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A Probability tools

1. Let f:(0,+00) - R, be a function that admits an inverse f~*, and let X be a random variable. Suppose
that for all ¢ > 0, the probability that X exceeds t is bounded by f(t), i.e., P[X >t] < f(¢). Prove that
for any ¢ > 0, with probability at least 1 - §, the random variable X satisfies X < f~1(9).

2. Let Z be a discrete random variable that takes non-negative integer values. Prove that E[Z] =
Yus1 P[Z 2 n]. Hint: express P[Z =n] as P[Z 2n]-P[Z 2n+1].

Solution:

1. For any 6 > 0, let ¢ = f~1(d). Plugging this in P[X > t] < f(t) yields P[X > f71(§)] < 4, that is
PIX < f1(6)]>1-0.

2. We assume that Z is a bounded random variable to avoid any convergence issues (although the state-
ment is still true in the general case).

By definition of expectation and using the hint, we can write

E[Z]= > nP[Z=n]=) n(P[Z>n]-P[Z>n+1]).

n>0 n>1

Note that in this sum, for n > 1, P[Z > n] is added n times and subtracted n — 1 times, thus E[Z] =
Yrs1 P[Z 2 n].

More generally, by definition of the Lebesgue integral, for any non-negative random variable Z, the
following identity holds:

E[Z] = fOWP[Zzt] dt.

B Label bias

1. Let D be a distribution over X, and let f:X — {-1,+1} be a labeling function. Our goal is to approxi-
mate the label bias of the distribution D, denoted by p., which is defined as:

pe= B [f(2)=+1].

Let S be a labeled sample of size m, drawn i.i.d. from D. Using S, derive an estimate p, of p,. Show
that for any § > 0, with probability at least 1 -, the following inequality holds:

R [log(2/0
Ip+ — 4| < %'

Justify each step of the proof carefully.

Solution:
1. Let P be the fraction of positively labeled points in S = (x1,...,%m):
1 m

Dy = % ; 1f(gc,-):+1



Since the points are drawn i.i.d.,
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E[p:] = — 2 I,[%m[lf(m,;)=+1] = I%m[lf(:cl)=+1] = Eﬂ[lf(z)=+1] =D
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Thus, by Hoeffding’s inequality, for any € > 0,
Pllp, - | > €] < 2e727€.

Setting § to match the right-hand side yields the result.

Learning in the presence of noise

. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider

now the case where the training points received by the learner are subject to the following noise: points
negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped
to negative with probability 7 € (0, %) The exact value of the noise rate 7 is not known to the learner
but an upper bound 7’ is supplied to him with n < n’ < 1/2. Show that the algorithm described in class
returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles
in the presence of this noise. To do so, you can proceed using the following steps:

(a) Using the notation of the lecture slides, assume that P[R] > e. Suppose that R(R’) > e. Give an
upper bound on the probability that R’ misses a region r;, j € [1,4] in terms of € and 7'?

(b) Use that to give an upper bound on P[R(R’) > €] in terms of € and n’ and conclude by giving a
sample complexity bound.

Solution:

1.

(a) The probability that R’ misses region r; is the product of the probability p for each point z; of
the training sample to either not fall in r; or be positive and fall in r; with the label flipped to
negative due to noise.

p
grjv(zer; A label of z flipped)]

¢r;1+P[(zer; A label of x flipped)]
=(1-Plzer;])+nPlzer;]
=(1-n)(1-Plzé¢r;])+n
<(A-n)(1-¢/4)+7
=(1-¢/4)+nefd<1-€e(1-7")/4.

Plz ¢ rj v (x er; Az positive A label of x flipped)]
Pl
Plz

(b) The probability that P[R(R') > €] is upper bounded by the probability that R’ misses at least
one region r;. Thus, by the union bound,

PLR(R') > €] <4(1- (1~ n')/4)m < de-meQi=n)/4

Setting 6 to match the upper bound leads to the following: with probability at least 1 -4, for

m> g log 5, R(R) <e.



