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A Probability tools

1. Let f ∶ (0,+∞)→ R+ be a function that admits an inverse f−1, and let X be a random variable. Suppose
that for all t > 0, the probability that X exceeds t is bounded by f(t), i.e., P[X > t] ≤ f(t). Prove that
for any δ > 0, with probability at least 1 − δ, the random variable X satisfies X ≤ f−1(δ).

2. Let Z be a discrete random variable that takes non-negative integer values. Prove that E[Z] =
∑n≥1 P[Z ≥ n]. Hint: express P[Z = n] as P[Z ≥ n] − P[Z ≥ n + 1].

Solution:

1. For any δ > 0, let t = f−1(δ). Plugging this in P[X > t] ≤ f(t) yields P[X > f−1(δ)] ≤ δ, that is
P[X ≤ f−1(δ)] ≥ 1 − δ.

2. We assume that Z is a bounded random variable to avoid any convergence issues (although the state-
ment is still true in the general case).

By definition of expectation and using the hint, we can write

E[Z] = ∑
n≥0

nP[Z = n] = ∑
n≥1

n(P[Z ≥ n] − P[Z ≥ n + 1]).

Note that in this sum, for n ≥ 1, P[Z ≥ n] is added n times and subtracted n − 1 times, thus E[Z] =
∑n≥1 P[Z ≥ n].
More generally, by definition of the Lebesgue integral, for any non-negative random variable Z, the
following identity holds:

E[Z] = ∫
+∞

0
P[Z ≥ t]dt.

B Label bias

1. Let D be a distribution over X, and let f ∶X→ {−1,+1} be a labeling function. Our goal is to approxi-
mate the label bias of the distribution D, denoted by p+, which is defined as:

p+ = P
x∼D
[f(x) = +1].

Let S be a labeled sample of size m, drawn i.i.d. from D. Using S, derive an estimate p̂+ of p+. Show
that for any δ > 0, with probability at least 1 − δ, the following inequality holds:

∣p+ − p̂+∣ ≤
√

log(2/δ)
2m

.

Justify each step of the proof carefully.

Solution:

1. Let p̂+ be the fraction of positively labeled points in S = (x1, . . . , xm):

p̂+ =
1

m

m

∑
i=1

1f(xi)=+1
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Since the points are drawn i.i.d.,

E[p̂+] =
1

m

m

∑
i=1

E
S∼Dm

[1f(xi)=+1] = E
S∼Dm

[1f(x1)=+1] = E
x∼D
[1f(x)=+1] = p+.

Thus, by Hoeffding’s inequality, for any ϵ > 0,

P[∣p+ − p̂+∣ > ϵ] ≤ 2e−2mϵ2 .

Setting δ to match the right-hand side yields the result.

C Learning in the presence of noise

1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider
now the case where the training points received by the learner are subject to the following noise: points
negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped
to negative with probability η ∈ (0, 1

2
). The exact value of the noise rate η is not known to the learner

but an upper bound η′ is supplied to him with η ≤ η′ < 1/2. Show that the algorithm described in class
returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles
in the presence of this noise. To do so, you can proceed using the following steps:

(a) Using the notation of the lecture slides, assume that P[R] > ϵ. Suppose that R(R′) > ϵ. Give an
upper bound on the probability that R′ misses a region rj , j ∈ [1,4] in terms of ϵ and η′?

(b) Use that to give an upper bound on P[R(R′) > ϵ] in terms of ϵ and η′ and conclude by giving a
sample complexity bound.

Solution:

1. (a) The probability that R′ misses region rj is the product of the probability p for each point xi of
the training sample to either not fall in rj or be positive and fall in rj with the label flipped to
negative due to noise.

p = P[x /∈ rj ∨ (x ∈ rj ∧ x positive ∧ label of x flipped)]
= P[x /∈ rj ∨ (x ∈ rj ∧ label of x flipped)]
= P[x /∈ rj] + P[(x ∈ rj ∧ label of x flipped)]
= (1 − P[x ∈ rj]) + η P[x ∈ rj]
= (1 − η)(1 − P[x /∈ rj]) + η
≤ (1 − η)(1 − ϵ/4) + η
= (1 − ϵ/4) + ηϵ/4 ≤ 1 − ϵ(1 − η′)/4.

(b) The probability that P[R(R′) > ϵ] is upper bounded by the probability that R′ misses at least
one region rj . Thus, by the union bound,

P[R(R′) > ϵ] ≤ 4(1 − ϵ(1 − η′)/4)
m

≤ 4e−mϵ(1−η′)/4.

Setting δ to match the upper bound leads to the following: with probability at least 1 − δ, for
m ≥ 4

(1−η′)ϵ log
4
δ
, R(R′) ≤ ϵ.
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