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A Kernel methods

1. For a>0, the kernel K,:(z,z") > Y au, min(|zg|®, |4]|*) over RY xRY is used in image classification.
Show that K, is PDS. To do that, you can proceed as follows.

(a) Use the fact that (f,g) — ;So f(t)g(t)dt is an inner product over the set of measurable functions
over [0,+o0) to show that (x,2') » min(x,z’) is a PDS kernel (hint: associate an indicator
function to = and another one to z').

(b) Use the previous question to show that K; is PDS and similarly K, with other values of a.

Solution:

(a) Observe that min([u|®, [u/|*) = ;™ Lte[o,ju|o] Lte[0,ju|«]dt, Which shows that (u,u) = min(|u|*, [u|*)
is PDS.

(b) Since Ko (z,2") = Yo, min(|zx|®, [21,|*), K, is PDS as a sum of N PDS kernels.

B Boosting

1. In class, we showed that AdaBoost can be viewed as coordinate descent applied to a convex upper
bound on the empirical error. Here, we consider instead an algorithm seeking to minimize the empirical
margin loss. For any 0 < p < 1, using the same notation as in class, let R,(f) = i Yt Ly, pz)<p
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denote the empirical margin loss of a function f of the form f = ;
t=1
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(a) Prove the upper bound R,(f) < exp(ZtT=1 ap) [1Z, Z;, where the normalization factors Z; are
defined as in the case of AdaBoost in class.

(b) Give the expression of Z; as a function of p and €;, where the weighted error ¢; are defined as in
the case of AdaBoost in class. Use that to prove the following upper bound
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where D(p|q) denotes the binary relative entropy of p and ¢: D(p|q) = plog g +(1-p)log % for
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any p,q € [0,1].
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(c) Assume that for all £ € [1,T'], £ —€; >y > 0. Use the result of the previous question to show that
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R,(f) <exp (-29°7).

(hint: you can use Pinsker’s inequality: D(p|q) > 2(p - ¢q)? for all p,q € [0,1]). Show that for

T> 1‘;%”7 all points have margin at least p.




Solution:

(a) First, we show Ep(f) can be upper-bounded as follows:
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Let D; be the uniform distribution, that is Dy(i) = = for all i € [1,/m] and for any ¢ € [2,T],
define D; by

Dy 1 (i) exp(—yics-1hi-1(x;))
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with Z;_1 = 37 Dy_1(4) exp(—ysaq—1hi—1(x;)). Observe that Dy(i) =

we can write

. Thus,
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(b) The normalization factor Z; can be expressed in terms of ¢, and p using its definition:
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Define u by u = p%p Plugging in that expression in the bound of the previous question and using

the expression of a; gives
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Observe that
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We also have
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Combining these two inequalities gives

R <o (- 20(45))

t=1
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(¢) By Pinsker’s inequality, we have D(lg—pHet) > 2[1;2‘7 - Et] . Thus, we can write

R,(f) <exp (-29°T).

Thus, if the upper bound is less that 1/m, then Ep(f) =0 and every training point has margin at
logm
2y2

least p. The inequality exp( - 272T) < 1/m is equivalent to T >

C Maxent
1. Derive optimization problem of Lo-regularized Maxent with Mahalonobis distance (counterpart of
Maxent with relative entropy). Show that it is a convex optimization problem.

2. Give the general form of the solution (it might be useful to use Lagrange function and representer
theorem).

3. Derive dual problem and equivalence (Lagrange duality).

Solution:
1. The optimization problem can be expressed as
min (p - po) 'K~ (p - po)
peA
2
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2

subject to:

E [#(2)]- E [(2)]
z~p z~D

which is a convex optimization problem by following the optimization slides taught in class.
2. You can refer to the Lo-squared regularized maxent and the corresponding derivation taught in class.

3. You can directly solve it using the standard method of Lagrange multipliers taught in class.
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