Mehryar Mohri Foundations of Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 Sep 17, 2024 Due: October 01, 2024

A Probability tools

- 1. Let $f:(0, +\infty) \to \mathbb{R}_+$ be a function that admits an inverse f^{-1} , and let X be a random variable. Suppose that for all t > 0, the probability that X exceeds t is bounded by f(t), i.e., $\mathbb{P}[X > t] \le f(t)$. Prove that for any $\delta > 0$, with probability at least 1δ , the random variable X satisfies $X \le f^{-1}(\delta)$.
- 2. Let Z be a discrete random variable that takes non-negative integer values. Prove that $\mathbb{E}[Z] = \sum_{n\geq 1} \mathbb{P}[Z \geq n]$. Hint: express $\mathbb{P}[Z = n]$ as $\mathbb{P}[Z \geq n] \mathbb{P}[Z \geq n+1]$.

Solution:

- 1. For any $\delta > 0$, let $t = f^{-1}(\delta)$. Plugging this in $\mathbb{P}[X > t] \leq f(t)$ yields $\mathbb{P}[X > f^{-1}(\delta)] \leq \delta$, that is $\mathbb{P}[X \leq f^{-1}(\delta)] \geq 1 \delta$.
- 2. We assume that Z is a bounded random variable to avoid any convergence issues (although the statement is still true in the general case).

By definition of expectation and using the hint, we can write

$$\mathbb{E}[Z] = \sum_{n \ge 0} n \mathbb{P}[Z = n] = \sum_{n \ge 1} n (\mathbb{P}[Z \ge n] - \mathbb{P}[Z \ge n+1]).$$

Note that in this sum, for $n \ge 1$, $\mathbb{P}[Z \ge n]$ is added n times and subtracted n-1 times, thus $\mathbb{E}[Z] = \sum_{n\ge 1} \mathbb{P}[Z \ge n]$.

More generally, by definition of the Lebesgue integral, for any non-negative random variable Z, the following identity holds:

$$\mathbb{E}[Z] = \int_0^{+\infty} \mathbb{P}[Z \ge t] dt.$$

B Label bias

1. Let \mathcal{D} be a distribution over \mathfrak{X} , and let $f: \mathfrak{X} \to \{-1, +1\}$ be a labeling function. Our goal is to approximate the label bias of the distribution \mathcal{D} , denoted by p_+ , which is defined as:

$$p_+ = \mathbb{P}_{x \sim \mathcal{D}}[f(x) = +1].$$

Let S be a labeled sample of size m, drawn i.i.d. from \mathcal{D} . Using S, derive an estimate \hat{p}_+ of p_+ . Show that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds:

$$|p_+ - \hat{p}_+| \le \sqrt{\frac{\log(2/\delta)}{2m}}.$$

Justify each step of the proof carefully.

Solution:

1. Let \widehat{p}_+ be the fraction of positively labeled points in $S = (x_1, \ldots, x_m)$:

$$\widehat{p}_{+} = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{f(x_i)=+1}$$

Since the points are drawn i.i.d.,

$$\mathbb{E}[\widehat{p}_{+}] = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{S \sim \mathcal{D}^{m}} [1_{f(x_{i})=+1}] = \mathbb{E}_{S \sim \mathcal{D}^{m}} [1_{f(x_{1})=+1}] = \mathbb{E}_{x \sim \mathcal{D}} [1_{f(x)=+1}] = p_{+}.$$

Thus, by Hoeffding's inequality, for any $\epsilon > 0$,

$$\mathbb{P}[|p_+ - \widehat{p}_+| > \epsilon] \le 2e^{-2m\epsilon^2}.$$

Setting δ to match the right-hand side yields the result.

C Learning in the presence of noise

- 1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case where the training points received by the learner are subject to the following noise: points negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped to negative with probability $\eta \in (0, \frac{1}{2})$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$. Show that the algorithm described in class returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles in the presence of this noise. To do so, you can proceed using the following steps:
 - (a) Using the notation of the lecture slides, assume that $\mathbb{P}[\mathbb{R}] > \epsilon$. Suppose that $R(\mathbb{R}') > \epsilon$. Give an upper bound on the probability that \mathbb{R}' misses a region $r_i, j \in [1, 4]$ in terms of ϵ and η' ?
 - (b) Use that to give an upper bound on $\mathbb{P}[R(\mathbb{R}') > \epsilon]$ in terms of ϵ and η' and conclude by giving a sample complexity bound.

Solution:

1. (a) The probability that R' misses region r_j is the product of the probability p for each point x_i of the training sample to either not fall in r_j or be positive and fall in r_j with the label flipped to negative due to noise.

$$p = \mathbb{P}[x \notin r_j \lor (x \in r_j \land x \text{ positive} \land \text{ label of } x \text{ flipped})]$$

= $\mathbb{P}[x \notin r_j \lor (x \in r_j \land \text{ label of } x \text{ flipped})]$
= $\mathbb{P}[x \notin r_j] + \mathbb{P}[(x \in r_j \land \text{ label of } x \text{ flipped})]$
= $(1 - \mathbb{P}[x \in r_j]) + \eta \mathbb{P}[x \in r_j]$
= $(1 - \eta)(1 - \mathbb{P}[x \notin r_j]) + \eta$
 $\leq (1 - \eta)(1 - \epsilon/4) + \eta$
= $(1 - \epsilon/4) + \eta\epsilon/4 \leq 1 - \epsilon(1 - \eta')/4.$

(b) The probability that $\mathbb{P}[R(\mathbf{R}') > \epsilon]$ is upper bounded by the probability that \mathbf{R}' misses at least one region r_j . Thus, by the union bound,

$$\mathbb{P}[R(\mathbf{R}') > \epsilon] \le 4 \left(1 - \epsilon(1 - \eta')/4\right)^m \le 4e^{-m\epsilon(1 - \eta')/4}$$

Setting δ to match the upper bound leads to the following: with probability at least $1 - \delta$, for $m \geq \frac{4}{(1-\eta')\epsilon} \log \frac{4}{\delta}$, $R(\mathbf{R}') \leq \epsilon$.