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Logistics

B Prerequisites: basics in linear algebra, probability, and
analysis of algorithms.

B Workload: about 3-4 homework assignments + project.

B Mailing list: join as soon as possible.
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Course Material

B Textbook B Slides: course web page.

https://cs.nyu.edu/~mohri/mli24/

Foundations of
MaChine Learning second edition

Mehryar Mohri,
Afshin Rostamizadeh,
and Ameet Talwalkar
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

® Probability tools.
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Machine Learning

B Definition: computational methods using experience to
improve performance.

B Experience: == data-driven task, thus statistics,
probability, and optimization.

B Computer science: learning algorithms, analysis of
complexity, theoretical guarantees.

B Example: use document word counts to predict its topic.
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Examples of Learning Tasks

B Text: document classification, spam detection.

B Language: NLP tasks (e.g., morphological analysis, POS
tagging, context-free parsing, dependency parsing).

B Speech: recognition, synthesis, verification.

B [mage: annotation, face recognition, OCR, handwriting
recognition.

B Games (e.g., chess, backgammon, go).
B Unassisted control of vehicles (robots, car).

B Medical diagnosis, fraud detection, network intrusion.
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Some Broad ML Tasks

B (lassification: assign a category to each item (e.g.,
document classification).

B Regression: predict a real value for each item (prediction of
stock values, economic variables).

B Ranking: order items according to some criterion (relevant
web pages returned by a search engine).

B (Clustering: partition data into ‘homogenous’ regions
(analysis of very large data sets).

B Dimensionality reduction: find lower-dimensional manifold
preserving some properties of the data.
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General Objectives of ML

B Theoretical questions:
e what can be learned, under what conditions?
e are there learning guarantees?

e analysis of learning algorithms.

B Algorithms:
e more efficient and more accurate algorithms.
e deal with large-scale problems.

* handle a variety of different learning problems.
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This Course

B Theoretical foundations:
* J|earning guarantees.

® analysis of algorithms.

B Algorithms:
* main mathematically well-studied algorithms.

e discussion of their extensions.

B Applications:

e jllustration of their use.
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Topics

B Probability tools, concentration inequalities.

B PAC learning model, Rademacher complexity, VC-dimension,
generalization bounds.

B Support vector machines (SVMs), margin bounds, kernel methods.
B Ensemble methods, boosting.
B | ogistic regression and conditional maximum entropy models.

B On-line learning, weighted majority algorithm, Perceptron algorithm,
mistake bounds.

B Regression, generalization, algorithms.
B Ranking, generalization, algorithms.

B Reinforcement learning, MDPs, bandit problems and algorithm.
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Definitions and Terminology

B Example: item, instance of the data used.

B Features: attributes associated to an item, often
represented as a vector (e.g., word counts).

B [abels: category (classification) or real value (regression)
associated to an item.

B Data:
* training data (typically labeled).
e test data (labeled but labels not seen).

e validation data (labeled, for tuning parameters).
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General Learning Scenarios

B Settings:

e Dbatch: learner receives full (training) sample, which he
uses to make predictions for unseen points.

* on-line: learner receives one sample at a time and makes
a prediction for that sample.
B Queries:
e active: the learner can request the label of a point.

® passive: the learner receives labeled points.
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Standard Batch Scenarios

B Unsupervised learning: no labeled data.

B Supervised learning: uses labeled data for prediction on
unseen points.

B Semi-supervised learning: uses labeled and unlabeled data
for prediction on unseen points.

B Transduction: uses labeled and unlabeled data for
prediction on seen points.

Foundations of Machine Learning page 13



Example - SPAM Detection

B Problem: classify each e-mail message as SPAM or non-
SPAM (binary classification problem).

B Potential data: large collection of SPAM and non-SPAM
messages (labeled examples).

Foundations of Machine Learning page 14



Learning Stages

labeled data algorithm prior knowledge
training sample .4— features

parameter
selection

validation data

test sample ,
evaluation
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

® Probability tools.
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Definitions

B Spaces: input space X, output space.

B [ossfunction:L: Y xY —R.
* [L(y,y): costof predicting y instead of y.
* binary classification: 0-1 loss, L(y,y") =1,
o regression’Y CR,I(y,y)=(y —y)°
®m Hypothesis set: H CY, subset of functions out of which
the learner selects his hypothesis.
* depends on features.

* represents prior knowledge about task.
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Supervised Learning Set-Up

B Training data: sample S of size mdrawn i.i.d. from X xY
according to distribution D:

S = ((xlayl)v SO (xmaym))'

B Problem: find hypothesis h € Hwith small generalization
error.

e deterministic case: output label deterministic function of
input,y=f(z).
e stochastic case: output probabilistic function of input.
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Errors

B Generalization error: for he H, it is defined by

R(h)= B [L(h(z),y)].

(z,y)~D

B Empirical error: for he Hand sample S, it is

R(E) = — 3" L(h(wi), i)

@ Bayes error:
R*= inf R(h).

h measurable

e in deterministic case, R*=0.
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Noise

B Noise:

® in binary classification, for any z € X,

noise(x) = min{Pr[1|z], Pr[0|x]}.

e observe that E[noise(z)] = R*.
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Learning # Fitting

Notion of simplicity/complexity.
—3 How do we define complexity?
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Generalization

B Observations:

* the best hypothesis on the sample may not be the best
overall.

* generalization is not memorization.

e complex rules (very complex separation surfaces) can be
poor predictors.

e trade-off: complexity of hypothesis set vs sample size
(underfitting/overfitting).
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Model Selection

B General equality: for any he H, /best in class

R(h) — R* = [R(h) — R(h*)] + [R(h*) — R].

J \ .
~ ~

estimation approximation

B Approximation: not a random variable, only depends on H.
B Estimation: only term we can hope to bound.

® How should we choose H?
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Empirical Risk Minimization

B Select hypothesis set H.

® Find hypothesis h € H minimizing empirical error:

h = argmin R(h).
he H

* but Hmay be too complex.

® the sample size may not be large enough.
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Generalization Bounds

m Definition: upper bound on Pr | sup |R(h) — R(h)| > e] .
heH

® Bound on estimation error for hypothesishggiven by ERM:

R(ho) — R(h™)

-}

R(ho) — R(ho) + R(ho) — R(h*)
R(ho) — R(ho) + R(h*) — R(h*)
2

sup |R(h) - R(h)|.

Ty )

IA A

-3 How should we choose H? (model selection problem)
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Model Selection

error

- estimation
= approximation
- upper bound
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Structural Risk Minimization

(Vapnik, 1995)
B Principle: consider an infinite sequence of hypothesis sets
ordered for inclusion,

H CHyC---CH,C---

h = argmin R(h) + penalty(H,,m).
heH, neN

e strong theoretical guarantees.

e typically computationally hard.
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General Algorithm Families

B Empirical risk minimization (ERM):

h = argmin R(h).
he H

B Structural risk minimization (SRM): H,, CH,, 11,

h = argmin R(h) + penalty(H,,,m).
heH, ,neN

B Regularization-based algorithms: A >0,

h = argmin R(h) + A||h]|%.
he H
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This Lecture

B Basic definitions and concepts.
B |ntroduction to the problem of learning.

B Probability tools.
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Basic Properties

® Union bound:Pr|AV B] < Pr|A] + Pr[B].

B |nversion: ifPr[X > ¢/ < f(¢), then, for any 6 >0, with
probability at least 1—§, X < f1(9).

m Jensen’s inequality: if f is convex, f(E[X]) <E[f(X)].
+o0
B Expectation:if X >0, E[X]:/ Pr|X > t|dt.
0
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Basic Inequalities

B Markov's inequality: if X >0and ¢>0, then

Pr[X >e] < EEL

€

B Chebyshev’s inequality: for any e >0,

Pr[|X — E[X]| > { < ZF.
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Hoeffding's Inequality

® Theorem: Let X4,...,X,, beindep. rand. variables with the
same expectation pand X; € |a, b], (e <b). Then, for any e >0,
the following inequalities hold:

1 — 2me?
Pr [,u— EZX’L > e] < exp (_(b—a)2>

1=1

i 2o (525)
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McDiarmid’s Inequality

(McDiarmid, 1989)

B Theorem:let X4,...,X,, beindependent random variables
taking values in Uand f: U™ — R a function verifying for

allie[1,m],
sup |f(z1,. . @iy oo ) —f (X1, Xy )] < .
T1,enns Lo L,

Then, for all e>0,

E2
Pr[yf(Xl,...,Xm)—E[f(Xl,...,Xm)]]>e]§2exp<—zi CQ).
1=1 "1
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Appendix

Foundations of Machine Learning page 34



Markov's Inequality

B Theorem: let X be a non-negative random variable
with E[ X ]| <o, then, for all £>0,

Pr[X > tE[X]] < %

@ Proof:
Pr[X > tE[X]]= ) Pr[X =a]
r>tE[X]
< Y Prx =4 ETX]
x>t B[ X]
<N " PrX = x]tEaEX]

Foundations of Machine Learning
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Chebyshev's Inequality

B Theorem:let X be a random variable with Var| X ] < oo, then,
for all t>0,
1

Pr(|X — E[X]| > tox] < .

B Proof: Observe that
Pr[|X — E[X]| > tox] = Pr[(X — E[X])* > t?0%].

The result follows Markov's inequality.
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Weak Law of Large Numbers

B Theorem:let (X,,)neny be a sequence of independent

random variables with the same mean © and variance o?<oo

andlet X, =1 3" X, then, forany ¢>0,
lim Pr[| X, — u| > ¢ =0.
n—oo

B Proof: Since the variables are independent,

Var ZV&I[ ]:%:U—.

n n

B Thus, by Chebyshev's inequality,

- 0'2
Pr(|X, — u| > € < —.
(X0 =l > <

Foundations of Machine Learning
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Concentration Inequalities

B Some general tools for error analysis and bounds:
e Hoeffding's inequality (additive).
® Chernoff bounds (multiplicative).

e McDiarmid’'s inequality (more general).
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Hoeffding's Inequality

B Corollary: for any e>0, any distribution D and any
hypothesis h: X — {0, 1}, the following inequalities hold:

Pr[R(h) — R(h) > €] < e 2™
Pr[R(h) — R(h) < —¢] < e~ 2m€"
® Proof: follows directly Hoeffding's theorem.

B Combining these one-sided inequalities yields

Pr [\E(h) ~ R(h)| > e] < 9¢2me”,
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Chernoff’s Inequality

B Theorem: for any e>0, any distribution D and any
hypothesis h: X —+{0, 1}, the following inequalities hold:

B Proof: proof based on Chernoff's bounding technique.

Pr[R(h) > (14 €)R(h)] < e~ ™ EH) €2/3
Pr[ﬁ(h) < (1 — €)R<h)] < e—mR(h) 62/2.

Foundations of Machine Learning page 40



McDiarmid’s Inequality

(McDiarmid, 1989)

B Theorem:let X4,...,X,, beindependent random variables
taking values in Uand f: U™ — R a function verifying for

allie[1,m],
sup |f(z1,. . @iy oo ) —f (X1, Xy )] < .
T1,enns Lo L,

Then, for all e>0,

E2
Pr[yf(Xl,...,Xm)—E[f(Xl,...,Xm)]]>e]§2exp<—zi CQ).
1=1 "1
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B Comments:

* Proof: uses Hoeffding's lemma.
e Hoeffding's inequality is a special case of McDiarmid’s
with

1 ™m
e ) = — i and P =
flxy, ..., Tm) m;:1x c

b; — ay|
.
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Jensen’'s Inequality

B Theorem:let X be a random variable and fa measurable
convex function. Then,

f(E[X]) < E[f(X)].

B Proof: definition of convexity, continuity of convex
functions, and density of finite distributions.

4

tf(x)f (I-01)
) “““““““““““““““““““ :

e x+(1-1)y)

fx) 5

x  ix+(I-0)y y
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