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Motivation
With an infinite hypothesis set   , the error bounds 
of the previous lecture are not informative.

Is efficient learning from a finite sample possible 
when    is infinite?

Our example of axis-aligned rectangles shows that 
it is possible.

Can we reduce the infinite case to a finite set? 
Project over finite samples?

Are there useful measures of complexity for 
infinite hypothesis sets?
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This lecture

Rademacher complexity

Growth Function

VC dimension

Lower bound
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Empirical Rademacher Complexity

Definition:

•    family of functions mapping from set    to       .

• sample                      .

•      (Rademacher variables): independent uniform 
random variables taking values in             .
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Rademacher Complexity

Definitions: let    be a family of functions mapping 
from    to       .

• Empirical Rademacher complexity of    :

• Rademacher complexity of    :
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Rademacher Complexity Bound

Theorem: Let    be a family of functions mapping 
from    to       . Then, for any       , with probability 
at least       , the following holds for all        :

Proof: Apply McDiarmid’s inequality to
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• Changing one point of   changes        by at most 

• Thus, by McDiarmid’s inequality, with probability at 
least 

• We are left with bounding the expectation.
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• Series of observations:
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• Now, changing one point of   makes          vary by 
at most    . Thus, again by McDiarmid’s inequality, 
with probability at least         ,

• Thus, by the union bound, with probability at   
least       ,
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Loss Functions - Hypothesis Set

Proposition: Let    be a family of functions taking 
values in             ,     the family of zero-one loss 
functions of   :                                             Then,

Proof:
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Generalization Bounds - Rademacher

Corollary: Let    be a family of functions taking 
values in             . Then, for any       , with 
probability at least       , for any        ,
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Remarks

First bound distribution-dependent, second data-
dependent bound, which makes them attractive.

But, how do we compute the empirical Rademacher 
complexity?

Computing                                       requires 
solving ERM problems, typically computationally 
hard.

Relation with combinatorial measures easier to 
compute?
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This lecture

Rademacher complexity

Growth Function

VC dimension
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Growth Function

Definition: the growth function               for a 
hypothesis set    is defined by

Thus,           is the maximum number of ways    
points can be classified using   .
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Massart’s Lemma

Theorem: Let            be a finite set, with                 , 
then, the following holds:

Proof: 
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• Taking the log yields:

• Minimizing the bound by choosing                   
gives

16

E
�

�
sup
x�A

m⇤

i=1

�ixi

⇥
� log |A|

t
+

tR2

2
.

t =
�

2 log |A|
R

E
�

�
sup
x�A

m⇤

i=1

�ixi

⇥
� R

⌅
2 log |A|.



pageMehryar Mohri - Foundations of Machine Learning

Growth Function Bound on Rad. Complexity

Corollary: Let    be a family of functions taking 
values in             , then the following holds:

Proof:
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Generalization Bound - Growth Function

Corollary: Let    be a family of functions taking 
values in             . Then, for any       , with 
probability at least       , for any        ,

But, how do we compute the growth function? 
Relationship with the VC-dimension (Vapnik-
Chervonenkis dimension).
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VC Dimension

Definition: the VC-dimension of a hypothesis set    
is defined by

Thus, the VC-dimension is the size of the largest set 
that can be fully shattered by   .

Purely combinatorial notion.
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Examples

In the following, we determine the VC dimension 
for several hypothesis sets.

To give a lower bound   for                , it suffices 
to show that a set   of cardinality   can be 
shattered by   .

To give an upper bound, we need to prove that no 
set    of cardinality       can be shattered by   , 
which is typically more difficult.
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Intervals of The Real Line

Observations:

• Any set of two points can be shattered by four 
intervals

• No set of three points can be shattered since 
the following dichotomy “+ - +” is not realizable 
(by definition of intervals):

• Thus,                                   .

+ - +

- - + -

+ +

- +

22

VCdim(intervals in R)=2
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Hyperplanes

Observations:

• Any three non-collinear points can be shattered:

• Unrealizable dichotomies for four points:

• Thus,                                             .
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+
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+

+
-
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VCdim(hyperplanes in Rd)=d+1
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Axis-Aligned Rectangles in the Plane

Observations:

• The following four points can be shattered:

• No set of five points can be shattered: label 
negatively the point that is not near the sides.

• Thus,                                               .
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Convex Polygons in the Plane

Observations:

•         points on a circle can be shattered by a d-gon:

• It can be shown that choosing the points on the 
circle maximizes the number of possible 
dichotomies. Thus,                                          . 
Also,                                           .

+

++

- -

-
--

-
-

+

+
+ +

+

+

+

-

-
-

-

|positive points| < |negative points| |positive points| > |negative points|
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Sine Functions

Observations:

• Any finite set of points on the real line can be 
shattered by                             .

• Thus, 

26

{t ⇤�sin(�t) : � ⇥ R}
VCdim(sine functions)=+�.



pageMehryar Mohri - Foundations of Machine Learning

Sauer’s Lemma

Theorem: let    be a hypothesis set with            
then, for all         ,

Proof: the proof is by induction on        . The 
statement clearly holds for         and        or       . 
Assume that it holds for                  and             .

• Fix a set                        with           dichotomies 
and let            be the set of concepts    induces 
by restriction to   .
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• Consider the following families over                       : 

• Observe that
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• Since                      , by the induction hypothesis,

• By definition of     , if a set         is shattered by    , 
then the set             is shattered by   . Thus, 

• Thus, 
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Sauer’s Lemma - Consequence

Corollary: let    be a hypothesis set with           
then, for all         ,

Proof:
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Remarks

Remarkable property of growth function:

• either                              and                      

• or                                   and                  .
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Generalization Bound - VC Dimension

Corollary: Let    be a family of functions taking 
values in              with VC dimension   . Then, for 
any       , with probability at least       , for any        ,

Proof: Corollary combined with Sauer’s lemma.
Note: The general form of the result is
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Comparison - Standard VC Bound

Theorem: Let    be a family of functions taking 
values in              with VC dimension   . Then, for 
any       , with probability at least       , for any        ,

Proof: Derived from growth function bound
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This lecture

Rademacher complexity

Growth Function

VC dimension
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VCDim Lower Bound - Realizable Case

Theorem: let    be a hypothesis set with VC-
dimension       . Then, for any learning algorithm   ,

Proof: choose    such that   can do no better than 
tossing a coin for some points. 

• Let                               be a set fully shattered. 
For any       , define    with support    by
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• We can assume without loss of generality that   
makes no error on    .

• For a sample   , let   denote the set of its elements 
falling in                            and let    be the set of 
samples of size    with at most              points in    .

• Fix a sample       . Using                           , 
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• Since the inequality holds for all       , it also holds in 
expectation:                            . This implies that 
there exists a labeling    such that                        .

• Since                       , we also have                  . Thus,

• Collecting terms in                        , we obtain:

• Thus, the probability over all samples   (not 
necessarily in   ) can be lower bounded as 
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• This leads us to seeking a lower bound for        . 
The probability that more than              points be 
drawn in a sample of size    verifies the Chernoff 
bound for any       :

• Thus, for                          and       ,
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Agnostic PAC Model

Definition: concept class    is PAC-learnable if there 
exists a learning algorithm   such that:

• for all                         and all distributions   ,

• for samples   of size                          for a fixed 
polynomial.
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Theorem: let    be a hypothesis set with VC 
dimension       . Then, for any learning algorithm  ,

Equivalently, for any learning algorithm, the sample 
complexity verifies

40

VCDim Lower Bound - Non-Realizable Case
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