

A Kernel methods

- For $\alpha \geq 0$, the kernel $K_\alpha: (x, x') \mapsto \sum_{k=1}^N \min(|x_k|^\alpha, |x'_k|^\alpha)$ over $\mathbb{R}^N \times \mathbb{R}^N$ is used in image classification. Show that K_α is PDS. To do that, you can proceed as follows.
 - Use the fact that $(f, g) \mapsto \int_{t=0}^{+\infty} f(t)g(t)dt$ is an inner product over the set of measurable functions over $[0, +\infty)$ to show that $(x, x') \mapsto \min(x, x')$ is a PDS kernel (hint: associate an indicator function to x and another one to x').
 - Use the previous question to show that K_1 is PDS and similarly K_α with other values of α .

Solution:

- Observe that $\min(|u|^\alpha, |u'|^\alpha) = \int_0^{+\infty} 1_{t \in [0, |u|^\alpha]} 1_{t \in [0, |u'|^\alpha]} dt$, which shows that $(u, u') \mapsto \min(|u|^\alpha, |u'|^\alpha)$ is PDS.
- Since $K_\alpha(x, x') = \sum_{k=1}^N \min(|x_k|^\alpha, |x'_k|^\alpha)$, K_α is PDS as a sum of N PDS kernels.

B Boosting

- In class, we showed that AdaBoost can be viewed as coordinate descent applied to a convex upper bound on the empirical error. Here, we consider instead an algorithm seeking to minimize the empirical margin loss. For any $0 \leq \rho < 1$, using the same notation as in class, let $\widehat{R}_\rho(f) = \frac{1}{m} \sum_{i=1}^m 1_{y_i f(x_i) \leq \rho}$ denote the empirical margin loss of a function f of the form $f = \frac{\sum_{t=1}^T \alpha_t h_t}{\sum_{t=1}^T \alpha_t}$ for a labeled sample $S = ((x_1, y_1), \dots, (x_m, y_m))$.
 - Prove the upper bound $\widehat{R}_\rho(f) \leq \exp\left(\sum_{t=1}^T \alpha_t \rho\right) \prod_{t=1}^T Z_t$, where the normalization factors Z_t are defined as in the case of AdaBoost in class.
 - Give the expression of Z_t as a function of ρ and ϵ_t , where the weighted error ϵ_t are defined as in the case of AdaBoost in class. Use that to prove the following upper bound

$$\widehat{R}_\rho(f) \leq \exp\left(-\sum_{t=1}^T D\left(\frac{1-\rho}{2} \middle\| \epsilon_t\right)\right),$$

where $D(p\|q)$ denotes the binary relative entropy of p and q : $D(p\|q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}$, for any $p, q \in [0, 1]$.

- Assume that for all $t \in [1, T]$, $\frac{1-\rho}{2} - \epsilon_t > \gamma > 0$. Use the result of the previous question to show that

$$\widehat{R}_\rho(f) \leq \exp(-2\gamma^2 T).$$

(hint: you can use Pinsker's inequality: $D(p\|q) \geq 2(p-q)^2$ for all $p, q \in [0, 1]$). Show that for $T > \frac{\log m}{2\gamma^2}$, all points have margin at least ρ .

Solution:

(a) First, we show $\widehat{R}_\rho(f)$ can be upper-bounded as follows:

$$\begin{aligned}\widehat{R}_\rho(f) &= \frac{1}{m} \sum_{i=1}^m 1_{y_i f(x_i) \leq \rho} = \frac{1}{m} \sum_{i=1}^m 1_{y_i \sum_{t=1}^T \alpha_t h_t(x_i) - \rho \sum_{t=1}^T \alpha_t \leq 0} \\ &\leq \frac{1}{m} \sum_{i=1}^m \exp \left(-y_i \sum_{t=1}^T \alpha_t h_t(x_i) + \rho \sum_{t=1}^T \alpha_t \right).\end{aligned}$$

Let D_1 be the uniform distribution, that is $D_1(i) = \frac{1}{m}$ for all $i \in [1, m]$ and for any $t \in [2, T]$, define D_t by

$$D_t(i) = \frac{D_{t-1}(i) \exp(-y_i \alpha_{t-1} h_{t-1}(x_i))}{Z_{t-1}},$$

with $Z_{t-1} = \sum_{i=1}^m D_{t-1}(i) \exp(-y_i \alpha_{t-1} h_{t-1}(x_i))$. Observe that $D_t(i) = \frac{\exp(-y_i \sum_{s=1}^{t-1} \alpha_s h_s(x_i))}{m \prod_{s=1}^{t-1} Z_s}$. Thus, we can write

$$\begin{aligned}\widehat{R}_\rho(f) &\leq \frac{1}{m} \sum_{i=1}^m \exp \left(-y_i \sum_{t=1}^T \alpha_t h_t(x_i) + \rho \sum_{t=1}^T \alpha_t \right) \\ &= \frac{1}{m} \sum_{i=1}^m \left(m \prod_{t=1}^T Z_t \right) D_t(i) \exp \left(\rho \sum_{t=1}^T \alpha_t \right) \\ &= \exp \left(\rho \sum_{t=1}^T \alpha_t \right) \left(\prod_{t=1}^T Z_t \right).\end{aligned}$$

(b) The normalization factor Z_t can be expressed in terms of ϵ_t and ρ using its definition:

$$\begin{aligned}Z_t &= \sum_{i=1}^m D_t(i) \exp(-y_i \alpha_t h_t(x_i)) \\ &= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t \\ &= \sqrt{\frac{1+\rho}{1-\rho} (1 - \epsilon_t) \epsilon_t} + \sqrt{\frac{1-\rho}{1+\rho} (1 - \epsilon_t) \epsilon_t} \\ &= \sqrt{\epsilon_t (1 - \epsilon_t)} \left[\sqrt{\frac{1+\rho}{1-\rho}} + \sqrt{\frac{1-\rho}{1+\rho}} \right] \\ &= \sqrt{\epsilon_t (1 - \epsilon_t)} \left[\frac{2}{\sqrt{1-\rho^2}} \right] \\ &= 2 \sqrt{\frac{\epsilon_t (1 - \epsilon_t)}{1 - \rho^2}}.\end{aligned}$$

Define u by $u = \frac{1-\rho}{1+\rho}$. Plugging in that expression in the bound of the previous question and using the expression of α_t gives

$$\begin{aligned}\widehat{R}_\rho(f) &\leq \left(\prod_t e^{\alpha_t} \right)^\rho \left(\prod_{t=1}^T \sqrt{\epsilon_t (1 - \epsilon_t)} (u^{\frac{1}{2}} + u^{-\frac{1}{2}}) \right) \\ &= \left(\sqrt{\frac{1-\rho}{1+\rho}} \right)^{\rho T} \left(\prod_t \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \right)^\rho \left(\prod_{t=1}^T \sqrt{\epsilon_t (1 - \epsilon_t)} (u^{\frac{1}{2}} + u^{-\frac{1}{2}}) \right) \\ &= \left(u^{\frac{1+\rho}{2}} + u^{-\frac{1-\rho}{2}} \right)^T \prod_{t=1}^T \sqrt{\epsilon_t^{1-\rho} (1 - \epsilon_t)^{1+\rho}}.\end{aligned}$$

Observe that

$$\begin{aligned}
u^{\frac{1+\rho}{2}} + u^{-\frac{1-\rho}{2}} &= \left(\frac{1-\rho}{1+\rho}\right)^{\frac{1+\rho}{2}} + \left(\frac{1+\rho}{1-\rho}\right)^{\frac{1-\rho}{2}} \\
&= \frac{(1-\rho) + (1+\rho)}{(1+\rho)^{\frac{1+\rho}{2}}(1-\rho)^{\frac{1-\rho}{2}}} \\
&= \frac{2}{(1+\rho)^{\frac{1+\rho}{2}}(1-\rho)^{\frac{1-\rho}{2}}} \\
&= \frac{1}{\left(\frac{1+\rho}{2}\right)^{\frac{1+\rho}{2}}\left(\frac{1-\rho}{2}\right)^{\frac{1-\rho}{2}}}.
\end{aligned}$$

We also have

$$\begin{aligned}
&\log \left[\sqrt{\epsilon_t^{1-\rho} (1-\epsilon_t)^{1+\rho}} \right] \\
&= \frac{1-\rho}{2} \log(\epsilon_t) + \frac{1+\rho}{2} \log(1-\epsilon_t) \\
&= -D\left(\frac{1-\rho}{2} \parallel \epsilon_t\right) + \frac{1-\rho}{2} \log\left(\frac{1-\rho}{2}\right) + \frac{1+\rho}{2} \log\left(\frac{1+\rho}{2}\right) \\
&= -D\left(\frac{1-\rho}{2} \parallel \epsilon_t\right) + \log\left(\left(\frac{1+\rho}{2}\right)^{\frac{1+\rho}{2}}\left(\frac{1-\rho}{2}\right)^{\frac{1-\rho}{2}}\right).
\end{aligned}$$

Combining these two inequalities gives

$$\widehat{R}_\rho(f) \leq \exp\left(-\sum_{t=1}^T D\left(\frac{1-\rho}{2} \parallel \epsilon_t\right)\right).$$

(c) By Pinsker's inequality, we have $D\left(\frac{1-\rho}{2} \parallel \epsilon_t\right) \geq 2\left[\frac{1-\rho}{2} - \epsilon_t\right]^2$. Thus, we can write

$$\widehat{R}_\rho(f) \leq \exp(-2\gamma^2 T).$$

Thus, if the upper bound is less than $1/m$, then $\widehat{R}_\rho(f) = 0$ and every training point has margin at least ρ . The inequality $\exp(-2\gamma^2 T) < 1/m$ is equivalent to $T > \frac{\log m}{2\gamma^2}$.

C Maxent

- Derive optimization problem of L_2 -regularized Maxent with Mahalonobis distance (counterpart of Maxent with relative entropy). Show that it is a convex optimization problem.
- Give the general form of the solution (it might be useful to use Lagrange function and representer theorem).
- Derive dual problem and equivalence (Lagrange duality).

Solution:

- The optimization problem can be expressed as

$$\begin{aligned}
&\min_{\mathbf{p} \in \Delta} (\mathbf{p} - \mathbf{p}_0)^\top \mathbf{K}^{-1} (\mathbf{p} - \mathbf{p}_0) \\
&\text{subject to: } \left\| \mathbb{E}_{x \sim \mathbf{p}} [\Phi(x)] - \mathbb{E}_{x \sim \mathcal{D}} [\Phi(x)] \right\|_2^2 \leq \lambda.
\end{aligned}$$

which is a convex optimization problem by following the optimization slides taught in class.

- You can refer to the L_2 -squared regularized maxent and the corresponding derivation taught in class.
- You can directly solve it using the standard method of Lagrange multipliers taught in class.