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Motivation

B Some computational learning questions
¥ What can be learned efbciently?
¥ What is inherently hard to learn?
¥ A general model of learning?

| Complexity
¥Com outational complexitytime and space.

¥Sam nle complexityamount of training data
needed to learn successfully.

¥ Mistake boundsiumber of mistakes before
learning successfully.
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This lecture

a PAC Model

m Sample complexity, Pnitd, consistent case

m Sample complexity, Pnitd, inconsistent case

Mehryar Mohri - Foundations of Machine Learning page3



DebPnitionsand Notation

m X :set of all possibleastanceor examplese.g.,
the set of all men and women characterized by
their height and weight.

m c:X! {0,1}:thetarget concepto learn; can be
identibped with its suppoftr€ X: c(z)=1} .

m C:concept classa set of target concepts.

| D :target distributiona bPxed probabllity
distribution overx.Training and test examples are
drawn according t@.
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Depbnitions and Notation

| S:training sample.

®m H:set of concept hypotheses, e.g., the set of all
linear classibers.

® The learning algorithm receives sampland
selects a hypothesis; from H approximating:.
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Errors

® True error or generalization erromof h with
respect to the target conceptand distributiorD :

R(h) = Pr [h(x) k(X)) = E [Ihomepo)

® Empirical error average error oh on the training

samples drawn according to distribution
Rs(h) = Pr NGO 7 o) = E [yl = Dot ete

z! P x! m i=1

= Note:!R(h)= E |Rs(h)|.
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PAC Model
(Valiant, 1984)

m PAC learningProbably Approximately Correct
learning.

® DepPnition concept clas§' IBAC-learnablaf there
exists a learning algorithm such that:

¥forallc! C,1>0,">0, and all distribution® |,

JPrRhs) ! 11" 14,

¥ for sampless of size.=poly(1/!,1/") for a
pxed polynomial.
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Remarks

Concept clasg is known to the algorithm.
Distribution-free model: no assumption @n

Both training and test examples drawrD

Probably: conbdence !
Approximately correct: accuragy- e

Efbcient PAC-learningruns in timepoly(1/!, 1/") .

What about the cost of the representation of C?
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PAC Model - New Debnition

| Computational representatian
¥ cost forz! X ino(n).
¥ cost forc! C inO(size(c)) .

® Extensionrunning time.
O(poly(1/!,1/"))!"  O(poly(1/!,1/",n,size(c))).
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Example - Rectangle Learning

® Problemlearn unknown axis-aligned rectangle
using as small a labeled sample as possible.

® R

m HypothesisrectangleRCIn general, there may be
false positive and false negative points.
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Example - Rectangle Learning

| Simple methoochoose tightest consistent
rectangleR (Jor a large enough sample. How large
a sample? Is this class PAC-learnable?
@

A ()
- ®
® ® ¢
o '-
® TR
®

—>

a2 What is the probability thaR(R') >! ?
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Example - Rectangle Learning

m Fix'>Cand assum-'er[R]>' (otherwise the result
IS trivial).

| |Letiy,12,13,14 De four smallest rectangles along

the sides oR such that?)r[ri]! T -

A ® @
f
~ e @ R=[I,r]! [b,{]
® [4 “. ® I ra=[1,s4]x[b,1]
e 34:inf{s:Pr[[l 3] b,t]] > <}
O M3 R Pr (11, s4[x[b, 1] <
© —
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Example - Rectangle Learning

® Errors can only occur IR—R’ .Thus (geometry),

R(R)>! I R misses at least one region
m Therefore,Pr[R(R)>!]! Pr["{;{R misses ri}]

| 4
! Pr[{ R misses r;}]
=1 o
A © @ ! 4(1# H)M! 4e 4.
1
- @
@ @ -
"4 o ® |
-~
® >
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Example - Rectangle Learning

m Setd>0to match the upper bound:

4 a1 1" m# dlog.
® Then, form>2log % , with probability at least !
R(R") <e.
A ® @
1
e @
® |ra 0. ® |2
-~
@ 3 R
@
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Notes

| |nPnite hypothesis set, but simple proof.

|m Does this proof readily apply to other similar
concepts classes?

m Geometric properties:
¥ key in this proof.

¥ in general non-trivial to extend to other classe
e.d., hon-concentric circlasee HW2, 2006)

—> Need for more general proof and results.
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This lecture

m PAC Model

m Sample complexity, Pnitd, consistent case

m Sample complexity, Pnitd, inconsistent case
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Learning Bound for Finite H -

Consistent Case

® Theoren letH be a Pnite set of functions frax
to {0, 1} and L an algorithm that for any target
conceptc! H and sampk returns a consistent
hypothesigs Rs(hs)=0 .Then,for ady0 , with
probabllity at least! !,

R(hs) < & (log |H]| +log L).
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Learning Bound for Finite H -

Consistent Case

m Proofforany! > 0,debPng, = {h! H:R(h)> ¢ .
Then,
Pr th" H,:Rs(h)=0
! #
=Pr Rs(h))=0#aa#Rs(hyy,)=0
$ I #
$ Pr Rs(h)=0 (union boung
th!
$ (1%D)™$ H|Q1%DH™ $ |[H|je ™.
heH,
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Remarks

® The algorithm can be ERM if problem realizable.
®m Error bound linear in: and only logarithmic4n

| |og, |H|Is the number of bits usefbr the
representation o .

® Bound is loose for largel

® Uninformative for inbnitgd| .
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Conjunctions of Boolean Literals

| Exampldorn=6.

| Algorithm: start withx, ! x;'aaa'x,! X, and rule
out literals incompatible with positive examples.
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Conjunctions of Boolean Literals

® Problemlearning class, of conjunctions of
boolean literals with at most variables (e.g.,
forn=3, z1 AT2 A x3).

| Algorithm: chooséh consistent with
¥ SinceH|=|C,|=3" , sample complexity:
m! #((log3)n+log #).

l =.02,"=.1,n=10, m > 149.

¥Computational complexity: polynomial, since
algorithmic cost per training example Is

INO(n).
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This lecture

m PAC Model

m Sample complexity, Pnitd, consistent case

m Sample complexity, Pnitd, inconsistent case
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Inconsistent Case

® NoheH s a consistent hypothesis.

® The typical case In practice: difbcult problems,
complex concept class.

|m But, iInconsistent hypotheses with a small number
of errors on the training set can be useful.

m Need a more powerful tool: HoeffdingOs inequality
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HoeffdingOs Inequality

|m Corollary: for any! > C and any hypothesisX ! {0,1}
the following inequalities holds

Pr[R(h)! R(h)" ]# € 2™°
Pr{R(R) — R(h) > ¢] < e 2™
® Combining these one-sided inequalities yields

Pr{|R(h)! R(R)|" €] # 2¢' 2™~
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Application to Learning Algorithm?

m Can we apply that bound to the hypothesis
returned by our learning algorithm when training
on samplé& ?

® No, becausés Is not a bxed hypothesis, it depenc
on the training sample. Note also thafr (hs)]
IS not a simple quantity such Réhs)

B |nstead, we need a bound that holds simultaneous
for all hypotheses! H ,aniform convergence
bound
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Generalization Bound - Finite

m Theoren letH be a Pnite hypothesis set, then, for
any! > 0 , with probability at leagt !

. log|H | + log 2
'h" H, R(h) # Rs(h) + \/ ] 2|m 9T
2 Proof By the union bound,
Pr [HIGaHX’R ) ! ﬁs(h)’>!]
— Pr [|R (h)! Rs(hy)[>1 " ..." [R(hp))! ﬁs(thl)p!}
# > Pr|[R(h)! Rs(h)[>!
heH

# 2|H |eXp( 2m|2)
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Remarks

|m Thus, for a Pnite hypothesis set, whp,

vh € H,R (h) < Rg(h) + O 'OgmH‘
® Error bound InO(+=) (quadratically worse).

| log, |H|can be mterpreted as the number of bits
needed to encodeél

0 Occamf)g Razor principle (theologian William of
Occam): Oplurality should not be posited without
necessityO.
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OccamOs Razor

& Principle formulated by controversial theologian
William of Occam:@lurality should not be posited
without necessitQ, rephrased ag® simplest
explanation is be&;

¥invoked in a variety of contexts, e.g., syntax.
Kolmogorov complexity can be viewed as the
corresponding framework in information theory.

¥ here, to minimize true error, choose the most
parsimonious explanation (smallgst ).

¥ we will see later other applications of this
principle.
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LectureSummary

a CisPAC-learnabléf 3L, vceC,V!,">0,m="P (7, #),

S!F)lgm [R(hs) <!]>1-"

| |earning bound, Pnit¢ consistent case:
R(h) < (log |[H| +log 5).

| |earning bound, Pnit¢ inconsistent case:

2

R(h) | ﬁs(h)+ log |H |+log T

2m

® How do we deal with inPnite hypothesis sets?
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Appendix



Universal Concept Class

m ProblemeachkeX debned by boolean features.
Let C be the set of all subsets Xf

m QuestionisC PAC-learnable?

| Sample complexityy must contair€ . Thus,
H|! |C|=22")

The bound givem = %((log 2)2" —Hog%).

| |t can be proved thaC Isot PAC-learnablgat
requires an exponential sample size.
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k-Term DNF Formulae

® DePnition expressions of the forrm, ! aaaT, with
each termt; conjunctions of boolean literals with
at mostn variables.

2 Problemlearningk-term DNF formulae.

B Sample complexity|=|C|=3"*. Thus, polynomial
sample complexity((log 3) nk + log 1).

® Time complexityintractable IRP # NP :the class
IS then not efbciently PAC-learnable (proof by
reduction from graph 3-coloring). But, a strictly
larger class is!
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K-CNF Expressions

m DePnitionexpressiondgy A --- AT, of arbitrary
engthy with each terms; a disjunction of at mast
noolean attributes.

|® Algorithm: reduce problem to that of learning
conjunctions of boolean literal@n)* new variables

(u11--'1uk')_>Yu1 ..... Uk *

¥ the transformation is a bijection;

¥ effect of the transformation on the distribution
IS not an issue: PAC-learning allows any
distributionD .
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k-Term DNF Terms and
k-CNF EXxpressions

m Observationanyk-term DNF formula can be
written as ak-CNF expression. By associativity,

k
\/ ui1'ddaluin, = A uyj, "Aaa uy .
=1 Jr€[Lina],.j r€[lng]

M Exampleu ! up! us)" (1! vl vs)= AL (u;" vy).

¥But, In general convertinglaCNF (equiv. to a
k-term DNF) to ak-term DNF Is intractable.

m Key aspects of PAC-learning depPnition:
¥ cost of representation of concept .
¥ choice of hypothesis sét
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