Mehryar Mohri Foundations of Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 Sep 17, 2024

Due: October 01, 2024

A Probability tools

- 1. Let $f:(0,+\infty) \to \mathbb{R}_+$ be a function that admits an inverse f^{-1} , and let X be a random variable. Suppose that for all t > 0, the probability that X exceeds t is bounded by f(t), i.e., $\mathbb{P}[X > t] \le f(t)$. Prove that for any $\delta > 0$, with probability at least 1δ , the random variable X satisfies $X \le f^{-1}(\delta)$.
- 2. Let Z be a discrete random variable that takes non-negative integer values. Prove that $\mathbb{E}[Z] = \sum_{n\geq 1} \mathbb{P}[Z\geq n]$. Hint: express $\mathbb{P}[Z=n]$ as $\mathbb{P}[Z\geq n] \mathbb{P}[Z\geq n+1]$.

B Label bias

1. Let \mathcal{D} be a distribution over \mathcal{X} , and let $f: \mathcal{X} \to \{-1, +1\}$ be a labeling function. Our goal is to approximate the label bias of the distribution \mathcal{D} , denoted by p_+ , which is defined as:

$$p_+ = \mathbb{P}_{x \sim \mathcal{D}}[f(x) = +1].$$

Let S be a labeled sample of size m, drawn i.i.d. from \mathcal{D} . Using S, derive an estimate \hat{p}_+ of p_+ . Show that for any $\delta > 0$, with probability at least $1 - \delta$, the following inequality holds:

$$|p_+ - \hat{p}_+| \le \sqrt{\frac{\log(2/\delta)}{2m}}.$$

Justify each step of the proof carefully.

C Learning in the presence of noise

- 1. In Lecture 2, we showed that the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case where the training points received by the learner are subject to the following noise: points negatively labeled are unaffected by noise but the label of a positive training point is randomly flipped to negative with probability $\eta \in (0, \frac{1}{2})$. The exact value of the noise rate η is not known to the learner but an upper bound η' is supplied to him with $\eta \leq \eta' < 1/2$. Show that the algorithm described in class returning the tightest rectangle containing positive points can still PAC-learn axis-aligned rectangles in the presence of this noise. To do so, you can proceed using the following steps:
 - (a) Using the notation of the lecture slides, assume that $\mathbb{P}[R] > \epsilon$. Suppose that $R(R') > \epsilon$. Give an upper bound on the probability that R' misses a region r_j , $j \in [1, 4]$ in terms of ϵ and η' ?
 - (b) Use that to give an upper bound on $\mathbb{P}[R(R') > \epsilon]$ in terms of ϵ and η' and conclude by giving a sample complexity bound.