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Motivation

B Some computational learning questions
® What can be learned efficiently?
® What is inherently hard to learn!?

® A general model of learning?

® Complexity
® Computational complexity: time and space.

® Sample complexity: amount of training data
needed to learn successfully.

® Mistake bounds: number of mistakes before
learning successfully.
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Definitions and Notation

B X:set of all possible instances or examples, e.g.,
the set of all men and women characterized by
their height and weight.

B c: X —{0,1}:the target concept to learn; can be
identified with its support{re X:c(z)=1}.

B (':concept class, a set of target concepts c.

@ D:target distribution, a fixed probability
distribution over X.Training and test examples are
drawn according to D.
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Definitions and Notation

B S:training sample.

B H:set of concept hypotheses, e.g., the set of all
linear classifiers.

® The learning algorithm receives sample S and
selects a hypothesis hs from H approximating c.
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Errors

® True error or generalization error of i with
respect to the target concept c and distribution D

R(h) = Pr [h(x) # c(@)] = B [L(ope)

x~D €T

B Empirical error:average error of h on the training
sample S drawn according to distribution D,

Rg(h) = Pr [h(z) # c(z)] = E [1h(m)7éc(m) Z L (z)e(as)-

x~D €T
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PAC Model
(Valiant, 1984)

B PAC learning: Probably Approximately Correct
learning.

| Definition: concept class C' is PAC-learnable if there
exists a learning algorithm L such that:

@ forallce C,e>0,5>0, and all distributions D,

Sflgm[R(hS) < 6] > 1 — 57

® for samples Sof size m=poly(1/e,1/6) for a
fixed polynomial.

Mehryar Mohri - Foundations of Machine Learning page 7



Remarks

Concept class C is known to the algorithm.
Distribution-free model: no assumption onD.
Both training and test examples drawn ~ D.
Probably: confidence1—4.

Approximately correct: accuracyl —e.

Efficient PAC-learning: Lruns in timepoly(1/e,1/9).

What about the cost of the representation of ce C?
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PAC Model - New Definition

® Computational representation:
® costforzreXinO(n).

® cost forceCinO(size(c)).

B Extension: running time.
O(poly(1/€,1/6)) — O(poly(1/e,1/4,n, size(c))).
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Example - Rectangle Learning

B Problem:learn unknown axis-aligned rectangle R
using as small a labeled sample as possible.

A ()
®

® '0 "

P
® R
® —»

B Hypothesis: rectangle R'. In general, there may be
false positive and false negative points.
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Example - Rectangle Learning

® Simple method: choose tightest consistent
rectangle R’ for a large enough sample. How large
a sample!? Is this class PAC-learnable?
@

A @
o @

@ “0 o )
o ~ IR
® —>

® What is the probability that R(R’") >¢?

Mehryar Mohri - Foundations of Machine Learning page | |



Example - Rectangle Learning

B Fixe>(0and assume %r[R] > ¢ (otherwise the result
is trivial).

|m Letry,ro, 73,74 be four smallest rectangles along
the sides of R such that}l’)r[ri] > <.

A ® ®
"1
o ® R=[l,r]x[b,1]
@ T4 ". o T 7“4i.[l,S4].>< [b,t] 6
- sa=inf{s: Pr[[l, s]x [b,t]| > <}
© T3 R Pr 1, sa[x[b,]] < <
@
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Example - Rectangle Learning

® Errors can only occur inR—R’. Thus (geometry),
R(R")>e = R'misses at least one regionr;.

B Therefore, Pr[R(R) > ¢] < Pr[U’_,{R’ misses r;}]

< Z Pr[{R" misses r;}]

o 1=1 e
A O §4(1—§)m§46 7
1
® ® e ®
T4 " ' 7“2
<
@
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Example - Rectangle Learning

® Set § >0 to match the upper bound:

me

de” 4 <0 & mZ%log%.

® Then, for m>2log =, with probability at least 14,

R(R") <e.
A ® ()
1 °
o e e
T4 " ' 7“2
= -
@
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Notes

| [nfinite hypothesis set, but simple proof.

® Does this proof readily apply to other similar
concepts classes!?

B Geometric properties:
® key in this proof.

® in general non-trivial to extend to other classes,
e.g., hon-concentric circles (see HW2,2006).

—> Need for more general proof and results.
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Learning Bound for Finite H -
Consistent Case

B Theorem:let H be a finite set of functions from X
to {0,1}and L an algorithm that for any target
concept c€ Hand sample Sreturns a consistent
hypothesisg: Rs(hs)=0.Then, for any é >0, with
probability at least1—4,

R(hs) < L (log |H]| +log 1).
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Learning Bound for Finite H -

Consistent Case

B Proof:for any e > 0,define H. = {h € H: R(h) > ¢}.We
want to prove that, with high probability, if 2sis
consistent, then it has low error:

P[Esms) — 0= R(hs) < e} >1-4 @P:ﬁs(hs) — 0A R(hg) > e} <5

@P_ﬁs(hg) =0Ahg € He} < ).
P|3he H: Rs(h) =0Ah € H}

—P|3h e H.: Rg(h) = 0}

=P|Rs(h1) =0V ...V Rs(hg|) = o]

< Z P{}A%S(h) = O} (union bound)
hEHe

<) (1—e™<[H|(1—e)™ < |H|e ™.
heH.
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Remarks

® The algorithm can be ERM if problem realizable.

® Error bound linear in + and only

| log, |H|is the number of bits used
representation of H.

® Bound is loose for large |H|.

® Uninformative for infinite|H|.
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Conjunctions of Boolean Literals

® Example forn=6.

® Algorithm: start withz; AZ; A--- Az, AT, and rule
out literals incompatible with positive examples.

+
| § +

0
0
0
0

= L1 N\ T2 N\ T5 N\ Tg.
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Conjunctions of Boolean Literals

® Problem: learning class C, of conjunctions of
boolean literals with at most n variables (e.g.,
forn=3, z1 AT A x3).

® Algorithm: choose h consistent with S.
® Since|H|=|C,|=3", sample complexity:
m > =((log 3)n + log 3).
§=.02,e=.1,n=10,m>149.

® Computational complexity: polynomial, since
algorithmic cost per training example is

inO(n).
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This lecture

2 PAC Model

B Sample complexity, finite H, consistent case

B Sample complexity, finite H, inconsistent case
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Inconsistent Case

® Nohe His a consistent hypothesis.

B The typical case in practice: difficult problems,
complex concept class.

B But, inconsistent hypotheses with a small number
of errors on the training set can be useful.

® Need a more powerful tool: Hoeffding’s inequality.
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Hoeffding’s Inequality

® Corollary: for any e >0and any hypothesish: X —{0, 1}
the following inequalities holds:

—2me?

Pr[R(h) — R(h) > €] < ¢
Pr[R(h) — R(h) > €

B Combining these one-sided inequalities yields

—2me?

€

A IA

Pr[|R(h) — R(h)| > €] < 2¢72m¢
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Application to Learning Algorithm?

® Can we apply that bound to the hypothesis hg
returned by our learning algorithm when training
on sample 57

® No, because i is not a fixed hypothesis, it depends

on the training sample. Note also that E[R(hg)]
is not a simple quantity such as R(hg).

B [nstead, we need a bound that holds simultaneously
for all hypotheses h € H, a uniform convergence
bound.
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Generalization Bound - Finite H

B Theorem:let H be a finite hypothesis set, then, for
any ¢ >0, with probability at least 14,

log |H| + log =

2m

Vh € H, R(h) < Rs(h) + \/
& Proof: By the union bound,

Pr lgleag |R(h) — Rs(h)] >e]

= Pr |[R(h) = Bs(h)| >V ...V [R(hjm) = Bs(hjm)| > ]
< Z Pr [‘R(h) — }A%S(h)‘ >e]

heH
<2|H|exp(—2me?).
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Remarks

B Thus, for a finite hypothesis set, whp,

Vh € H,R(h) < Rs(h) +0<\/1°g‘H>.

m

® Error bound inO(—=) (quadratically worse).

| log, |H|can be interpreted as the number of bits
needed to encode H.

B Occam’s Razor principle (theologian William of
Occam):“plurality should not be posited without
necessity’ .
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Occam’s Razor

® Principle formulated by controversial theologian
William of Occam:“plurality should not be posited
without necessity”, rephrased as “the simplest
explanation is best’”’;

® invoked in a variety of contexts, e.g., syntax.
Kolmogorov complexity can be viewed as the
corresponding framework in information theory.

® here, to minimize true error, choose the most
parsimonious explanation (smallest|H ).

® we will see later other applications of this
principle.
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Lecture Summary

m Cis PAC-learnable if 3L,Vce C, Ve,6 >0, m=P (2,

JPr [R(hs) <> 1-36.

| [earning bound, finite H consistent case:
R(h) < . (log |H| +log 5).

| [earning bound, finite H inconsistent case:

R(h) < RS )+ \/10gIH|+log iy

® How do we deal with infinite hypothesis sets!?
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Appendix



Universal Concept Class

® Problem: each x € Xdefined by n boolean features.
Let C be the set of all subsets of X.

B Question:is C PAC-learnable?
B Sample complexity: H must contain C. Thus,
H|>|C|=2%"),

The bound givesm = %((log 2) 2™ + log %).

| [t can be proved that C'is not PAC-learnable, it
requires an exponential sample size.
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k-Term DNF Formulae

® Definition: expressions of the form 71 v - - - v T} with
each term T; conjunctions of boolean literals with
at most n variables.

® Problem:learning k-term DNF formulae.
® Sample complexity:|H|=|C|=3"%. Thus, polynomial
sample complexity 1((log 3) nk + log 1).

® Time complexity:intractable if RP+# N P: the class
is then not efficiently PAC-learnable (proof by
reduction from graph 3-coloring). But, a strictly
larger class is!
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k-CNF Expressions

B Definition: expressions 77 A --- AT; of arbitrary

length j with each termT; a disjunction of at mostk
boolean attributes.

® Algorithm: reduce problem to that of learning
conjunctions of boolean literals.(2n)"new variables:

(w1, uk) = Yug,uy -

® the transformation is a bijection;

® cffect of the transformation on the distribution
is not an issue: PAC-learning allows any
distribution D.
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k-Term DNF Terms and
k-CNF Expressions

B Observation: any k-term DNF formula can be
written as a k-CNF expression. By associativity,

k
V wign A A, = A Ui,y VooV Uk g
=1 '

® Example: (u1 N\ Uo N ’LL3) V (’Ul N\ Uy N ’Ug) = /\?,j=1 (Uz V Uj).

® But, in general converting a k-CNF (equiv. to a
k-term DNF) to a k-term DNF is intractable.

B Key aspects of PAC-learning definition:
® cost of representation of conceptc.

® choice of hypothesis set H.
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