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A VC dimension

1. VC-dimension of axis-aligned hyper-rectangles. What is the VC-dimension of axis-aligned hyperrect-
angles in R3?

2. VC-dimension of union of two intervals. What is the VC-dimension of subsets of the real line formed
by the union of two intervals?

3. VC-dimension of spheres. What is the VC-dimension of the set of all spheres centered at zero in Rn?

B Generalization bound based on covering numbers

1. Let H be a family of functions mapping X to a subset of real numbers Y ⊆ R. For any ϵ > 0, the
covering number N(H, ϵ) of H for the L∞ norm is the minimal k ∈ N such that H can be covered with
k open balls of radius ϵ, that is, there exists {h1, . . . , hk} ⊆H such that, for all h ∈H, there exists i ≤ k
with ∥h − hi∥∞ = maxx∈X ∣h(x) − hi(x)∣ ≤ ϵ. In particular, when H is a compact set, a finite covering
can be extracted from a covering of H with balls of radius ϵ and thus N(H, ϵ) is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering
number, the richer is the family of functions. The objective of this problem is to illustrate this by
proving a learning bound in the case of the squared loss. Let D denote a distribution over X × Y

according to which labeled examples are drawn. Then, the generalization error of h ∈ H for the
squared loss is defined by R(h) = E(x,y)∼D[(h(x) − y)2] and its empirical error for a labeled sample

S = ((x1, y1), . . . , (xm, ym)) by R̂S(h) =
1
m ∑

m
i=1(h(xi) − yi)

2. We will assume that H is bounded, that
is there exists M > 0 such that ∣h(x) − y∣ ≤M for all (x, y) ∈ X × Y. The following is the generalization
bound proven in this problem:

P
S∼Dm

[ sup
h∈H
∣R(h) − R̂S(h)∣ ≥ ϵ] ≤ N(H,

ϵ

8M
)2 exp (

−mϵ2

2M4
) . (1)

The proof is based on the following steps.

(a) Let LS(h) = R(h) − R̂S(h), then show that for all h1, h2 ∈ H and any labeled sample S, the
following inequality holds:

∣LS(h1) −LS(h2)∣ ≤ 4M∥h1 − h2∥∞ .

(b) Assume that H can be covered by k subsets B1, . . . ,Bk, that is H = B1 ∪ . . . ∪Bk. Then, show
that, for any ϵ > 0, the following upper bound holds:

P
S∼Dm

[ sup
h∈H
∣LS(h)∣ ≥ ϵ] ≤

k

∑
i=1

P
S∼Dm

[ sup
h∈Bi

∣LS(h)∣ ≥ ϵ] .

(c) Finally, let k = N(H, ϵ
8M
) and let B1, . . . ,Bk be balls of radius ϵ/(8M) centered at h1, . . . , hk

covering H. Use part (a) to show that for all i ∈ [k],

P
S∼Dm

[ sup
h∈Bi

∣LS(h)∣ ≥ ϵ] ≤ P
S∼Dm

[∣LS(hi)∣ ≥
ϵ

2
] ,

and apply Hoeffding’s inequality (theorem D.2) to prove (1).
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C Generalization bound for Lipschitz functions

1. Let (E,ρ) be a metric space and consider a set F ⊂ E. From the previous problem, we know that for
any ϵ > 0, the covering number N(F, ϵ) of F is the minimal k ∈ N such that F can be covered with
k open balls of radius ϵ. We now define the packing number M(F, ϵ) of F as the maximal k ∈ N for
which there exists a finite set P ⊂ F of size k that is ϵ-separated, that is, for all distinct p, p′ ∈ P , we
have ρ(p, p′) > ϵ.

(a) Show that for any metric, the ϵ-packing number is lower bounded by the ϵ-covering number:

M(F, ϵ) ≥ N(F, ϵ).

(b) Show that for any metric, a d-dimensional ball B of radius r can be covered by (3r/ϵ)d balls of
radius ϵ < r.

(c) Let G = {gθ ∶Z → [0,1] ∣ θ ∈ Rd, ∥θ∥ ≤ 1} be a class of functions parameterized by θ ∈ Rd, ∥θ∥ ≤ 1,
that is µ-Lipschitz in the following sense: ∥gθ − gθ′∥∞ ≤ µ∥θ − θ′∥, where the norm ∥⋅∥ on Rd is
arbitrary. Show that N∞(G, ϵ) ≤ (3µ/ϵ)d. Hint: show that ϵ

µ
cover of the unit ball in Rd for norm

∥⋅∥ provides an ϵ cover of G: N∞(G, ϵ) ≤ N∥⋅∥(B(0,1), ϵ
µ
).

(d) Using the generalization bound based on covering numbers from the problem above, derive a
generalization bound specifically for Lipschitz functions.
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