Mehryar Mohri Foundations of Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 October 08, 2024 Due: October 22, 2024

A VC dimension

- 1. VC-dimension of axis-aligned hyper-rectangles. What is the VC-dimension of axis-aligned hyperrectangles in \mathbb{R}^3 ?
- 2. VC-dimension of union of two intervals. What is the VC-dimension of subsets of the real line formed by the union of two intervals?
- 3. VC-dimension of spheres. What is the VC-dimension of the set of all spheres centered at zero in \mathbb{R}^n ?

Solution:

1. VC dimension is 6. It is straightforward to see that the following set of six points can be shattered:

 $\{(1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)\}.$

For any seven points $x_1 = (x_1^1, x_2^1, x_3^1), \ldots, x_7 = (x_7^1, x_7^2, x_7^3)$, let $x_{\min}^j = \min_{i=1}^7 x_i^j$ and $x_{\max}^j = \max_{i=1}^7 x_i^j$ for any $j \in \{1, 2, 3\}$. We define hyper-rectangle $R = [x_{\min}^1, x_{\max}^1] \times [x_{\min}^2, x_{\max}^2] \times [x_{\min}^3, x_{\max}^3]$. Therefore, either a single point resides within the interior of R, or there exist two points sharing an identical boundary point. Thus, it is impossible to shatter seven points, thereby establishing the VC-dimension at 6.

- 2. VC dimension is 4. It is straightforward to see that any four points can be shattered. However, for a sequence of five points on a line, it is not possible to shatter them if successive points are labeled with alternating labels, starting with a positive label. Thus, the VC-dimension of subsets of the real line formed by the union of two intervals is 4
- 3. VC dimension is 1 or 2. If we only use spheres to include or exclude points normally, we can only fully separate one point. So, the VC-dimension is 1. If we add a way to flip the classification, we can fully separate two points in any way we want. This makes the VC-dimension 2.

B Generalization bound based on covering numbers

1. Let \mathcal{H} be a family of functions mapping \mathcal{X} to a subset of real numbers $\mathcal{Y} \subseteq \mathbb{R}$. For any $\epsilon > 0$, the covering number $\mathcal{N}(\mathcal{H}, \epsilon)$ of \mathcal{H} for the L_{∞} norm is the minimal $k \in \mathbb{N}$ such that \mathcal{H} can be covered with k open balls of radius ϵ , that is, there exists $\{h_1, \ldots, h_k\} \subseteq \mathcal{H}$ such that, for all $h \in \mathcal{H}$, there exists $i \leq k$ with $\|h - h_i\|_{\infty} = \max_{x \in \mathcal{X}} |h(x) - h_i(x)| \leq \epsilon$. In particular, when \mathcal{H} is a compact set, a finite covering can be extracted from a covering of \mathcal{H} with balls of radius ϵ and thus $\mathcal{N}(\mathcal{H}, \epsilon)$ is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering number, the richer is the family of functions. The objective of this problem is to illustrate this by proving a learning bound in the case of the squared loss. Let \mathcal{D} denote a distribution over $\mathfrak{X} \times \mathfrak{Y}$ according to which labeled examples are drawn. Then, the generalization error of $h \in \mathcal{H}$ for the squared loss is defined by $R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[(h(x) - y)^2]$ and its empirical error for a labeled sample $S = ((x_1, y_1), \ldots, (x_m, y_m))$ by $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$. We will assume that \mathcal{H} is bounded, that is there exists M > 0 such that $|h(x) - y| \leq M$ for all $(x, y) \in \mathfrak{X} \times \mathfrak{Y}$. The following is the generalization bound proven in this problem:

$$\mathbb{P}_{S\sim\mathcal{D}^m}\left[\sup_{h\in\mathcal{H}}|R(h)-\widehat{R}_S(h)|\geq\epsilon\right]\leq\mathcal{N}\left(\mathcal{H},\frac{\epsilon}{8M}\right)2\exp\left(\frac{-m\epsilon^2}{2M^4}\right).$$
(1)

The proof is based on the following steps.

(a) Let $L_S(h) = R(h) - \widehat{R}_S(h)$, then show that for all $h_1, h_2 \in \mathcal{H}$ and any labeled sample S, the following inequality holds:

$$|L_S(h_1) - L_S(h_2)| \le 4M ||h_1 - h_2||_{\infty}.$$

(b) Assume that \mathcal{H} can be covered by k subsets $\mathcal{B}_1, \ldots, \mathcal{B}_k$, that is $\mathcal{H} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_k$. Then, show that, for any $\epsilon > 0$, the following upper bound holds:

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] \le \sum_{i=1}^k \mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right]$$

(c) Finally, let $k = \mathcal{N}(\mathcal{H}, \frac{\epsilon}{8M})$ and let $\mathcal{B}_1, \ldots, \mathcal{B}_k$ be balls of radius $\epsilon/(8M)$ centered at h_1, \ldots, h_k covering \mathcal{H} . Use part (a) to show that for all $i \in [k]$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right] \le \mathbb{P}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right],$$

and apply Hoeffding's inequality (theorem D.2) to prove (1).

Solution:

(a) First split the term into two separate terms:

$$|L_{S}(h_{1}) - L_{S}(h_{2})| \leq |R(h_{1}) - R(h_{2})| + |\widehat{R}_{S}(h_{1}) - \widehat{R}_{S}(h_{2})|$$

= $\left| \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}} [(h_{1}(x) - y)^{2} - (h_{2}(x) - y)^{2}] \right| + \left| \frac{1}{m} \sum_{i=1}^{m} (h_{1}(x_{i}) - y_{i})^{2} - (h_{2}(x_{i}) - y_{i})^{2} \right|.$

Then, expanding the following term,

$$(h_1(x) - y)^2 - (h_2(x) - y)^2 = (h_1(x) - h_2(x))(h_1(x) + h_2(x) - 2y) = (h_1(x) - h_2(x))((h_1(x) - y) + (h_2(x) - y)) \le ||h_1 - h_2||_{\infty} 2M ,$$

allows us to bound both the empirical and true error, resulting in a total bound of $4M \|h_1 - h_2\|_{\infty}$.

(b) This follows by splitting the event into the union of several smaller events and then using the sum rule,

$$\mathbb{P}_{S}\left[\sup_{h\in\mathcal{H}}|L_{S}(h)|\geq\epsilon\right]=\mathbb{P}_{S}\left[\bigvee_{i=1}^{k}\sup_{h\in B_{i}}|L_{S}(h)|\geq\epsilon\right]\leq\sum_{i=1}^{k}\mathbb{P}_{S}\left[\sup_{h\in B_{i}}|L_{S}(h)|\geq\epsilon\right].$$

(c) For any $h \in B_i$, we have $|L_S(h) - L_S(h_i)| \le 4M ||h - h_i||_{\infty} \le \epsilon/2$. Thus, if for any $h \in B_i$ we have $|L_S(h)| \ge \epsilon$ it must be the case that $|L_S(h_i)| \ge \epsilon/2$, which shows the inequality.

To complete the bound, we use Hoeffding's inequality applied to the random variables $(h(x_i) - y_i)^2/m \le M^2/m$, which guarantees

$$\mathbb{P}_{S}\left[|L_{S}(h_{i})| \geq \frac{\epsilon}{2}\right] \leq 2 \exp\left(\frac{-m\epsilon^{2}}{2M^{4}}\right).$$

C Generalization bound for Lipschitz functions

1. Let (E, ρ) be a metric space and consider a set $F \subset E$. From the previous problem, we know that for any $\epsilon > 0$, the covering number $\mathcal{N}(F, \epsilon)$ of F is the minimal $k \in \mathbb{N}$ such that F can be covered with k open balls of radius ϵ . We now define the packing number $\mathcal{M}(F, \epsilon)$ of F as the maximal $k \in \mathbb{N}$ for which there exists a finite set $P \subset F$ of size k that is ϵ -separated, that is, for all distinct $p, p' \in P$, we have $\rho(p, p') > \epsilon$. (a) Show that for any metric, the ϵ -packing number is lower bounded by the ϵ -covering number:

$$\mathcal{M}(F,\epsilon) \geq \mathcal{N}(F,\epsilon).$$

- (b) Show that for any metric, a *d*-dimensional ball *B* of radius *r* can be covered by $(3r/\epsilon)^d$ balls of radius $\epsilon < r$.
- (c) Let $G = \{g_{\theta}: \mathbb{Z} \to [0,1] \mid \theta \in \mathbb{R}^d, \|\theta\| \le 1\}$ be a class of functions parameterized by $\theta \in \mathbb{R}^d, \|\theta\| \le 1$, that is μ -Lipschitz in the following sense: $\|g_{\theta} - g_{\theta'}\|_{\infty} \le \mu \|\theta - \theta'\|$, where the norm $\|\cdot\|$ on \mathbb{R}^d is arbitrary. Show that $\mathcal{N}_{\infty}(G, \epsilon) \le (3\mu/\epsilon)^d$. *Hint: show that* $\frac{\epsilon}{\mu}$ cover of the unit ball in \mathbb{R}^d for norm $\|\cdot\|$ provides an ϵ cover of $G: \mathcal{N}_{\infty}(G, \epsilon) \le \mathcal{N}_{\|\cdot\|}(B(0, 1), \frac{\epsilon}{\mu})$.
- (d) Using the generalization bound based on covering numbers from the problem above, derive a generalization bound specifically for Lipschitz functions.

Solution:

(a) Let $S = \{x_1, x_2, ..., x_m\}$ be a ϵ -packing set in F. By definition, for any $x_i, x_j \in S$ with $i \neq j$, $d(x_i, x_j) > \epsilon$. Consider ϵ -balls centered at each point $x_i \in S$. By the maximality of the ϵ -packing set S, adding any additional point to S would violate the condition $d(x_i, x_j) > \epsilon$. This implies that any point in F must be within ϵ distance of some point in S. Thus, F can be covered by ϵ -balls centered at points in S, meaning:

$$\mathcal{N}(F,\epsilon) \leq |S| = \mathcal{M}(F,\epsilon).$$

- (b) Let V = volume(unit ball). Assume that $r > \epsilon$. Then you can observe that the $\frac{\epsilon}{2}$ -balls centered at the members of any ϵ -packing of a ball are disjoint. So, the balls are included in balls of radius $r + \frac{\epsilon}{2}$. Thus, $\mathcal{M}(B,\epsilon) \frac{\epsilon}{2}^d V \leq (r + \frac{\epsilon}{2})^d V \leq \frac{3r}{2}^d V$. This implies that $\mathcal{M}(B,\epsilon) \leq (3r/\epsilon)^d$.
- (c) This should be clear since an $\frac{\epsilon}{\mu}$ cover of the unit ball in \mathbb{R}^d for norm $\|\cdot\|$ provides an ϵ cover of G: $\mathcal{N}_{\infty}(G,\epsilon) \leq \mathcal{N}_{\|\cdot\|}(B(0,1),\frac{\epsilon}{\mu})$, which leverages the definition of μ -Lipschitz continuity. The bound results from the previous result.
- (d) This should be clear by directly applying the bounds established in Problem B.