Mehryar Mohri Foundations of Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 Sep 17, 2024 Due: October 01, 2024

A Probability tools

- 1. Let $f: (0, +\infty) \to \mathbb{R}_+$ be a function that admits an inverse f^{-1} , and let X be a random variable. Suppose that for all $t > 0$, the probability that X exceeds t is bounded by $f(t)$, i.e., $\mathbb{P}[X > t] \leq f(t)$. Prove that for any $\delta > 0$, with probability at least $1 - \delta$, the random variable X satisfies $X \leq f^{-1}(\delta)$.
- 2. Let Z be a discrete random variable that takes non-negative integer values. Prove that $\mathbb{E}[Z] =$ $\sum_{n\geq 1} \mathbb{P}[Z \geq n]$. Hint: express $\mathbb{P}[Z = n]$ as $\mathbb{P}[Z \geq n] - \mathbb{P}[Z \geq n+1]$.

Solution:

- 1. For any $\delta > 0$, let $t = f^{-1}(\delta)$. Plugging this in $\mathbb{P}[X > t] \leq f(t)$ yields $\mathbb{P}[X > f^{-1}(\delta)] \leq \delta$, that is $\mathbb{P}[X \leq f^{-1}(\delta)] \geq 1 - \delta.$
- 2. We assume that Z is a bounded random variable to avoid any convergence issues (although the statement is still true in the general case).

By definition of expectation and using the hint, we can write

$$
\mathbb{E}\big[Z\big]=\sum_{n\geq 0}n\,\mathbb{P}\big[Z=n\big]=\sum_{n\geq 1}n\big(\mathbb{P}\big[Z\geq n\big]-\mathbb{P}\big[Z\geq n+1\big]\big).
$$

Note that in this sum, for $n \geq 1$, $\mathbb{P}[Z \geq n]$ is added n times and subtracted $n-1$ times, thus $\mathbb{E}[Z] =$ $\sum_{n\geq 1} \mathbb{P}[Z \geq n].$

More generally, by definition of the Lebesgue integral, for any non-negative random variable Z , the following identity holds:

$$
\mathbb{E}[Z] = \int_0^{+\infty} \mathbb{P}[Z \ge t] dt.
$$

B Label bias

1. Let D be a distribution over \mathfrak{X} , and let $f: \mathfrak{X} \to \{-1, +1\}$ be a labeling function. Our goal is to approximate the label bias of the distribution \mathcal{D} , denoted by p_{+} , which is defined as:

$$
p_{+} = \mathop{\mathbb{P}}_{x \sim \mathcal{D}}[f(x) = +1].
$$

Let S be a labeled sample of size m, drawn i.i.d. from D. Using S, derive an estimate \hat{p}_+ of p_+ . Show that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds:

$$
|p_+ - \hat{p}_+| \le \sqrt{\frac{\log(2/\delta)}{2m}}.
$$

Justify each step of the proof carefully.

Solution:

1. Let \widehat{p}_+ be the fraction of positively labeled points in $S = (x_1, \ldots, x_m)$:

$$
\widehat{p}_+ = \frac{1}{m} \sum_{i=1}^m 1_{f(x_i) = +1}
$$

Since the points are drawn i.i.d.,

$$
\mathbb{E}\big[\widehat{p}_+\big]=\frac{1}{m}\sum_{i=1}^m\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}\big[1_{f(x_i)=+1}\big]=\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}\big[1_{f(x_1)=+1}\big]=\mathop{\mathbb{E}}_{x\sim\mathcal{D}}\big[1_{f(x)=+1}\big]=p_+.
$$

Thus, by Hoeffding's inequality, for any $\epsilon > 0$,

$$
\mathbb{P}[|p_+ - \widehat{p}_+| > \epsilon] \le 2e^{-2m\epsilon^2}.
$$

Setting δ to match the right-hand side yields the result.

C Learning in the presence of noise

- 1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case where the training points received by the learner are subject to the following noise: points negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped to negative with probability $\eta \in (0, \frac{1}{2})$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$. Show that the algorithm described in class returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles in the presence of this noise. To do so, you can proceed using the following steps:
	- (a) Using the notation of the lecture slides, assume that $\mathbb{P}[R] > \epsilon$. Suppose that $R(R') > \epsilon$. Give an upper bound on the probability that R' misses a region r_j , $j \in [1, 4]$ in terms of ϵ and η '?
	- (b) Use that to give an upper bound on $\mathbb{P}[R(\mathbb{R}') > \epsilon]$ in terms of ϵ and η' and conclude by giving a sample complexity bound.

Solution:

1. (a) The probability that R' misses region r_j is the product of the probability p for each point x_i of the training sample to either not fall in r_j or be positive and fall in r_j with the label flipped to negative due to noise.

$$
p = \mathbb{P}[x \notin r_j \lor (x \in r_j \land x \text{ positive} \land \text{ label of } x \text{ flipped})]
$$

\n
$$
= \mathbb{P}[x \notin r_j \lor (x \in r_j \land \text{ label of } x \text{ flipped})]
$$

\n
$$
= \mathbb{P}[x \notin r_j] + \mathbb{P}[(x \in r_j \land \text{ label of } x \text{ flipped})]
$$

\n
$$
= (1 - \mathbb{P}[x \in r_j]) + \eta \mathbb{P}[x \in r_j]
$$

\n
$$
= (1 - \eta)(1 - \mathbb{P}[x \notin r_j]) + \eta
$$

\n
$$
\leq (1 - \eta)(1 - \epsilon/4) + \eta
$$

\n
$$
= (1 - \epsilon/4) + \eta \epsilon/4 \leq 1 - \epsilon(1 - \eta')/4.
$$

(b) The probability that $\mathbb{P}[R(\mathbf{R}') > \epsilon]$ is upper bounded by the probability that R' misses at least one region r_i . Thus, by the union bound,

$$
\mathbb{P}[R(\mathbf{R}') > \epsilon] \le 4(1 - \epsilon(1 - \eta')/4)^m \le 4e^{-m\epsilon(1 - \eta')/4}.
$$

Setting δ to match the upper bound leads to the following: with probability at least $1 - \delta$, for $m \geq \frac{4}{(1-\eta')\epsilon} \log \frac{4}{\delta}, R(R') \leq \epsilon.$