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A VC dimension

1. VC-dimension of axis-aligned hyper-rectangles. What is the VC-dimension of axis-aligned hyperrect-
angles in R3?

2. VC-dimension of union of two intervals. What is the VC-dimension of subsets of the real line formed
by the union of two intervals?

3. VC-dimension of spheres. What is the VC-dimension of the set of all spheres centered at zero in Rn?

Solution:

1. VC dimension is 6. It is straightforward to see that the following set of six points can be shattered:

{(1,0,0), (−1,0,0), (0,1,0), (0,−1,0), (0,0,1), (0,0,−1)}.
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either a single point resides within the interior of R, or there exist two points sharing an identical
boundary point. Thus, it is impossible to shatter seven points, thereby establishing the VC-dimension
at 6.

2. VC dimension is 4. It is straightforward to see that any four points can be shattered. However, for a
sequence of five points on a line, it is not possible to shatter them if successive points are labeled with
alternating labels, starting with a positive label. Thus, the VC-dimension of subsets of the real line
formed by the union of two intervals is 4

3. VC dimension is 1 or 2. If we only use spheres to include or exclude points normally, we can only fully
separate one point. So, the VC-dimension is 1. If we add a way to flip the classification, we can fully
separate two points in any way we want. This makes the VC-dimension 2.

B Generalization bound based on covering numbers

1. Let H be a family of functions mapping X to a subset of real numbers Y ⊆ R. For any ϵ > 0, the
covering number N (H, ϵ) of H for the L∞ norm is the minimal k ∈ N such that H can be covered with
k open balls of radius ϵ, that is, there exists {h1, . . . , hk} ⊆H such that, for all h ∈H, there exists i ≤ k
with ∥h − hi∥∞ = maxx∈X ∣h(x) − hi(x)∣ ≤ ϵ. In particular, when H is a compact set, a finite covering
can be extracted from a covering of H with balls of radius ϵ and thus N (H, ϵ) is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering
number, the richer is the family of functions. The objective of this problem is to illustrate this by
proving a learning bound in the case of the squared loss. Let D denote a distribution over X × Y

according to which labeled examples are drawn. Then, the generalization error of h ∈ H for the
squared loss is defined by R(h) = E(x,y)∼D[(h(x) − y)2] and its empirical error for a labeled sample

S = ((x1, y1), . . . , (xm, ym)) by R̂S(h) =
1
m ∑

m
i=1(h(xi) − yi)

2. We will assume that H is bounded, that
is there exists M > 0 such that ∣h(x) − y∣ ≤M for all (x, y) ∈ X × Y. The following is the generalization
bound proven in this problem:
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The proof is based on the following steps.

(a) Let LS(h) = R(h) − R̂S(h), then show that for all h1, h2 ∈ H and any labeled sample S, the
following inequality holds:

∣LS(h1) −LS(h2)∣ ≤ 4M∥h1 − h2∥∞ .

(b) Assume that H can be covered by k subsets B1, . . . ,Bk, that is H = B1 ∪ . . . ∪Bk. Then, show
that, for any ϵ > 0, the following upper bound holds:
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(c) Finally, let k = N (H, ϵ
8M
) and let B1, . . . ,Bk be balls of radius ϵ/(8M) centered at h1, . . . , hk

covering H. Use part (a) to show that for all i ∈ [k],
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and apply Hoeffding’s inequality (theorem D.2) to prove (1).

Solution:

(a) First split the term into two separate terms:

∣LS(h1) −LS(h2)∣ ≤ ∣R(h1) −R(h2)∣ + ∣R̂S(h1) − R̂S(h2)∣
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Then, expanding the following term,

(h1(x) − y)
2
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2
= (h1(x) − h2(x))(h1(x) + h2(x) − 2y)

= (h1(x) − h2(x))((h1(x) − y) + (h2(x) − y)) ≤ ∥h1 − h2∥∞2M ,

allows us to bound both the empirical and true error, resulting in a total bound of 4M∥h1−h2∥∞.

(b) This follows by splitting the event into the union of several smaller events and then using the sum
rule,
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(c) For any h ∈ Bi, we have ∣LS(h) − LS(hi)∣ ≤ 4M∥h − hi∥∞ ≤ ϵ/2. Thus, if for any h ∈ Bi we have
∣LS(h)∣ ≥ ϵ it must be the case that ∣LS(hi)∣ ≥ ϵ/2, which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random variables (h(xi) −

yi)
2/m ≤M2/m, which guarantees
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C Generalization bound for Lipschitz functions

1. Let (E,ρ) be a metric space and consider a set F ⊂ E. From the previous problem, we know that for
any ϵ > 0, the covering number N (F, ϵ) of F is the minimal k ∈ N such that F can be covered with
k open balls of radius ϵ. We now define the packing number M(F, ϵ) of F as the maximal k ∈ N for
which there exists a finite set P ⊂ F of size k that is ϵ-separated, that is, for all distinct p, p′ ∈ P , we
have ρ(p, p′) > ϵ.
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(a) Show that for any metric, the ϵ-packing number is lower bounded by the ϵ-covering number:

M(F, ϵ) ≥ N (F, ϵ).

(b) Show that for any metric, a d-dimensional ball B of radius r can be covered by (3r/ϵ)d balls of
radius ϵ < r.

(c) Let G = {gθ ∶Z → [0,1] ∣ θ ∈ Rd, ∥θ∥ ≤ 1} be a class of functions parameterized by θ ∈ Rd, ∥θ∥ ≤ 1,
that is µ-Lipschitz in the following sense: ∥gθ − gθ′∥∞ ≤ µ∥θ − θ′∥, where the norm ∥⋅∥ on Rd is
arbitrary. Show that N∞(G, ϵ) ≤ (3µ/ϵ)d. Hint: show that ϵ

µ
cover of the unit ball in Rd for norm

∥⋅∥ provides an ϵ cover of G: N∞(G, ϵ) ≤ N∥⋅∥(B(0,1), ϵ
µ
).

(d) Using the generalization bound based on covering numbers from the problem above, derive a
generalization bound specifically for Lipschitz functions.

Solution:

(a) Let S = {x1, x2, . . . , xm} be a ϵ-packing set in F . By definition, for any xi, xj ∈ S with i ≠ j,
d(xi, xj) > ϵ. Consider ϵ-balls centered at each point xi ∈ S. By the maximality of the ϵ-packing
set S, adding any additional point to S would violate the condition d(xi, xj) > ϵ. This implies
that any point in F must be within ϵ distance of some point in S. Thus, F can be covered by
ϵ-balls centered at points in S, meaning:

N (F, ϵ) ≤ ∣S∣ =M(F, ϵ).

(b) Let V = volume(unit ball). Assume that r > ϵ. Then you can observe that the ϵ
2
-balls centered at

the members of any ϵ-packing of a ball are disjoint. So, the balls are included in balls of radius
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2
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2
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V . This implies thatM(B, ϵ) ≤ (3r/ϵ)d.

(c) This should be clear since an ϵ
µ
cover of the unit ball in Rd for norm ∥⋅∥ provides an ϵ cover of G:

N∞(G, ϵ) ≤ N∥⋅∥(B(0,1), ϵ
µ
), which leverages the definition of µ-Lipschitz continuity. The bound

results from the previous result.

(d) This should be clear by directly applying the bounds established in Problem B.
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