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1.

VC dimension

VC-dimension of axis-aligned hyper-rectangles. What is the VC-dimension of axis-aligned hyperrect-
angles in R3?

VC-dimension of union of two intervals. What is the VC-dimension of subsets of the real line formed
by the union of two intervals?

3. VC-dimension of spheres. What is the VC-dimension of the set of all spheres centered at zero in R™?
Solution:
1. VC dimension is 6. It is straightforward to see that the following set of six points can be shattered:

{(1,0,0),(-1,0,0),(0,1,0),(0,-1,0),(0,0,1),(0,0,-1)}.
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For any seven points x = (x7,3,23),...,27 = (x7,27,23), let . =min;_; ] and 2/, = max;_; z] for

any j € {1,2,3}. We define hyper-rectangle R = [xllmn,a:}nax] X [chnin,xﬁlax] X [xiﬁn,xf’nax]. Therefore,
either a single point resides within the interior of R, or there exist two points sharing an identical
boundary point. Thus, it is impossible to shatter seven points, thereby establishing the VC-dimension

at 6.

VC dimension is 4. It is straightforward to see that any four points can be shattered. However, for a
sequence of five points on a line, it is not possible to shatter them if successive points are labeled with
alternating labels, starting with a positive label. Thus, the VC-dimension of subsets of the real line
formed by the union of two intervals is 4

VC dimension is 1 or 2. If we only use spheres to include or exclude points normally, we can only fully
separate one point. So, the VC-dimension is 1. If we add a way to flip the classification, we can fully
separate two points in any way we want. This makes the VC-dimension 2.

Generalization bound based on covering numbers

. Let H be a family of functions mapping X to a subset of real numbers Y € R. For any € > 0, the

covering number N'(H,e) of H for the Lo, norm is the minimal k € N such that 3 can be covered with
k open balls of radius ¢, that is, there exists {hq,...,ht} € H such that, for all h € K, there exists i < k
with |h = hi|e = maxgex |h(x) — hi(2)| < e. In particular, when K is a compact set, a finite covering
can be extracted from a covering of H with balls of radius ¢ and thus AV (H,¢) is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering
number, the richer is the family of functions. The objective of this problem is to illustrate this by
proving a learning bound in the case of the squared loss. Let D denote a distribution over X x Y
according to which labeled examples are drawn. Then, the generalization error of h € H for the
squared loss is defined by R(h) = E(; ). [(h(z) - y)*] and its empirical error for a labeled sample
S =((x1,91), .-, (Zm,ym)) by Rs(h) = % S (h(x;) - y;)?. We will assume that 3 is bounded, that
is there exists M > 0 such that |h(x) —y| < M for all (x,y) € X x Y. The following is the generalization
bound proven in this problem:
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The proof is based on the following steps.

(a) Let Lg(h) = R(h) — Rs(h), then show that for all hy,hy € H and any labeled sample S, the
following inequality holds:

‘Ls(hl) - Ls(hg)‘ < 4MHh1 - hQHOQ .

(b) Assume that H can be covered by k subsets Bq,..., By, that is H = By u... U Bg. Then, show
that, for any e > 0, the following upper bound holds:
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(c) Finally, let k = N (3, g5;) and let By,..., By be balls of radius €/(8M) centered at hi,...,hs

covering H. Use part (a) to show that for all i € [k],
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and apply Hoeffding’s inequality (theorem D.2) to prove (1).

Solution:

(a) First split the term into two separate terms:
|Ls(h1) = Ls(h2)| < |[R(h1) = R(h2)| +|Rs(h1) = Rs(ho)|
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Then, expanding the following term,

(h1(z) = y)* = (ha(x) - y)? = (ha(x) = ho(2)) (ha(z) + ho(z) - 2y)
= (h1(x) = ha(2))((h1(x) = y) + (ha(2) = ¥)) < [h1 = ha[2M

allows us to bound both the empirical and true error, resulting in a total bound of 4M ||h1 — ha | co-

(b) This follows by splitting the event into the union of several smaller events and then using the sum
rule,
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(c) For any h € B;, we have |Lg(h) — Ls(h;)| < 4M||h - hilleo < €/2. Thus, if for any h € B; we have
|Ls(h)| 2 € it must be the case that |Ls(h;)| > €/2, which shows the inequality.

To complete the bound, we use Hoeffding’s inequality applied to the random variables (h(x;) -
y:)?/m < M?|m, which guarantees
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C Generalization bound for Lipschitz functions

1. Let (E,p) be a metric space and consider a set F' ¢ E. From the previous problem, we know that for
any € > 0, the covering number N'(F,¢) of F' is the minimal k¥ € N such that F' can be covered with
k open balls of radius e. We now define the packing number M(F,¢) of F as the maximal k € N for
which there exists a finite set P c F of size k that is e-separated, that is, for all distinct p,p’ € P, we

have p(p,p’) > e.



(a) Show that for any metric, the e-packing number is lower bounded by the e-covering number:
M(F,€) > N(F,e).

(b) Show that for any metric, a d-dimensional ball B of radius r can be covered by (3r/¢)¢ balls of
radius e < r.

(c) Let G ={ge:Z — [0,1]]| 8 € R, |#] < 1} be a class of functions parameterized by 6 € R, 6] < 1,
that is p-Lipschitz in the following sense: |gg — gor|lw < 110 — 6’|, where the norm |-| on R? is
arbitrary. Show that Nu (G, €) < (3u/e)?. Hint: show that & cover of the unit ball in R? for norm

|-| provides an € cover of G: Noo(G,€) < Ny (B(0,1), =)

(d) Using the generalization bound based on covering numbers from the problem above, derive a
generalization bound specifically for Lipschitz functions.

Solution:

(a) Let S = {x1,22,...,2m} be a e-packing set in F. By definition, for any z;,x; € S with i # j,
d(z;,x;) > €. Consider e-balls centered at each point z; € S. By the maximality of the e-packing
set S, adding any additional point to S would violate the condition d(z;,z;) > e. This implies
that any point in F' must be within e distance of some point in S. Thus, F' can be covered by
e-balls centered at points in S, meaning:

N(F,¢) <|S] = M(F,e).

(b) Let V' = volume(unit ball). Assume that 7 >¢. Then you can observe that the $-balls centered at
the members of any e-packing of a ball are disjoint. So, the balls are included in balls of radius

r+ 5. Thus, M(B,e)%dV <(r+5)v< %rdV. This implies that M(B,¢€) < (3r/e)?.
(c) This should be clear since an < cover of the unit ball in R? for norm |-| provides an e cover of G:

Neo(G,€) <N (B(0,1), ﬁ), which leverages the definition of p-Lipschitz continuity. The bound
results from the previous result.

(d) This should be clear by directly applying the bounds established in Problem B.



