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Weak Learning
(Kearns and Valiant, 1994)
B Definition: concept class C' is weakly PAC-learnable
if there exists a (weak) learning algorithm Land~ >0
such that:
e for all >0, for all ¢ € C and all distributions D,
1

<l _~l>1-
JLr | filhs) < 3 7 0;

® for samples S of size m=poly(1/6)for a fixed
polynomial.
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Boosting ldeas

® Finding simple relatively accurate base classifiers
often not hard «— weak learner.

B Main ideas:
® use weak learner to create a strong learner.

® combine base classifiers returned by weak learner
(ensemble method).

B But, how should the base classifiers be combined?
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AdaBoost

Freund and Schapire, 1997
HC{—1,+1}*. ( P )
ADABOOST(S=((z1,Y1),- -+ (Tm,Ym)))

1 for i1+ 1tomdo
2 Dy (i) « +

3 fort<+1to 1 do
4 h; < base classifier in H with small error ¢,= Pr [hs(x;) F#y;]
5 Qp — %log 12—;5’5
6 Zy < 2[e (1 — et)]% > normalization factor
7 for i1 < 1 to m do
8 Dt-l—l(i) y Dy (4) exp(—Zoztyiht(aci))
9 ft < Zizl Oéshs
10 return h = sgn(fr)
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Notes

| Distributions D;over training sample:
® originally uniform.

® at each round, the weight of a misclassified
example is increased.

® observation: D, (i)= £,

s=1

since

—Yi Zi=1 ashs (xz)

Dt(i)e—atfyz’ht(fﬁi) B Dt_l(i)e—at_ﬂhht_l(:Ei)e—atyiht(xi)

le
Zy L1124 m

D11 (i) =

[Tee1 25
B Weight assigned to base classifier h; : a; directly
depends on the accuracy of h; at round ¢.
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lllustration
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Bound on Empirical Error
(Freund and Schapire, 1997)

B Theorem:The empirical error of the classifier
output by AdaBoost verifies:

R <o -23 (3-)]

e If further for all t<[1, T, ”y<(%— t), then
°T).

AN

R(h) < exp(—2

® v does not need to be known in advance:
adaptive boosting.
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. : —y; fe(zq)
® Proof: Since, as we saw, Dt+1( ): c o,

s=1

— Z Ly, fzi)<o < — Zexp(—yif(ilfz'))

1=1

< —Z {mHZt}DT—I—l HZt

® Now, since Zt is a normalization factor,

7, = iDt(Z‘)e_atyiht(xi)
1=1
> Di(i)e™ ™+ Y Dy(i)e™

iyzht(a:z)>0 i:yihe(x;)<0
(1 — €z)e™ ¥t + e

R(h)

=(1—¢ \/7 EzZ\/et(l—et).
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® Notes:
® «; minimizer of ar— (1—¢€;)e” “+ee”
® since (1—e;)e™ “ =¢e™t, at each round, AdaBoost

assigns the same probability mass to correctly
classified and misclassified instances.

® for base classifiersz+—[—1,4+1], a: can be
similarly chosen to minimize Z;.
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AdaBoost = Coordinate Descent

® Objective Function: convex and differentiable.

m m

1 1 _
F(&) p— E Z e_yif(wi) — E Z e—yi Zj-vzl ah; (x4) .
i=1 i—1

0—1 loss
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® Direction: unit vector e, with best directional

derivative:

Flay_ — Flay_
F'(a;_1,ex) = lim (i1 + nex) Gl 1).

77—>O n
® Since F(a;_1 + ne;) E e Py e () =itk (21)
1=1
1 N
F, X+ = —— Zh i —Yi Zj:l O‘t—l,jhj(xi)
(-1, €r) mZy k(xi)e

1=1

1 « -5
= —— Zyzhk(:cz)D i)Z
M=

Thus, direction corresponding to base classifier with smallest error.
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® Step size: nchosen to minimize F(a:—1 + nex);

dF(o—1 + neg)

— 0 — Z yihi(z;)e ™Y Yo iey Grnjhg (i) g —nyiha (i) —

dn i=1
& — Zyzhk x;)D Z e~ Mvibk(zi) — ()
& — zm:yihk(xi)l_?t(i)e_"yihk(xi) =0
i=1
= [(1 — & p)e " — Et,ke”} =0
Sn = %log ! ;Ztk

N\

Thus, step size matches base classifier weight of AdaBoost.
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Alternative Loss Functions

square loss

10 4 boosting loss
(1 —2)% 1<y

rr—e *

g - logistic loss
rplogs (1 4+e™ %)

loss function

hinge loss
r—max(l —x,0)\

zero-one loss
0 x'_>1513<0
| | | | |

-4 -2 0 2 4
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Standard Use in Practice

B Base learners: decision trees, quite often just
decision stumps (trees of depth one).
B Boosting stumps:

e data inRY, e.g.,,N =2, (height(x), weight(x)).
associate a stump to each component.
pre-sort each component:O(Nm logm).
at each round, find best component and threshold.
total complexity: O((mlogm)N +mNT).

stumps not weak learners: think XOR example!
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Overfitting?

B Assume thatVCdim(H)=d and for a fixed T', define

T
fT: {Sgn(Zatht—b):Ozt,bGR,htGH}.
t=1

® 77 can form a very rich family of classifiers. It can
be shown (Freund and Schapire, 1997) that:

VCdim(Fr) <2(d+ 1)(T + 1) log,((T + 1)e).

B This suggests that AdaBoost could overfit for large
values of T, and that is in fact observed in some
cases, but in various others it is not!
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Empirical Observations

| Several empirical observations (not all): AdaBoost
does not seem to overfit, furthermore:

/ test error

training error _
10 100 1000
# rounds

C4.5 decision trees (Schapire et al., 1998).

Mehryar Mohri - Foundations of Machine Learning page |8



Rademacher Complexity of Convex Hulls

B Theorem: Let H be a set of functions mapping
from X to R. Let the convex hull of H be defined as

conv (
k=1

Then, for any sample S, Rg(conv(H))

B Proof: %s(conv(H)) =
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p p
H) = {Zﬂkhkipzlaﬂkzoaz,ukﬁlahk c H}.
k=

1

= Rs(H)
m p
sup op Mkhk(xz)]
| hi,€H,p>0,[|p|[1 <1 5254 ;
sup sup Mk;( X hk: )]
| hy €H p>0, ||u|1<1/; Z
sup max oih(x; )]
hke%ké[lp <Z +(0)
su oh(x s(H).
hegZ )| = Rstan
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Margin Bound - Ensemble Methods
(Koltchinskii and Panchenko, 2002)
@ Corollary: Let H be a set of real-valued functions.
Fix p> 0. For any 6 >0, with probability at least 1—9,
the following holds for all h e conv(H):

~ 2 log%

h) < h —R,, (H
R()_Rp()+p9% (H) + o
~ 2 ~ log 2
h) < R,(h o
R()_Rp()+p9%s( ) + 3 o

| Proof: Direct consequence of margin bound of
Lecture 4 and R (conv(H))=Rs(H).
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Margin Bound - Ensemble Methods
(Koltchinskii and Panchenko, 2002); see also (Schapire et al., 1998)
B Corollary: Let H be a family of functions taking
values in {—1, +1} with VC dimension d. Fixp>0.
For anyé >0, with probability at least1—4, the
following holds for all h € conv(H):

2 [2dlog <2 log 5

R(h) < Ry(h) + —\/ =

0 m 2m

® Proof: Follows directly previous corollary andVC
dimension bound on Rademacher complexity (see
lecture 3).
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Notes

® All of these bounds can be generalized to hold
uniformly for allp< (0, 1), at the cost of an additional

term \/log logs 2 and other minor constant factor
™m
Changes (Koltchinskii and Panchenko, 2002).

® For AdaBoost, the bound applies to the functions

Cfe) Y auly()

el el

€Z |

€ conv(H).

B Note that T'does not appear in the bound.
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Margin Distribution

B Theorem: For anyp>0, the following holds:

T
[t ] s -
t=1

e~ Yif(x4)
T
t=1 Zt ’

B Proof: Using the identity D, 1(i)=

m Z Lyir@o—llalip<o = — ZGXP —yi f(x;) + ||| 1p)

1=1
= = Z lell1p [mH Zt] Dri1(3)

_GHCXHWHZIS_QTH[F} Jald =,
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Notes

m Ifforallte[1,7],7 < (35 —ét) then the upper bound
can be bounded by

Pr{yf( x)

e

T/2

< p} (1 29) 7 (1 + 29)1+7

Forp<~, (1—-2v)'=?(14+2v)*? <1and the bound
decreases exponentially inT'.

B For the bound to be convergent: p > O(1/y/m),
thus v > O(1/+/m) is roughly the condition on the
edge value.
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LI-Geometric Margin

B Definition: the Li-margin py(z) of a linear
function f = >/, ayh; Witha #0 at a pointz € X is
defined by

or(z) = M@ _ [ Zmaddu(@)] _ |e-h()]

e el lee]ls

® ther,-margin of f over a sample S = (z1,...,2.,) IS
its minimum margin at points in that sample:

/ i€[1,m] f( ) ic[l,m]  |loe|q
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SVM vs AdaBoost

h,l.(x)

features or B (x) — [ 5 ] h(z) — [ . ]
base hypotheses ®y(z) h ()

r— w-P(x) r — o - h(r)
’W”'V;I)”(;H — dy(® (), hyperpl.) |O‘”°;”(:3)’ — 4. (h(z), hyperpl.)
y(w - @(z)) y(a-h(z))

w2 lex]l: (L1-AB)
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Maximum-Margin Solutions

O‘ ®
! | 0.0 %
........... U
o
o
o
>
Norm | - |- Norm || - ||

Mehryar Mohri - Foundations of Machine Learning page 27



But, Does AdaBoost Maximize the Margin!?

B No:AdaBoost may converge to a margin that is
significantly below the maximum margin (Rudin et al,
2004) (e.g., |/3 instead of 3/8)!

B [ower bound:AdaBoost can achieve asymptotically
a margin that is at least 2max if the data is separable
and some conditions on the base learners hold
(Ratsch and Warmuth, 2002).

B Several boosting-type margin-maximization
algorithms: but, performance in practice not clear
or not reported.
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AdaBoost’s Weak Learning Condition

B Definition: the edge of a base classifier i; for a
distribution D over the training sample is

() =5 -—a=3 Zyz‘ht(%)D(’i)-

B Condition: there exists v >0 for any distribution D
over the training sample and any base classifier

v(t) = 7.
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Zero-Sum Games

B Definition:
® payoff matrix M = (M;;) e R"™*".
® mpossible actions (pure strategy) for row player.
® p, possible actions for column player.

® M;; payoff for row player (=loss for column
player) when row plays i, column plays;.

B Example:

rock scissors

paper

rock

0

paper

0

SCisSsors

0
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Mixed Strategies
(von Neumann, 1928)
® Definition: player row selects a distributionp over
the rows, player column a distribution q over
columns. The expected payoff for row is

m n
E M| = > ) piMyjq; =p'Mq.
j,f; i=1 j=1

B von Neumann’s minimax theorem:

max minp' Mq = minmaxp ' Mq.
P q a p

® equivalent form:

max min pTMej = min max e,iTMq.
P j€[l,n] a :€[l,m]
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John von Neumann (1903 - 1957)

‘ John von Neumann
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AdaBoost and Game Theory

& Game:
® Player A:selects point z;,i€[1, m].
® Player B: selects base hypothesis h;,t |1, T].
® Payoff matrix M c {—1, +1}™*%: My, =y;he ().
® von Neumann’s theorem: assume finite H.

m T
*

: : : Oétht(xi)
7" = minm: giﬂ (4)yif(z;) = max min y ;:1 p
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Consequences

B Weak learning condition = non-zero margin.
® thus, possible to search for non-zero margin.

® AdaBoost = (suboptimal) search for

corresponding o; achieves at least half of the
maximum margin.

B Weak learning =strong condition:

® the condition implies linear separability with
margin 2™ > 0.

Mehryar Mohri - Foundations of Machine Learning page 34



Linear Programming Problem

B Maximizing the margin:
(a y Xi)

p = max min vy, :
o Ge[l,m] ||
| This is equivalent to the following convex
optimization LP problem:

max p
(84

subject to : y;(a - x;) > p

lafl = 1.
B Note that:

= ||x — H||so, with H ={x: a-x = 0}.
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Advantages of AdaBoost

| Simple: straightforward implementation.

| Efficient: complexity O(mNT) for stumps:
® when Nand T are not too large, the algorithm is
quite fast.
B Theoretical guarantees: but still many questions.
® AdaBoost not designed to maximize margin.

® regularized versions of AdaBoost.
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Qutliers

B AdaBoost assigns larger weights to harder
examples.

| Application:
® Detecting mislabeled examples.

® Dealing with noisy data: regularization based on
the average weight assigned to a point (soft
margin idea for boosting) (Meir and Ritsch, 2003).
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Weaker Aspects

B Parameters:

® need to determine 7T, the number of rounds of
boosting: stopping criterion.

® need to determine base learners: risk of
overfitting or low margins.

B Noise: severely damages the accuracy of Adaboost
(Dietterich, 2000).
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Other Boosting Algorithms

B arc-gv (Breiman, 1996): designed to maximize the
margin, but outperformed by AdaBoost in
experiments (Reyzin and Schapire, 2006).

B L|-regularized AdaBoost (Raetsch et al., 2001):

outperfoms AdaBoost in experiments (Cortes et al,
2014).

B DeepBoost (Cortes et al,, 2014): more favorable
learning guarantees, outperforms both AdaBoost
and L1-regularized AdaBoost in experiments.
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