Mehryar Mohri Foundations of Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 October 08, 2024 Due: October 22, 2024

A VC dimension

- 1. VC-dimension of axis-aligned hyper-rectangles. What is the VC-dimension of axis-aligned hyperrectangles in \mathbb{R}^3 ?
- 2. VC-dimension of union of two intervals. What is the VC-dimension of subsets of the real line formed by the union of two intervals?
- 3. VC-dimension of spheres. What is the VC-dimension of the set of all spheres centered at zero in \mathbb{R}^n ?

B Generalization bound based on covering numbers

1. Let $\mathcal H$ be a family of functions mapping $\mathcal X$ to a subset of real numbers $\mathcal Y \subseteq \mathbb R$. For any $\epsilon > 0$, the covering number $\mathcal{N}(\mathcal{H}, \epsilon)$ of $\mathcal H$ for the L_{∞} norm is the minimal $k \in \mathbb{N}$ such that $\mathcal H$ can be covered with k open balls of radius ϵ , that is, there exists $\{h_1, \ldots, h_k\} \subseteq \mathcal{H}$ such that, for all $h \in \mathcal{H}$, there exists $i \leq k$ with $||h - h_i||_{\infty} = \max_{x \in \mathcal{X}} |h(x) - h_i(x)| \le \epsilon$. In particular, when H is a compact set, a finite covering can be extracted from a covering of $\mathcal H$ with balls of radius ϵ and thus $\mathcal N(\mathcal H,\epsilon)$ is finite.

Covering numbers provide a measure of the complexity of a class of functions: the larger the covering number, the richer is the family of functions. The objective of this problem is to illustrate this by proving a learning bound in the case of the squared loss. Let D denote a distribution over $\mathfrak{X} \times \mathfrak{Y}$ according to which labeled examples are drawn. Then, the generalization error of $h \in \mathcal{H}$ for the squared loss is defined by $R(h) = \mathbb{E}_{(x,y)\sim \mathcal{D}}[(h(x)-y)^2]$ and its empirical error for a labeled sample $S = ((x_1, y_1), \ldots, (x_m, y_m))$ by $\widehat{R}_S(h) = \frac{1}{m} \sum_{i=1}^m (h(x_i) - y_i)^2$. We will assume that $\mathcal H$ is bounded, that is there exists $M > 0$ such that $|h(x) - y| \leq M$ for all $(x, y) \in \mathcal{X} \times \mathcal{Y}$. The following is the generalization bound proven in this problem:

$$
\mathbb{P}_{S \sim \mathcal{D}^m} \Big[\sup_{h \in \mathcal{H}} |R(h) - \widehat{R}_S(h)| \ge \epsilon \Big] \le \mathcal{N}\Big(\mathcal{H}, \frac{\epsilon}{8M}\Big) 2 \exp\Big(\frac{-m\epsilon^2}{2M^4}\Big). \tag{1}
$$

The proof is based on the following steps.

(a) Let $L_S(h) = R(h) - \widehat{R}_S(h)$, then show that for all $h_1, h_2 \in \mathcal{H}$ and any labeled sample S, the following inequality holds:

$$
|L_S(h_1) - L_S(h_2)| \le 4M ||h_1 - h_2||_{\infty}.
$$

(b) Assume that H can be covered by k subsets B_1, \ldots, B_k , that is $H = B_1 \cup \ldots \cup B_k$. Then, show that, for any $\epsilon > 0$, the following upper bound holds:

$$
\mathop{\mathbb{P}}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{H}} |L_S(h)| \ge \epsilon \right] \le \sum_{i=1}^k \mathop{\mathbb{P}}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right].
$$

(c) Finally, let $k = \mathcal{N}(\mathcal{H}, \frac{\epsilon}{8M})$ and let $\mathcal{B}_1, \ldots, \mathcal{B}_k$ be balls of radius $\epsilon/(8M)$ centered at h_1, \ldots, h_k covering \mathcal{H} . Use part (a) to show that for all $i \in [k]$,

$$
\mathop{\mathbb{P}}_{S \sim \mathcal{D}^m} \left[\sup_{h \in \mathcal{B}_i} |L_S(h)| \ge \epsilon \right] \le \mathop{\mathbb{P}}_{S \sim \mathcal{D}^m} \left[|L_S(h_i)| \ge \frac{\epsilon}{2} \right],
$$

and apply Hoeffding's inequality (theorem D.2) to prove (1).

C Generalization bound for Lipschitz functions

- 1. Let (E, ρ) be a metric space and consider a set $F \subset E$. From the previous problem, we know that for any $\epsilon > 0$, the *covering number* $\mathcal{N}(F, \epsilon)$ of F is the minimal $k \in \mathbb{N}$ such that F can be covered with k open balls of radius ϵ . We now define the packing number $\mathcal{M}(F,\epsilon)$ of F as the maximal $k \in \mathbb{N}$ for which there exists a finite set $P \subset F$ of size k that is ϵ -separated, that is, for all distinct $p, p' \in P$, we have $\rho(p, p') > \epsilon$.
	- (a) Show that for any metric, the ϵ -packing number is lower bounded by the ϵ -covering number:

$$
\mathcal{M}(F,\epsilon) \ge \mathcal{N}(F,\epsilon).
$$

- (b) Show that for any metric, a d-dimensional ball B of radius r can be covered by $(3r/\epsilon)^d$ balls of radius $\epsilon < r$.
- (c) Let $G = \{g_\theta: \mathcal{Z} \to [0,1] \mid \theta \in \mathbb{R}^d, \|\theta\| \leq 1\}$ be a class of functions parameterized by $\theta \in \mathbb{R}^d, \|\theta\| \leq 1$, that is μ -Lipschitz in the following sense: $||g_{\theta} - g_{\theta'}||_{\infty} \leq \mu ||\theta - \theta'||$, where the norm $|| \cdot ||$ on \mathbb{R}^d is arbitrary. Show that $\mathcal{N}_{\infty}(G, \epsilon) \leq (3\mu/\epsilon)^d$. Hint: show that $\frac{\epsilon}{\mu}$ cover of the unit ball in \mathbb{R}^d for norm $\|\cdot\|$ provides an ϵ cover of $G: \mathcal{N}_{\infty}(G, \epsilon) \leq \mathcal{N}_{\|\cdot\|}(B(0, 1), \frac{\epsilon}{\mu}).$
- (d) Using the generalization bound based on covering numbers from the problem above, derive a generalization bound specifically for Lipschitz functions.