting using the logistic loss.
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Conclusion

B |ogistic regression/maxent models:

theoretical foundation.

natural solution when probabilites are required.

widely used for density estimation/classification.

often very effective in practice.

distributed optimization solutions.

no natural non-linear L1-version (use of kernels).

connections with boosting.

connections with neural networks.
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