Logistics

- **Prerequisites**: basics in linear algebra, probability, and analysis of algorithms.
- **Workload**: about 3-4 homework assignments + project.
- **Mailing list**: join as soon as possible.
Course Material

- Textbook

- Slides: course web page.

 http://www.cs.nyu.edu/~mohri/mlsp23
This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.
Machine Learning

- **Definition**: computational methods using experience to improve performance.

- **Experience**: data-driven task, thus statistics, probability, and optimization.

- **Computer science**: learning algorithms, analysis of complexity, theoretical guarantees.

- **Example**: use document word counts to predict its topic.
Examples of Learning Tasks

- Text: document classification, spam detection.
- Language: NLP tasks (e.g., morphological analysis, POS tagging, context-free parsing, dependency parsing).
- Speech: recognition, synthesis, verification.
- Image: annotation, face recognition, OCR, handwriting recognition.
- Games (e.g., chess, backgammon, go).
- Unassisted control of vehicles (robots, car).
- Medical diagnosis, fraud detection, network intrusion.
Some Broad ML Tasks

- **Classification**: assign a category to each item (e.g., document classification).
- **Regression**: predict a real value for each item (prediction of stock values, economic variables).
- **Ranking**: order items according to some criterion (relevant web pages returned by a search engine).
- **Clustering**: partition data into ‘homogenous’ regions (analysis of very large data sets).
- **Dimensionality reduction**: find lower-dimensional manifold preserving some properties of the data.
General Objectives of ML

- **Theoretical questions:**
 - what can be learned, under what conditions?
 - are there learning guarantees?
 - analysis of learning algorithms.

- **Algorithms:**
 - more efficient and more accurate algorithms.
 - deal with large-scale problems.
 - handle a variety of different learning problems.
This Course

- **Theoretical foundations:**
 - learning guarantees.
 - analysis of algorithms.

- **Algorithms:**
 - main mathematically well-studied algorithms.
 - discussion of their extensions.

- **Applications:**
 - illustration of their use.
Topics

- Probability tools, concentration inequalities.
- PAC learning model, Rademacher complexity, VC-dimension, generalization bounds.
- Support vector machines (SVMs), margin bounds, kernel methods.
- Ensemble methods, boosting.
- Logistic regression and conditional maximum entropy models.
- On-line learning, weighted majority algorithm, Perceptron algorithm, mistake bounds.
- Regression, generalization, algorithms.
- Ranking, generalization, algorithms.
- Reinforcement learning, MDPs, bandit problems and algorithm.
Definitions and Terminology

- **Example**: item, instance of the data used.

- **Features**: attributes associated to an item, often represented as a vector (e.g., word counts).

- **Labels**: category (classification) or real value (regression) associated to an item.

- **Data**:
 - training data (typically labeled).
 - test data (labeled but labels not seen).
 - validation data (labeled, for tuning parameters).
General Learning Scenarios

Settings:

- **batch**: learner receives full (training) sample, which he uses to make predictions for unseen points.
- **on-line**: learner receives one sample at a time and makes a prediction for that sample.

Queries:

- **active**: the learner can request the label of a point.
- **passive**: the learner receives labeled points.
Standard Batch Scenarios

- **Unsupervised learning**: no labeled data.
- **Supervised learning**: uses labeled data for prediction on unseen points.
- **Semi-supervised learning**: uses labeled and unlabeled data for prediction on unseen points.
- **Transduction**: uses labeled and unlabeled data for prediction on seen points.
Example - SPAM Detection

- **Problem**: classify each e-mail message as SPAM or non-SPAM (binary classification problem).

- **Potential data**: large collection of SPAM and non-SPAM messages (labeled examples).
Learning Stages

- Labeled data
 - Training sample
 - Validation data
 - Test sample
- Algorithm
 - $A(\Theta)$
 - $A(\Theta_0)$
- Evaluation
- Prior knowledge
 - Features
 - Parameter selection
This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.
Definitions

- **Spaces:** input space X, output space Y.

- **Loss function:** $L: Y \times Y \rightarrow \mathbb{R}$.

 - $L(\hat{y}, y)$: cost of predicting \hat{y} instead of y.

 - binary classification: 0-1 loss, $L(y, y') = 1_{y \neq y'}$.

 - regression: $Y \subseteq \mathbb{R}$, $l(y, y') = (y' - y)^2$.

- **Hypothesis set:** $H \subseteq Y^X$, subset of functions out of which the learner selects his hypothesis.

 - depends on features.

 - represents prior knowledge about task.
Supervised Learning Set-Up

- **Training data**: sample S of size m drawn i.i.d. from $X \times Y$ according to distribution D:
 \[S = ((x_1, y_1), \ldots, (x_m, y_m)). \]

- **Problem**: find hypothesis $h \in H$ with small generalization error.
 - deterministic case: output label deterministic function of input, $y = f(x)$.
 - stochastic case: output probabilistic function of input.
Errors

- **Generalization error**: for $h \in H$, it is defined by
 \[R(h) = \mathbb{E}_{(x,y) \sim D} [L(h(x), y)]. \]

- **Empirical error**: for $h \in H$ and sample S, it is
 \[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} L(h(x_i), y_i). \]

- **Bayes error**:
 \[R^* = \inf_{h \text{ measurable}} R(h). \]
 - in deterministic case, $R^* = 0$.
Noise

Noise:

- in binary classification, for any $x \in X$,
 \[\text{noise}(x) = \min\{\Pr[1|x], \Pr[0|x]\}. \]

- observe that $\mathbb{E}[\text{noise}(x)] = R^*$.
Learning ≠ Fitting

Notion of simplicity/complexity.

How do we define complexity?
Generalization

Observations:

• the best hypothesis on the sample may not be the best overall.

• generalization is not memorization.

• complex rules (very complex separation surfaces) can be poor predictors.

• trade-off: complexity of hypothesis set vs sample size (underfitting/overfitting).
Model Selection

- General equality: for any $h \in H$,

$$R(h) - R^* = [R(h) - R(h^*)] + [R(h^*) - R^*].$$

- Approximation: not a random variable, only depends on H.

- Estimation: only term we can hope to bound.

best in class
Empirical Risk Minimization

- Select hypothesis set H.
- Find hypothesis $h \in H$ minimizing empirical error:

$$h = \arg\min_{h \in H} \hat{R}(h).$$

- but H may be too complex.
- the sample size may not be large enough.
Generalization Bounds

Definition: upper bound on $\Pr \left[\sup_{h \in H} |R(h) - \hat{R}(h)| > \epsilon \right]$.

Bound on estimation error for hypothesis h_0 given by ERM:

$$R(h_0) - R(h^*) = R(h_0) - \hat{R}(h_0) + \hat{R}(h_0) - R(h^*)$$

$$\leq R(h_0) - \hat{R}(h_0) + \hat{R}(h^*) - R(h^*)$$

$$\leq 2 \sup_{h \in H} |R(h) - \hat{R}(h)|.$$

How should we choose H? (model selection problem)
Model Selection

\[\mathcal{H} = \bigcup_{\gamma \in \Gamma} \mathcal{H}_\gamma. \]
Structural Risk Minimization

(Vapnik, 1995)

Principle: consider an infinite sequence of hypothesis sets ordered for inclusion,

\[H_1 \subset H_2 \subset \cdots \subset H_n \subset \cdots \]

\[
h = \arg\min_{h \in H_n, n \in \mathbb{N}} \hat{R}(h) + \text{penalty}(H_n, m).
\]

- strong theoretical guarantees.
- typically computationally hard.
General Algorithm Families

- Empirical risk minimization (ERM):

\[h = \underset{h \in H}{\arg \min} \hat{R}(h). \]

- Structural risk minimization (SRM): \(H_n \subseteq H_{n+1} \),

\[h = \underset{h \in H_n, n \in \mathbb{N}}{\arg \min} \hat{R}(h) + \text{penalty}(H_n, m). \]

- Regularization-based algorithms: \(\lambda \geq 0 \),

\[h = \underset{h \in H}{\arg \min} \hat{R}(h) + \lambda \|h\|^2. \]
This Lecture

- Basic definitions and concepts.
- Introduction to the problem of learning.
- Probability tools.
Basic Properties

- **Union bound**: \(\Pr[A \lor B] \leq \Pr[A] + \Pr[B] \).

- **Inversion**: if \(\Pr[X \geq \epsilon] \leq f(\epsilon) \), then, for any \(\delta > 0 \), with probability at least \(1 - \delta \), \(X \leq f^{-1}(\delta) \).

- **Jensen’s inequality**: if \(f \) is convex, \(f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] \).

- **Expectation**: if \(X \geq 0 \), \(\mathbb{E}[X] = \int_{0}^{+\infty} \Pr[X > t] \, dt \).
Basic Inequalities

- **Markov’s inequality**: if $X \geq 0$ and $\epsilon > 0$, then
 \[
 \Pr[X \geq \epsilon] \leq \frac{E[X]}{\epsilon}.
 \]

- **Chebyshev’s inequality**: for any $\epsilon > 0$,
 \[
 \Pr[|X - E[X]| \geq \epsilon] \leq \frac{\sigma_X^2}{\epsilon^2}.
 \]
Hoeffding’s Inequality

Theorem: Let X_1, \ldots, X_m be independent random variables with the same expectation μ and $X_i \in [a, b], (a < b)$. Then, for any $\epsilon > 0$, the following inequalities hold:

$$
\Pr \left[\mu - \frac{1}{m} \sum_{i=1}^{m} X_i > \epsilon \right] \leq \exp \left(-\frac{2m\epsilon^2}{(b - a)^2} \right)
$$

$$
\Pr \left[\frac{1}{m} \sum_{i=1}^{m} X_i - \mu > \epsilon \right] \leq \exp \left(-\frac{2m\epsilon^2}{(b - a)^2} \right).
$$
Theorem: let X_1, \ldots, X_m be independent random variables taking values in U and $f : U^m \to \mathbb{R}$ a function verifying for all $i \in [1, m]$,

$$\sup_{x_1, \ldots, x_m, x'_i} |f(x_1, \ldots, x_i, \ldots, x_m) - f(x_1, \ldots, x'_i, \ldots, x_m)| \leq c_i.$$

Then, for all $\epsilon > 0$,

$$\Pr\left[|f(X_1, \ldots, X_m) - \mathbb{E}[f(X_1, \ldots, X_m)]| > \epsilon\right] \leq 2 \exp\left(-\frac{2\epsilon^2}{\sum_{i=1}^{m} c_i^2}\right).$$
Appendix
Markov’s Inequality

Theorem: let X be a non-negative random variable with $E[X] < \infty$, then, for all $t > 0$,

$$\Pr[X \geq t E[X]] \leq \frac{1}{t}.$$

Proof:

$$\Pr[X \geq t E[X]] = \sum_{x \geq t E[X]} \Pr[X = x]$$

$$\leq \sum_{x \geq t E[X]} \Pr[X = x] \frac{x}{t E[X]}$$

$$\leq \sum_{x} \Pr[X = x] \frac{x}{t E[X]}$$

$$= E \left[\frac{X}{t E[X]} \right] = \frac{1}{t}.$$
Chebyshev’s Inequality

Theorem: let X be a random variable with $\text{Var}[X] < \infty$, then, for all $t > 0$,

$$\Pr[|X - \E[X]| \geq t\sigma_X] \leq \frac{1}{t^2}.$$

Proof: Observe that

$$\Pr[|X - \E[X]| \geq t\sigma_X] = \Pr[(X - \E[X])^2 \geq t^2 \sigma_X^2].$$

The result follows Markov's inequality.
Weak Law of Large Numbers

Theorem: let \((X_n)_{n \in \mathbb{N}}\) be a sequence of independent random variables with the same mean \(\mu\) and variance \(\sigma^2 < \infty\) and let \(\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i\), then, for any \(\epsilon > 0\),

\[
\lim_{n \to \infty} \Pr[|\overline{X}_n - \mu| \geq \epsilon] = 0.
\]

Proof: Since the variables are independent,

\[
\text{Var}[\overline{X}_n] = \sum_{i=1}^{n} \text{Var} \left[\frac{X_i}{n} \right] = \frac{n \sigma^2}{n^2} = \frac{\sigma^2}{n}.
\]

Thus, by Chebyshev’s inequality,

\[
\Pr[|\overline{X}_n - \mu| \geq \epsilon] \leq \frac{\sigma^2}{n \epsilon^2}.
\]
Concentration Inequalities

Some general tools for error analysis and bounds:

- Hoeffding’s inequality (additive).
- Chernoff bounds (multiplicative).
- McDiarmid’s inequality (more general).
Hoeffding’s Lemma

Lemma: Let $X \in [a, b]$ be a random variable with $E[X] = 0$ and $b \neq a$. Then for any $t > 0$,

$$E[e^{tX}] \leq e^{\frac{t^2(b-a)^2}{8}}.$$

Proof: by convexity of $x \mapsto e^{tx}$, for all $a \leq x \leq b$,

$$e^{tx} \leq \frac{b-x}{b-a}e^{ta} + \frac{x-a}{b-a}e^{tb}.$$

Thus,

$$E[e^{tX}] \leq E\left[\frac{b-X}{b-a}e^{ta} + \frac{X-a}{b-a}e^{tb}\right] = \frac{b}{b-a}e^{ta} + \frac{-a}{b-a}e^{tb} = e^{\phi(t)},$$

with,

$$\phi(t) = \log\left(\frac{b}{b-a}e^{ta} + \frac{-a}{b-a}e^{tb}\right) = ta + \log\left(\frac{b}{b-a} + \frac{-a}{b-a}e^{t(b-a)}\right).$$
Taking the derivative gives:

\[
\phi'(t) = a - \frac{ae^{t(b-a)}}{b-a} = a - \frac{ae^{t(b-a)} - a}{b-a}.
\]

Note that: \(\phi(0) = 0\) and \(\phi'(0) = 0\). Furthermore,

\[
\Phi''(t) = \frac{-abe^{-t(b-a)}}{[b-ae^{-t(b-a)} - \frac{a}{b-a}]^2} = \frac{\alpha(1 - \alpha)e^{-t(b-a)}(b-a)^2}{[(1 - \alpha)e^{-t(b-a)} + \alpha]^2}
\]

\[
= \frac{\alpha}{[(1 - \alpha)e^{-t(b-a)} + \alpha]} \frac{(1 - \alpha)e^{-t(b-a)}}{[(1 - \alpha)e^{-t(b-a)} + \alpha]}(b-a)^2
\]

\[
= u(1 - u)(b-a)^2 \leq \frac{(b-a)^2}{4},
\]

with \(\alpha = \frac{-a}{b-a}\). There exists \(0 \leq \theta \leq t\) such that:

\[
\phi(t) = \phi(0) + t\phi'(0) + \frac{t^2}{2}\phi''(\theta) \leq t^2 \frac{(b-a)^2}{8}.
\]
Hoeffding’s Theorem

Theorem: Let X_1, \ldots, X_m be independent random variables. Then for $X_i \in [a_i, b_i]$, the following inequalities hold for $S_m = \sum_{i=1}^{m} X_i$, for any $\epsilon > 0$,

$$\Pr[S_m - \mathbb{E}[S_m] \geq \epsilon] \leq e^{-2\epsilon^2 / \sum_{i=1}^{m} (b_i - a_i)^2}$$

$$\Pr[S_m - \mathbb{E}[S_m] \leq -\epsilon] \leq e^{-2\epsilon^2 / \sum_{i=1}^{m} (b_i - a_i)^2}.$$

Proof: The proof is based on Chernoff’s bounding technique: for any random variable X and $t > 0$, apply Markov’s inequality and select t to minimize

$$\Pr[X \geq \epsilon] = \Pr[e^{tX} \geq e^{t\epsilon}] \leq \frac{\mathbb{E}[e^{tX}]}{e^{t\epsilon}}.$$
Using this scheme and the independence of the random variables gives $\Pr[S_m - \mathbb{E}[S_m] \geq \epsilon]$

\[
\leq e^{-t\epsilon} \mathbb{E}[e^{t(S_m - \mathbb{E}[S_m])}]
\]

\[
= e^{-t\epsilon} \prod_{i=1}^{m} \mathbb{E}[e^{t(X_i - \mathbb{E}[X_i])}]
\]

(lemma applied to $X_i - \mathbb{E}[X_i]$) \[\leq e^{-t\epsilon} \prod_{i=1}^{m} e^{t^2 (b_i - a_i)^2 / 8}
\]

\[
= e^{-t\epsilon} e^{t^2 \sum_{i=1}^{m} (b_i - a_i)^2 / 8}
\]

\[
\leq e^{-2\epsilon^2} / \sum_{i=1}^{m} (b_i - a_i)^2,
\]

choosing $t = 4\epsilon / \sum_{i=1}^{m} (b_i - a_i)^2$.

The second inequality is proved in a similar way.
Hoeffding’s Inequality

Corollary: for any $\epsilon > 0$, any distribution D and any hypothesis $h : X \to \{0, 1\}$, the following inequalities hold:

\[
\Pr[\hat{R}(h) - R(h) \geq \epsilon] \leq e^{-2m\epsilon^2}
\]
\[
\Pr[\hat{R}(h) - R(h) \leq -\epsilon] \leq e^{-2m\epsilon^2}.
\]

Proof: follows directly Hoeffding’s theorem.

Combining these one-sided inequalities yields

\[
\Pr \left[|\hat{R}(h) - R(h)| \geq \epsilon \right] \leq 2e^{-2m\epsilon^2}.
\]
Chernoff’s Inequality

Theorem: for any $\epsilon > 0$, any distribution D and any hypothesis $h : X \rightarrow \{0, 1\}$, the following inequalities hold:

Proof: proof based on Chernoff’s bounding technique.

\[
\Pr[\hat{R}(h) \geq (1 + \epsilon)R(h)] \leq e^{-mR(h)\epsilon^2/3}
\]

\[
\Pr[\hat{R}(h) \leq (1 - \epsilon)R(h)] \leq e^{-mR(h)\epsilon^2/2}.
\]
McDiarmid’s Inequality

(McDiarmid, 1989)

Theorem: let X_1, \ldots, X_m be independent random variables taking values in U and $f : U^m \rightarrow \mathbb{R}$ a function verifying for all $i \in [1, m]$,

$$
\sup_{x_1, \ldots, x_m, x'_i} |f(x_1, \ldots, x_i, \ldots, x_m) - f(x_1, \ldots, x'_i, \ldots, x_m)| \leq c_i.
$$

Then, for all $\epsilon > 0$,

$$
\Pr \left[|f(X_1, \ldots, X_m) - \mathbb{E}[f(X_1, \ldots, X_m)]| > \epsilon \right] \leq 2 \exp \left(- \frac{2\epsilon^2}{\sum_{i=1}^{m} c_i^2} \right).
$$
Comments:

- **Proof**: uses Hoeffding’s lemma.
- Hoeffding’s inequality is a special case of McDiarmid’s with

\[
 f(x_1, \ldots, x_m) = \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{and} \quad c_i = \frac{|b_i - a_i|}{m}.
\]
Jensen’s Inequality

Theorem: Let X be a random variable and f a measurable convex function. Then,

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)].$$

Proof: Definition of convexity, continuity of convex functions, and density of finite distributions.