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Logistics
Prerequisites: basics in linear algebra, probability, and 
analysis of algorithms. 

Workload: about 3-4 homework assignments + project. 

Mailing list: join as soon as possible.
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Course Material
Textbook
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Slides: course web page.
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This Lecture
Basic definitions and concepts. 

Introduction to the problem of learning. 

Probability tools.
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Machine Learning
Definition: computational methods using experience to 
improve performance. 

Experience:         data-driven task, thus statistics, 
probability, and optimization. 

Computer science: learning algorithms, analysis of 
complexity, theoretical guarantees. 

Example: use document word counts to predict its topic.
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Examples of Learning Tasks
Text: document classification, spam detection. 

Language: NLP tasks (e.g., morphological analysis, POS 
tagging, context-free parsing, dependency parsing). 

Speech: recognition, synthesis, verification. 

Image: annotation, face recognition, OCR, handwriting 
recognition. 

Games (e.g., chess, backgammon, go). 

Unassisted control of vehicles (robots, car). 

Medical diagnosis, fraud detection, network intrusion.
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Some Broad ML Tasks
Classification: assign a category to each item (e.g., 
document classification). 

Regression: predict a real value for each item (prediction of 
stock values, economic variables). 

Ranking: order items according to some criterion (relevant 
web pages returned by a search engine). 

Clustering: partition data into ‘homogenous’ regions 
(analysis of very large data sets). 

Dimensionality reduction: find lower-dimensional manifold 
preserving some properties of the data.
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General Objectives of ML
Theoretical questions: 

• what can be learned, under what conditions? 

• are there learning guarantees? 

• analysis of learning algorithms. 

Algorithms:  

• more efficient and more accurate algorithms. 

• deal with large-scale problems. 

• handle a variety of different learning problems.
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This Course
Theoretical foundations: 

• learning guarantees. 

• analysis of algorithms. 

Algorithms:  

• main mathematically well-studied algorithms. 

• discussion of their extensions. 

Applications: 

• illustration of their use.
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Topics
Probability tools, concentration inequalities. 

PAC learning model, Rademacher complexity, VC-dimension, 
generalization bounds. 

Support vector machines (SVMs), margin bounds, kernel methods. 

Ensemble methods, boosting. 

Logistic regression and conditional maximum entropy models. 

On-line learning, weighted majority algorithm, Perceptron algorithm, 
mistake bounds. 

Regression, generalization, algorithms. 

Ranking, generalization, algorithms. 

Reinforcement learning, MDPs, bandit problems and algorithm.
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Definitions and Terminology
Example: item, instance of the data used. 

Features: attributes associated to an item, often 
represented as a vector (e.g., word counts). 

Labels: category (classification) or real value (regression) 
associated to an item. 

Data:  

• training data (typically labeled). 

• test data (labeled but labels not seen). 

• validation data (labeled, for tuning parameters).
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General Learning Scenarios
Settings: 

• batch: learner receives full (training) sample, which he 
uses to make predictions for unseen points. 

• on-line: learner receives one sample at a time and makes 
a prediction for that sample. 

Queries: 

• active: the learner can request the label of a point. 

• passive: the learner receives labeled points.
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Standard Batch Scenarios
Unsupervised learning: no labeled data. 

Supervised learning: uses labeled data for prediction on 
unseen points. 

Semi-supervised learning: uses labeled and unlabeled data 
for prediction on unseen points. 

Transduction: uses labeled and unlabeled data for 
prediction on seen points.
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Example - SPAM Detection
Problem: classify each e-mail message as SPAM or non-
SPAM (binary classification problem). 

Potential data: large collection of SPAM and non-SPAM 
messages (labeled examples).
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Learning Stages
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training sample

validation data

test sample

featuresA(⇥)
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This Lecture
Basic definitions and concepts. 

Introduction to the problem of learning. 

Probability tools.
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Definitions
Spaces: input space    , output space   . 

Loss function:                       . 

•             : cost of predicting    instead of   . 

• binary classification: 0-1 loss,                          . 

• regression:          ,                              . 

Hypothesis set:             , subset of functions out of which 
the learner selects his hypothesis. 

• depends on features. 

• represents prior knowledge about task.
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Supervised Learning Set-Up
Training data: sample    of size     drawn i.i.d. from         
according to distribution    : 

Problem: find hypothesis          with small generalization 
error. 

• deterministic case: output label deterministic function of 
input,              . 

• stochastic case: output probabilistic function of input.
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Errors
Generalization error: for          , it is defined by 

Empirical error: for          and sample   , it is 

Bayes error: 

• in deterministic case, 
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Noise
Noise: 

• in binary classification, for any           , 

• observe that 
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x 2 X

noise(x) = min{Pr[1|x],Pr[0|x]}.

E[noise(x)] = R⇤.
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Learning ≠ Fitting
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       Notion of simplicity/complexity. 
       How do we define complexity?
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Generalization
Observations: 

• the best hypothesis on the sample may not be the best 
overall. 

• generalization is not memorization. 

• complex rules (very complex separation surfaces) can be 
poor predictors. 

• trade-off: complexity of hypothesis set vs sample size 
(underfitting/overfitting).
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Model Selection
General equality: for any          , 

Approximation: not a random variable, only depends on    . 

Estimation: only term we can hope to bound. 

How should we choose    ?
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Empirical Risk Minimization
Select hypothesis set    . 

Find hypothesis           minimizing empirical error: 

• but     may be too complex. 

• the sample size may not be large enough.
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Generalization Bounds
Definition: upper bound on 

Bound on estimation error for hypothesis     given by ERM:

25

h0

Pr


sup
h2H

|R(h)� bR(h)| > ✏

�
.

R(h0)�R(h⇤) = R(h0)� bR(h0) + bR(h0)�R(h⇤)

 R(h0)� bR(h0) + bR(h⇤)�R(h⇤)

 2 sup
h2H

|R(h)� bR(h)|.

How should we choose    ? (model selection problem)H



pageFoundations of Machine Learning

Model Selection
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Structural Risk Minimization
Principle: consider an infinite sequence of hypothesis sets 
ordered for inclusion, 

• strong theoretical guarantees.  

• typically computationally hard.
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(Vapnik, 1995)

H1 ⇢ H2 ⇢ · · · ⇢ Hn ⇢ · · ·

h = argmin
h2Hn,n2N

bR(h) + penalty(Hn,m).
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General Algorithm Families
Empirical risk minimization (ERM): 

Structural risk minimization (SRM):                    , 

Regularization-based algorithms:         ,
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bR(h).

Hn✓Hn+1

��0

h = argmin
h2H

bR(h) + �khk2.

h = argmin
h2Hn,n2N

bR(h) + penalty(Hn,m).



pageFoundations of Machine Learning

This Lecture
Basic definitions and concepts. 

Introduction to the problem of learning. 

Probability tools.
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Basic Properties
Union bound:  

Inversion: if                            , then, for any         , with 
probability at least         ,                    . 

Jensen’s inequality: if    is convex,                                . 

Expectation: if           ,                                           .
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Basic Inequalities
Markov’s inequality: if           and         , then 

Chebyshev’s inequality: for any         ,
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X�0 ✏>0

Pr[X�✏] E[X]
✏ .

Pr[|X � E[X]| � ✏]  �2
X
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Hoeffding’s Inequality
Theorem: Let                     be indep. rand. variables with the 
same expectation    and                , (        ). Then, for any        , 
the following inequalities hold:
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McDiarmid’s Inequality
Theorem: let                     be independent random variables 
taking values in    and                   a function verifying for     
all               ,

33

(McDiarmid, 1989)
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Appendix
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Markov’s Inequality
Theorem: let     be a non-negative random variable          
with                 , then, for all         , 

Proof:
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Chebyshev’s Inequality
Theorem: let     be a random variable with                    , then, 
for all        , 

Proof: Observe that 

The result follows Markov’s inequality. 
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X Var[X]<1
t>0

Pr[|X � E[X]| � t�X ]  1

t2
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X ].



pageFoundations of Machine Learning

Weak Law of Large Numbers
Theorem: let                be a sequence of independent 
random variables with the same mean    and variance           
and let                             , then, for any         , 

Proof: Since the variables are independent,  

Thus, by Chebyshev’s inequality,
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Concentration Inequalities
Some general tools for error analysis and bounds: 

• Hoeffding’s inequality (additive). 

• Chernoff bounds (multiplicative). 

• McDiarmid’s inequality (more general).
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Hoeffding’s Inequality
Corollary: for any         , any distribution     and any 
hypothesis                       , the following inequalities hold: 

Proof:  follows directly Hoeffding’s theorem. 

Combining these one-sided inequalities yields
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Chernoff ’s Inequality
Theorem: for any         , any distribution     and any 
hypothesis                       , the following inequalities hold: 

Proof:  proof based on Chernoff ’s bounding technique.
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McDiarmid’s Inequality
Theorem: let                     be independent random variables 
taking values in    and                   a function verifying for     
all               ,
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(McDiarmid, 1989)

Then, for all         ,
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Comments: 

• Proof: uses Hoeffding’s lemma. 

• Hoeffding’s inequality is a special case of McDiarmid’s 
with 

•
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Jensen’s Inequality
Theorem: let     be a random variable and    a measurable 
convex function. Then,  

Proof: definition of convexity, continuity of convex 
functions, and density of finite distributions.
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f(E[X])  E[f(X)].
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