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Motivation

| Efficient computation of inner products in high
dimension.

® Non-linear decision boundary.
® Non-vectorial inputs.

B Flexible selection of more complex features.
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Non-Linear Separation

B Linear separation impossible in most problems.

® Non-linear mapping from input space to high-
dimensional feature space: ¢: X — F.

B Generalization ability: independent of dim(F),
depends only on margin and sample size.
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Kernel Methods

B |dea:
® DefineK: X x X —R, called kernel, such that:
D(x) - B(y) = K(2,y).
® K often interpreted as a similarity measure.

B Benefits:

e Efficiency: K is often more efficient to compute
than & and the dot product.

® Flexibility: K can be chosen arbitrarily so long as
the existence of ® is guaranteed (PDS condition
or Mercer’s condition).
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PDS Condition

B Definition: a kernel K: X x X —R is positive definite
symmetric (PDS) if for any{z1,..., 2z, } C X, the
matrix K = K (z;,2;)];; € R™*™ is symmetric
positive semi-definite (SPSD).

B K SPSD if symmetric and one of the 2 equiv. cond’s:

® its eigenvalues are non-negative.
m
® forany ccR™!, ¢c'Kc = Z cic;K(xi,z;) > 0.
i,j=1
B Terminology: PDS for kernels, SPSD for kernel
matrices (see (Berg et al., 1984)).
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Example - Polynomial Kernels

B Definition:
Ve, y € RY, K(x,y) = (z-y+c)% ¢>0.
B Example:for N=2and d=2,

K(z,y) = (x1y1 + T2y2 + 0)2
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XOR Problem

B Use second-degree polynomial kernel with ¢ = 1:
\/533133‘2

X2¢
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X
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Linearly non-separable
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Normalized Kernels

B Definition: the normalized kernel K’ associated to a
kernel K is defined by

0 if (K(x,x)=0)V (K(2',2")=0)
Vo,o'e X, K'(z,2") = K(z.2)
\/K(az,m)K(x’,x’)

otherwise.

e |f Kis PDS, then K’ is PDS:

i cici K (x;, ;) Z C@Cj i), ®(x;)) i c;i®P(x;) 0.
i,j=1 \/K($i7xi>K(xj7wj i =1 || ”H H(I)(ZUJ)HH i—1 H(I)(wz)HH IHI_

® By definition, for all x with K (z, z) #0,
K'(z,z)=1.
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Other Standard PDS Kernels

B Gaussian kernels:

T — 2
K(z,y) = exp (—H il ) o # 0.

202

® Normalized kernel of (x,x’) — exp (X’Q‘)

(o)

B Sigmoid Kernels:

K(x,y) = tanh(a(x -y) +b), a,b> 0.
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Reproducing Kernel Hilbert Space
(Aronszajn, 1950)

B Theorem:Let K{: X x X —R be a PDS kernel.Then,

there exists a Hilbert space H and a mapping
from X to H such that

Ve,y e X, K(z,y) = ®(x) - P(y).

B Proof: For any z € X, define®(x): X —R~*as follows:
Vy € X, @(z)(y) = K(z,y).
o LetHy= { Y ®(x;): a; € R,y € X, card(]) <oo}.

icl
® We are going to define an inner product{-,-)on H,.
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e Definition:for anyf=>"._; a;®(z;),9 = ijq)(yj),

jEJ

<fag> — Z azb K 377,7:% Zb f y] Zazg(azz)

iel.jed jeJ €l
® (.,-)does not depend on representations of fandg.
O

(,)is bilinear and symmetric.

® (-,-)is positive semi-definite since K'is PDS: for any f,

(f, f) = Z aia;j K (x;,xj) > 0.

i,jel
® note:forany fi1,..., fmand ci,...,cm,
™m
Z CiCy fzafj <Zczfuzcjf]> -
1,7=1

—> (-, -)is a PDS kernel on Hj.
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e (-, -)is definite:

® first, Cauchy-Schwarz inequality for PDS kernels.

f icis PDS, M= ( ") K(*%) ) is SPSD for allz, y€ X

In particular, the product of its eigenvalues, det(IM)
IS hon-negative:

det(M) = K (z,2)K (y,y) — K(z,y)* > 0.
® since(-,-)is a PDS kernel, for any f € Hy andz € X,

(f,@())* < (f, [){®(2), 2(x)),
® observe the reproducing property of (-, -):

\V/f S HOa\v/CU < X7 f(CU) — ZCLZK(ZEMCE) — <f7(I)(,CL’)>
o Thus,|f(z)2<(f. f)K (2, 2) for all z€ X, which
shows the definiteness of (-, -).
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® Thus, (-, -)defines an inner product on H,, which
thereby becomes a pre-Hilbert space.

® Hycan be completed to form a Hilbert space H in
which it is dense.

B Notes:

® [1is called the reproducing kernel Hilbert space
(RKHS) associated to K.

® A Hilbert space such that there exists ®: X — H
with K (z,y)=®(z)-®(y) for allz,y € X is also
called a feature space associated toK. ® is called
a feature mapping.

® Feature spaces associated to K are in general not
unique.
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SVMs with PDS Kernels

(Boser, Guyon, and Vapnik, 1992)

B Constrained optimization:
O(zi) ()

max Zaz — — Z aza]yzy]

1,7=1

subject to: 0 < a; < C'A Zoziyi = 0,7 € [1,m)].

i=1
B Solution:
T) = Sgn( Z oziyiJr b),

withb = y; — Z ozjyj for any x; with

j=1 O<a;<C.

Mehryar Mohri - Foundations of Machine Learning page 16



Rad. Complexity of Kernel-Based Hypotheses

B Theorem:LetK: X xX —R be a PDS kernel and
let : X —H be a feature mapping associated to K.
Let SC{z: K(x,7) < R*}be a sample of size m,and
let H={x— w-®(x): |w|g<A}.Then,

. 1 m A _ m -
B Proof: Rg(H)= —E| sup w o;®(z;)| < —E H 0;P(z;)
m o [nwng ; J< ol ; !
AT 0-71/2 A m 11/2
< ineq) < A B(a, < B Nk
(Jensensmeq)_m_]g) H;a S (x;) H _m[E;@(mﬂ }
_ATL -iK( | _)} V2 AVTK] _ (RPN
B m_a | 4 Ly N ™m o m
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Generalization: Representer Theorem
(Kimeldorf and Wahba, 1971)
B Theorem:LetK: X x X —R be a PDS kernel with H
the corresponding RKHS. Then, for any non-

decreasing functionG: R—Rand any L: R™ - RU{+o00}
problem

argmin F'(h) = argmin G(||h||g) + L(h(z1), ..., h(@m))
heH he H

admits a solution of the formh™ = Z a; K (x;,)

If G is further assumed to be i mcreasmg, then any
solution has this form.
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® Proof:let H; =span({K(x;,-):i€[1,m]}).Anyhe H
admits the decompositionh="h; + h~ according
toH=H{ & HlJ_
® Since G is non-decreasing,

G(llmll) < G(\/IInal + 18413, ) =GR ).
® By the reproducing property, for alli € |1, m|,
h(wz;) = (h, K(xi,-)) = (h1, K(x4,)) = ha(z;).
® ThUS,L(h(SBl), Ceey h(:lj‘m)) :L(hl(ﬂjl), Ceey hq (ZIZm))
® |f Gis increasing, then F'(h;) < F(h) when h™ # 0

and any solution of the optimization problem
must be in H;.
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Kernel-Based Algorithms

B PDS kernels used to extend a variety of algorithms
in classification and other areas:

® regression.

® ranking.

® dimensionality reduction.
o

clustering.

B But, how do we define PDS kernels!?
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Closure Properties of PDS Kernels

B Theorem: Positive definite symmetric (PDS)
kernels are closed under:

® sum,
product,
tensor product,

pointwise limit,

composition with a power series with non-
negative coefficients.
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Closure Properties - Proof

B Proof: closure under sum:
c' Kc>0Ac'Ke>0=c'(K+K')c>0.

® closure under product: K = MM ',

> cici(KyKi) = > CichZMiijk}K;j)

,J=1 ,J=1 k=1
m m
— S S MM K
= ) [ D Czchszngz]]
k=1 -,7=1
-

ClMlk ClMlk

_CmMmk_ _CmMmk_

I
NE
W,
-

-
I
o
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® Closure under tensor product:

® definition: for all z1, 22, y1,y2 € X,
(K1 @ K2)(21,y1, 22, y2) = K1(21, x2) Ka(y1, y2).
® thus, PDS kernel as product of the kernels
(1,91, 2, Y2) = Ki(z1,22) (21,91, 22, y2) — Ka(y1,92).
® Closure under pointwise limit:if for all x, y € X,
lim Ky (z,y) = K(z,9),

Then, (Vn,c'K,,c>0) = lim ¢'K,c=c'Kc>0.

n—oo
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® Closure under composition with power series:

® assumptions: K PDS kernel with|K(x,y)|<p for
allz, ye Xand f(z)=>_"", anx™, a, >0power
series with radius of convergencep.

® foKis aPDS kernel since K™is PDS by closure
under product,>"_ a, K" is PDS by closure
under sum, and closure under pointwise limit.

B Example: for any PDS kernel K, exp(K)is PDS.

Mehryar Mohri - Foundations of Machine Learning page 25



This Lecture

Kernels
Kernel-based algorithms
Closure properties

Sequence Kernels

Negative kernels

Mehryar Mohri - Foundations of Machine Learning page 26



Sequence Kernels

B Definition: Kernels defined over pairs of strings.

® Motivation: computational biology, text and
speech classification.

® |dea: two sequences are related when they share
some common substrings or subsequences.

® Example: bigram kernel;

K(x,y) = Z count, (u) X count, (u).

bigram u
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Weighted Transducers

b:a/0.6

b:a/0.2 A

a:b/0.1 ‘ ) b:a/0.3
° a:b/0.5

T(x,y) = Sum of the weights of all accepting
paths with input x and output .

T(abb,baa) =.1x .2x.3x.14+.5x.3x.6x.1
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Rational Kernels over Strings
(Cortes et al,, 2004)

B Definition:a kernel K : Y* xX* —Ris rational if K =T
for some weighted transducer 7.

B Definition:letT}: X*x A*—-RandT>: A*xQ*—R be
two weighted transducers. Then, the composition
of T1and Tsis defined for all re X", y € Q* by

(TyoTo)(z,y) = Yy Ti(x,z) Ta(z,y).
ZEA*

B Definition: the inverse of a transducer7:Y* x A* —R
is the transducer 77 ': A* x X* - R obtained fromT
by swapping input and output labels.
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PDS Rational Kernels
General Construction

B Theorem:for any weighted transducer7:¥* x¥* — R,
the function K =ToT ' is a PDS rational kernel.

B Proof: by definition, for all z,y € X7,
ry)= > Te,)T(y,2)

® Kis pointwise limit of( n)n>0 defined by

Yo,y € 0¥, Z T(xz,2)T(y, 2).
|z| <n
e K, is PDS since for any sample (z1, ..., zm),

K, =AA" with A = (K, (2:,%}))icq.m]-
jel1,N]
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PDS Sequence Kernels

B PDS sequences kernels in computational biology,
text classification, other applications:

® special instances of PDS rational kernels.
® PDS rational kernels easy to define and modify.

® single general algorithm for their computation:
composition + shortest-distance computation.

® no need for a specific ‘dynamic-programming’
algorithm and proof for each kernel instance.

® general sub-family: based on counting
transducers.
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Counting Transducers

b:e/1 b:e/1 X _ ab
a.e/l
% Z = bbabaabba
0 X:X/l» / \
ccabeeeee  egegeeeabee

® X may be a string or an automaton
representing a regular expression.

T'x

B Counts of Zin X: sum of the weights of
accepting paths of Z o T'x.
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Transducer Counting Bigrams

b:g/l b:S/l

Tbi gram

Counts of Zgiven by Z o Tiigram © ab.
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Transducer Counting Gappy Bigrams

b:e/l b:e/A b:e/1

Tgappy bigram

Counts of Zgiven by Z o Tyuppy bigram © ab,
gap penaltyA<(0,1).
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Composition

B Theorem:the composition of two weighted
transducer is also a weighted transducer.

B Proof: constructive proof based on composition
algorithm.
® states identified with pairs.
® c-free case: transitions defined by

b= v {((qh(ﬁ)aaaca wy X wa, (%#]é)) }

(ql ,CL,b,’UJl )qQ)EEl
/ /
(Q1 7b7C7w2)QQ)€E2

® general case: use of intermediate e-filter.
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Composition Algorithm
€-Free Case

a:a/0.6

‘

a:a/.02
@ a:b/.0 Q b:a/.Og a:a/0 !l Q o
a
b:a/.08

Complexity: O(|T1| |T2|) in general, linear in some cases.
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Redundant €-Paths Problem

(MM, Pereira, and Riley, 1996; Pereira and Riley, 1997)
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Kernels for Other Discrete Structures

| Similarly, PDS kernels can be defined on other
discrete structures:

® |mages,

® graphs,

® parse trees,
® automata,

® weighted automata.
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Questions

®m Gaussian kernels have the form exp(—d?)whered is
a metric.

e for what other functions d does exp(—d?) define a
PDS kernel?

® what other PDS kernels can we construct from a
metric in a Hilbert space?
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Negative Definite Kernels
(Schoenberg, 1938)

B Definition:A function K: X x X —R is said to be a
negative definite symmetric (NDS) kernel if it is
symmetric and if for all{z1,...,2,,} C Xand ce R"*!

withl'c=0,
c'Ke<0.

B Clearly, if K is PDS, then— K is NDS, but the
converse does not hold in general.
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Examples

® The squared distance||z — y||?in a Hilbert space H
defines an NDS kernel. If>".”; ¢;=0,

> acllxi—xilP = Y eici(xi —x5) - (3 — x5)

i,j=1 i,7=1
m
= 5 cies ([l + 1517 = 2% - %)
i,j=1
m ™m m

= aici([xill® + 1% = 2) exi- Y ¢ix;
. i=1 j=1

1,7=1

cicj (|l + [1%1|)

M

7 1

<
I

m m m

& (D allxil?) + 3 e (D eslixil?) =o.

1 1=1 1=1 7=1

M

J
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NDS Kernels - Property
(Schoenberg, 1938)
B Theorem:LetK: X x X —R be an NDS kernel such
that for allz, y€ X, K(x,y)=0iff vt = y .Then, there
exists a Hilbert space H and a mapping ®: X — H
such that

Vr,y € X, K(z,y) = | 2(z) — 2(y)|I*.

Thus, under the hypothesis of the theorem,V K
defines a metric.
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PDS and NDS Kernels

(Schoenberg, 1938)
B Theorem:let K: X x X — R be a symmetric kernel,
then:

® Kis NDS iff exp(—tK)is a PDS kernel for all t >0.
® |Let K'be defined for any zy by
K'(z,y) = K(z,20) + K(y,20) — K(2,y) — K(z0, o)
for all x, y € X. Then,K is NDS iff K’ is PDS.
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Example

B The kernel defined by K (z,y) = exp(—t||z — y||*)
is PDS for all ¢t>0 since||z — y||*is NDS.

B The kernel exp(—|z — y|?)is not PDS for p>2.

Otherwise, for any ¢t >0,{z1,...,z,,} C Xand ce R™*!
_ . |P _|+1/P._41/D . P
Z cic;e tla;—x; [P _ Z cicie L A S 1)
1,7=1 1,7=1

® This would imply that |z — y|? is NDS for p> 2, but
that cannot be (see past homework assignments).
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Conclusion

B PDS kernels:

rich mathematical theory and foundation.

general idea for extending many linear
algorithms to non-linear prediction.

flexible method: any PDS kernel can be used.

widely used in modern algorithms and
applications.

can we further learn a PDS kernel and a
hypothesis based on that kernel from labeled
data? (see tutorial: http://www.cs.nyu.edu/~mohri/icml201 | -
tutorial/).
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Appendix



Mercer’s Condition
(Mercer, 1909)

B Theorem:Let X x X be a compact subset of R and
let K: X x X —R be in L, (X x X)and symmetric.
Then, Kadmits a uniformly convergent expansion

@)

K(z,y) = Z an®n(T)Pn(y), With a, >0,

n=0

iff for any function c in Lo (X),

/—/XXX c(x)e(y) K (z,y)dxdy > 0.
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SVMs with PDS Kernels

B Constrained optimization: Hadamard product

max 21 'a— (aoy) K(ady)

subject to: 0 < a < CAa'y = 0.

A Solution:

= Sgn(z o yi K (x5, ) + b)

with b = y; — (a oy)'Ke; for any z;with
O<a;<C.
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