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Motivation

B With an infinite hypothesis set H, the error bounds
of the previous lecture are not informative.

| |[s efficient learning from a finite sample possible
when H is infinite!?

B Our example of axis-aligned rectangles shows that
it is possible.

B Can we reduce the infinite case to a finite set!
Project over finite samples?

& Are there useful measures of complexity for
infinite hypothesis sets!?
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

® Lower bound
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Empirical Rademacher Complexity

® Definition:
® G family of functions mapping from set Z toa, b).
® sample S=(z1,...,2m)-

® 0;s (Rademacher variables): independent uniform
random variables taking values in{—1, +1}.

1 [on g9(#1)
Rs(G) = E |sup —[][ ”-E[sup—Zazgzz].
7 QEGm Tm g(zm) T LgeGg M
N -’

T~

correlation with random noise
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Rademacher Complexity

® Definitions: let G be a family of functions mapping
from Z to|a, b].

® Empirical Rademacher complexity of G:

Rs(G) = |:SUP_ZO'1,9 Z;)

eG M
where ;s are independent unlform random variables
taking values in{—1, +1}andS=(z1,...,2m).

)

® Rademacher complexity of G:

R (G) = SN%m[‘%S(G)]-
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Rademacher Complexity Bound
(Koltchinskii and Panchenko, 2002)
B Theorem: Let G be a family of functions mapping
from Z to [0, 1]. Then, for any 6 > 0, with probability
at least 16, the following holds for all g G:

Blg(2)] < — D" 9(z1) + 200 () + ||
] — - log%
Elg(2)] < — 3 g(z) + 2Rs(C) + 31~

1=1

® Proof: Apply McDiarmid’s inequality to

2(S) = sup Elg] - Eslg).
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® Changing one point of S changes ©(S) by at most =

(') — @(S) = sup{E[g] — Es'[g]} — sup{E[g] — Es[g]}

gelG geG

< sup{{Blg] - Es/[g]} — {Elg] — Eslg]}}

= sup{Es[g] — Es/[g]} = sup 2 (g(zm) — g(z},)) < =
geG geqG

® Thus, by McDiarmid’s inequality, with probability at

least 1 — 3
log 2
o() < B[o(9)] + k.

® We are left with bounding the expectation.
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® Series of observations:

E[2(S)] = E :sggE[g] —Es(g)]
=E :Slelg E[Es (9) — Es(g)]
(sub-add. of sup) < E [Slelg Es (9) — Es(g)]
= B Lap 2 (0t~ ot

1 m
i )= E — i(9(2;) — g(z
(swap zyand ;) = E_ [ sup E 1 0i(9(z;) — 9(z))]

geG M “—
(sub-additiv. of sup) < E [sup 1 v az-g(z,g)] + E [supi . —aig(zz)}
o,S’ geqG m 1 o,S geG m 1
1 m
=2 E |sup — 0:9(2;)| = 2R (G
E s 3 oig(a)] = 290n(G)
page 8
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e Now, changing one point of Smakes s (G)vary by
at most - . Thus, again by McDiarmid’s inequality,
with probability at least 1 — 3,

log %

2m

® Thus, by the union bound, with probability at

least 1—90,

N log 2
B(S) < 2Rs(G) + 3] =22

2m
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Loss Functions - Hypothesis Set

® Proposition: Let H be a family of functions taking
values in{—1,+1}, G the family of zero-one loss

functions of H: G={(z,y) — 1p)2,: h € H}.Then,

S,oLpegm — 2 '

1 1 — 1 1 —
:—E[Sup— 0}+—E[sup— —Jyhaz]
2 S0 heHm; 2 S0 heHm; ( )
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Generalization Bounds - Rademacher

B Corollary: Let H be a family of functions taking
values in{—1, +1}.Then, for any § >0, with
probability at least 14, for anyhe H,

~ log
R(h) < R(h) + R,.(H) 2m5 .
~ log %

R(h) < R(h) + Re(H) + 3 .

2m
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Remarks

® First bound distribution-dependent, second data-
dependent bound, which makes them attractive.

B But, how do we compute the empirical Rademacher
complexity!?

B ComputingE,[sup,cy = Y vy 0:h(z;)] requires
solving ERM problems, typically computationally
hard.

B Relation with combinatorial measures easier to
compute!
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

® Lower bound
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Growth Function

® Definition: the growth functionIly: N— Nfor a
hypothesis set H is defined by

vmeN, lg(m)=  max ‘{(h(:r;l), o h(z)): b€ H}‘.

{33‘1 ..... zr;m}gX

B Thus,IIg(m)is the maximum number of ways m
points can be classified using H.
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Massart’s Lemma

(Massart, 2000)

B Theorem:Let A C R™be a finite set, withR= tax 2|2,
then, the following holds:

m

1
—sup Y 07
M zeAiy

Ry/2 log]A\

E

o

(Jensen’s ineq.)

B Proof: exp (tg

sup T;%; <E|exp |tsup T;%;
a:EAZ ]) o ( [ ZCEAZ

(Hoeffding’s ineq.) < (exp [
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® Taking the log yields:

i log |A| tR2
E{Sungiﬂ%} < Ogt’ ‘ | 5

® Minimizing the bound by choosing ¢ = y/2log |41

. R
gives

E |:SU.pZO'Z'ZIZZ’] < R+/2log|A|

o)
TeA =1
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Growth Function Bound on Rad. Complexity

B Corollary: Let G be a family of functions taking
values in{—1, +1}, then the following holds:

%, (G) < \/QIOgﬂg(m).

m
& Proof:
o@ =B [mp [ 1] [7F]]
L V2 logl{(g(m);?-l- 290m) 9 € G \cart's Lemma)

< Vvmy/2log g (m) _ \/ZIOgH(;(m).

m m
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Generalization Bound - Growth Function

B Corollary: Let H be a family of functions taking
values in{—1, +1}.Then, for any § >0, with
probability at least 14, for anyhe H,

R(h) < R(h) + \/210g I (m) ] log 5

m om

B But, how do we compute the growth function?
Relationship with the VC-dimension (Vapnik-
Chervonenkis dimension).
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This lecture

B Rademacher complexity
® Growth Function

B VC dimension

® Lower bound
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VC Dimension

(Vapnik & Chervonenkis, 1968-1971;Vapnik, 1982, 1995, 1998)

B Definition: the VC-dimension of a hypothesis set H
is defined by

VCdim(H) = max{m: llg(m) =2}

B Thus, the VC-dimension is the size of the largest set
that can be fully shattered by H.

® Purely combinatorial notion.
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Examples

& [n the following, we determine the VC dimension
for several hypothesis sets.

B To give a lower boundd for VCdim(H), it suffices
to show that a set Sof cardinality d can be
shattered by H.

B To give an upper bound, we need to prove that no
set S of cardinality d+1can be shattered by H,
which is typically more difficult.
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Intervals of The Real Line

A Observations:

® Any set of two points can be shattered by four

intervals - - + - -+
—_— — e

@ @—
+ +
ﬁ

® No set of three points can be shattered since
the following dichotomy “+ - +” is not realizable
(by definition of intervals):

+ oo+
.- o °

® Thus,VCdim(intervalsin R)=2.
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Hyperplanes

B Observations:

® Any three non-collinear points can be shattered:

+
+

® Unrealizable dichotomies for four points:
+ +

+ + o+
® Thus,VCdim(hyperplanesin R%)=d+1.
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Axis-Aligned Rectangles in the Plane

B Observations:
® The following four points can be shattered:

+ + + +
_ _ + - - - - +
+ + _ _

® No set of five points can be shattered: label
negatively the point that is not near the sides.

+
T
+

® Thus,VCdim(axis-aligned rectangles) =4 .
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Convex Polygons in the Plane

B Observations:

® 2dJ-+1points on a circle can be shattered by a d-gon:

=

= -
|positive points| < |negative points| |positive points| > |negative points|
® |t can be shown that choosing the points on the
circle maximizes the number of possible
dichotomies. Thus,VCdim(convex d-gons) =2d+1.
Also,VCdim(convex polygons) =—+o0.
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Sine Functions

B Observations:

® Any finite set of points on the real line can be
shattered by {¢t—sin(wt): w € R}.

® Thus,VCdim(sine functions) =+oo.
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Sauer’s Lemma

(Vapnik & Chervonenkis, 1968-1971; Sauer, 1972)

B Theorem:let H be a hypothesis set withVCdim(H)=d
then, for all meN,

Iy (m) < ng% (T)

® Proof: the proof is by induction on m+d.The
statement clearly holds form=1and d=0ord=1.
Assume that it holds for(m—1,d—1)and (m—1,d).

® FixasetS={xy,...,2,}withIly(m)dichotomies
and let G=H,s be the set of concepts H induces
by restriction to S.
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® Consider the following families over S’ ={z1,..., 2,1}

Gi=Gisr Go={9'CS": (¢ €eG)AN(¢g U{zn} € G)}.

L1 N L2 |+ Tm—1f Lm
L [ o 19 o
T 0| o I~ |
0o | | | 1\ |
N1 [ oo 1/ o
™~ o |0 0|1

® Observe that|G| + |G| = |G|.
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® SinceVCdim(G1)<d, by the induction hypothesis,

G| <Tlg,(m —1) <Z< )

® By definition of G, if a setZ C.S’is shattered by Gb,
then the set ZU{z,, } is shattered by G.Thus,

VCdim(G,) < VCdim(G) —1=d —1

and by the induction hypothesis,

Go| <Tlg,(m —1) <Z< >

® Thus, |G| < Zf:o ( i 1) T Z?:ol ( i 1)
=Y (") + (7)) =2 (7).
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Sauer’s Lemma - Consequence

@ Corollary: let H be a hypothesis set withVCdim(H)=d
then, for all m>d,

—
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Remarks

B Remarkable property of growth function:
® either VCdim(H)=d< 400 and Iy (m)=0(m?)
® or VCdim(H)=+oc andIlg(m)=2".
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Generalization Bound - VC Dimension

B Corollary: Let H be a family of functions taking
values in {—1, +1} with VC dimension ¢ .Then, for
any § >0, with probability at least1—¢, for any hc H,

2d log = log

R(h) < R(h) + \/ | %.

m 2m

® Proof: Corollary combined with Sauer’s lemma.

B Note: The general form of the result is

R(h) < R(h) + O ( 105%@) |
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Comparison - Standard VC Bound

(Vapnik & Chervonenkis, 197 I;Vapnik, 1982)
B Theorem: Let H be a family of functions taking
values in {—1, +1} with VC dimension ¢ .Then, for
any § > 0, with probability at least1—4, for any hc H,

~ 8dlog 22 4 8log %
R(h)gR(h)+\/ %674 TSO85

m

® Proof: Derived from growth function bound

me

Pr [ R(h) — f%(h)| > e] < 4115 (2m) exp (—2) .

8
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This lecture

B Rademacher complexity
® Growth Function

#@ VC dimension

& Lower bound
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VCDim Lower Bound - Realizable Case

(Ehrenfeucht et al., 1988)

B Theorem:let H be a hypothesis set with VC-
dimensiond >1.Then, for any learning algorithm L,

d—1]
1D, 4 H, P Rp(h —— | >1/100.
? fe ) SNDrm - D( S?f)> 32m- — /

B Proof: choose D such that Lcan do no better than
tossing a coin for some points.

® letX={xg,x1,...,24_1}be a set fully shattered.
For any € >0, define D with support X by
8¢
d—1

%r[:co] =1—8¢ and Vie|[l,d— 1],%1"[%] =
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® We can assume without loss of generality that L
makes no error on zy.

e For a sample 9, let Sdenote the set of its elements

falling in Xy ={x1,...,24_1} and let S be the set of
samples of size m with at most (d — 1) /2 points in X.

® Fix a sampleS€S. Using| X — S|>(d—1)/2,

fEU [Bp(hs, f)] Z Z Lh(z)£f(x) Prz| Prf]

f xzeX

> Y L) s () Prlz] Prf]

=3 (Y Loy () Prlf]) Prla]

rdS
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® Since the inequality holds for all S¢S, it also holds in
expectation:Es ;. [Rp(hs, f)] > 2¢. This implies that
there exists a labeling fysuch that Es[Rp(hs, fo)] > 2e.

® Since Prp[X — {z0}] <8¢ We also have Rp(hs, fo) <8 Thus,

2e < %[RD(hSa fo)] < 8e bi%[RD(hsa fo) > €+ (1— Sf;%[RD(hS, fo) > €])e.

® Collecting terms inSP%[RD(hS,fO) > ¢] , we obtain:
S
1 1
PrlRp(hs, fo) 2 €] 2 —(2e —€) = —.
® Thus, the probability over all samples.S (not
necessarily in S) can be lower bounded as

Pr(Rp(hs, fo) > | > Pr[Rp(hs, fo) > d Pr[S] > - Pr(s].
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® This leads us to seeking a lower bound for Pr[S].
The probability that more than(d — 1)/2 points be
drawn in a sample of size m verifies the Chernoff
bound for any~ > 0:

2

1 — Pr[S] = Pr[S,, > 8em(1+~)] < e 8mF .
® Thus,fore=(d—1)/(32m)and~y=1,
Pr[S,, > %] < o—(d—1)/12 < o—1/12 <1-—76,
fors < .01.Thus, Pr[S] > 7§ and

P;I‘[Rp(hs, f()) > 6] > ).
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Agnostic PAC Model

B Definition: concept class C' is PAC-learnable if there
exists a learning algorithm L such that:

e forallce C,e>0,6>0, and all distributions D,

o < el >1
SEIb R(hg) égjf{ R(h) <e| >1-04,

® for samples S of sizem=poly(1/e,1/6) for a fixed
polynomial.
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VCDim Lower Bound - Non-Realizable Case

(Anthony and Bartlett, 1999)

B Theorem:let H be a hypothesis set withVC
dimensiond > 1.Then, for any learning algorithmZ,

1D over X x {0, 1},

(g [Roth) — ot Fo) >

d
320m

| Equivalently, for any learning algorithm, the sample
complexity verifies

[ = 1/61

d
m > .
— 320€2
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