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A Kernel methods

1. For α ≥ 0, the kernel Kα∶ (x,x′)↦∑N
k=1min(∣xk ∣α, ∣x′k ∣α) over RN ×RN is used in image classification.

Show that Kα is PDS. To do that, you can proceed as follows.

(a) Use the fact that (f, g) ↦ ∫
+∞
t=0 f(t)g(t)dt is an inner product over the set of measurable functions

over [0,+∞) to show that (x,x′) ↦ min(x,x′) is a PDS kernel (hint: associate an indicator
function to x and another one to x′).

(b) Use the previous question to show that K1 is PDS and similarly Kα with other values of α.

Solution:

(a) Observe that min(∣u∣α, ∣u′∣α) = ∫
+∞
0 1t∈[0,∣u′∣α]1t∈[0,∣u′∣α]dt, which shows that (u,u′) ↦min(∣u∣α, ∣u′∣α)

is PDS.

(b) Since Kα(x,x′) = ∑N
k=1min(∣xk ∣α, ∣x′k ∣α), Kα is PDS as a sum of N PDS kernels.

B Boosting

1. In class, we showed that AdaBoost can be viewed as coordinate descent applied to a convex upper
bound on the empirical error. Here, we consider instead an algorithm seeking to minimize the empirical
margin loss. For any 0 ≤ ρ < 1, using the same notation as in class, let R̂ρ(f) = 1

m ∑
m
i=1 1yif(xi)≤ρ

denote the empirical margin loss of a function f of the form f = ∑
T
t=1 αtht

∑T
t=1 αt

for a labeled sample S =
((x1, y1), . . . , (xm, ym)).

(a) Prove the upper bound R̂ρ(f) ≤ exp (∑T
t=1 αtρ)∏T

t=1Zt, where the normalization factors Zt are
defined as in the case of AdaBoost in class.

(b) Give the expression of Zt as a function of ρ and ϵt, where the weighted error ϵt are defined as in
the case of AdaBoost in class. Use that to prove the following upper bound

R̂ρ(f) ≤ exp( −
T

∑
t=1

D(1 − ρ
2
∥ϵt)),

where D(p∥q) denotes the binary relative entropy of p and q: D(p∥q) = p log p
q
+ (1− p) log 1−p

1−q , for

any p, q ∈ [0,1].
(c) Assume that for all t ∈ [1, T ], 1−ρ

2
−ϵt > γ > 0. Use the result of the previous question to show that

R̂ρ(f) ≤ exp ( − 2γ2T).

(hint: you can use Pinsker’s inequality: D(p∥q) ≥ 2(p − q)2 for all p, q ∈ [0,1]). Show that for
T > logm

2γ2 , all points have margin at least ρ.
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Solution:

(a) First, we show R̂ρ(f) can be upper-bounded as follows:

R̂ρ(f) =
1

m

m

∑
i=1

1yif(xi)≤ρ =
1

m

m

∑
i=1

1yi∑T
t=1 αtht(xi)−ρ∑T

t=1 αt≤0

≤ 1

m

m

∑
i=1

exp(−yi
T

∑
t=1

αtht(xi) + ρ
T

∑
t=1

αt) .

Let D1 be the uniform distribution, that is D1(i) = 1
m

for all i ∈ [1,m] and for any t ∈ [2, T ],
define Dt by

Dt(i) =
Dt−1(i) exp(−yiαt−1ht−1(xi))

Zt−1
,

with Zt−1 = ∑m
i=1Dt−1(i) exp(−yiαt−1ht−1(xi)). Observe that Dt(i) =

exp(−yi∑t−1
s=1 αshs(xi))

m∏t−1
s=1 Zt

. Thus,

we can write

R̂ρ(f) ≤
1

m

m

∑
i=1

exp(−yi
T

∑
t=1

αtht(xi) + ρ
T

∑
t=1

αt)

= 1

m

m

∑
i=1
(m

T

∏
t=1

Zt)Dt(i) exp(ρ
T

∑
t=1

αt)

= exp(ρ
T

∑
t=1

αt)(
T

∏
t=1

Zt) .

(b) The normalization factor Zt can be expressed in terms of ϵt and ρ using its definition:

Zt =
m

∑
i=1

Dt(i) exp(−yiαtht(xi))

= e−αt(1 − ϵt) + eαtϵt

=
√

1 + ρ
1 − ρ(1 − ϵt)ϵt +

√
1 − ρ
1 + ρ(1 − ϵt)ϵt

=
√
ϵt(1 − ϵt) [

√
1 + ρ
1 − ρ +

√
1 − ρ
1 + ρ]

=
√
ϵt(1 − ϵt)

⎡⎢⎢⎢⎣
2√

1 − ρ2
⎤⎥⎥⎥⎦

= 2
√

ϵt(1 − ϵt)
1 − ρ2 .

Define u by u = 1−ρ
1+ρ . Plugging in that expression in the bound of the previous question and using

the expression of αt gives

R̂ρ(f) ≤ (∏
t

eαt)ρ (
T

∏
t=1

√
ϵt(1 − ϵt)(u

1
2 + u− 1

2 ))

= (
√

1 − ρ
1 + ρ)

ρT ⎛
⎝∏t

√
1 − ϵt
ϵt

⎞
⎠

ρ

(
T

∏
t=1

√
ϵt(1 − ϵt)(u

1
2 + u− 1

2 ))

= (u
1+ρ
2 + u−

1−ρ
2 )

T T

∏
t=1

√
ϵ1−ρt (1 − ϵt)1+ρ.
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Observe that

u
1+ρ
2 + u−

1−ρ
2 = (1 − ρ

1 + ρ)
1+ρ
2 + (1 + ρ

1 − ρ)
1−ρ
2

= (1 − ρ) + (1 + ρ)
(1 + ρ) 1+ρ

2 (1 − ρ) 1−ρ
2

= 2

(1 + ρ) 1+ρ
2 (1 − ρ) 1−ρ

2

= 1

( 1+ρ
2
)

1+ρ
2 ( 1−ρ

2
)

1−ρ
2

.

We also have

log [
√

ϵ1−ρt (1 − ϵt)1+ρ]

= 1 − ρ
2

log(ϵt) +
1 + ρ
2

log(1 − ϵt)

= −D(1 − ρ
2
∥ϵt) +

1 − ρ
2

log (1 − ρ
2
) + 1 + ρ

2
log(1 + ρ

2
)

= −D(1 − ρ
2
∥ϵt) + log ((

1 + ρ
2
)

1+ρ
2 (1 − ρ

2
)

1−ρ
2 ) .

Combining these two inequalities gives

R̂ρ(f) ≤ exp( −
T

∑
t=1

D(1 − ρ
2
∥ϵt)).

(c) By Pinsker’s inequality, we have D( 1−ρ
2
∥ϵt) ≥ 2[ 1−ρ2 − ϵt]

2

. Thus, we can write

R̂ρ(f) ≤ exp ( − 2γ2T).

Thus, if the upper bound is less that 1/m, then R̂ρ(f) = 0 and every training point has margin at

least ρ. The inequality exp ( − 2γ2T ) < 1/m is equivalent to T > logm
2γ2 .

C Maxent

1. Derive optimization problem of L2-regularized Maxent with Mahalonobis distance (counterpart of
Maxent with relative entropy). Show that it is a convex optimization problem.

2. Give the general form of the solution (it might be useful to use Lagrange function and representer
theorem).

3. Derive dual problem and equivalence (Lagrange duality).

Solution:

1. The optimization problem can be expressed as

min
p∈∆
(p − p0)⊺K−1(p − p0)

subject to: ∥ E
x∼p
[Φ(x)] − E

x∼D̂
[Φ(x)]∥

2

2

≤ λ.

which is a convex optimization problem by following the optimization slides taught in class.

2. You can refer to the L2-squared regularized maxent and the corresponding derivation taught in class.

3. You can directly solve it using the standard method of Lagrange multipliers taught in class.
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