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A. Kernel PCA

Read the Dimensionality Reduction Chapter 15 in the course textbook Foundations of ML with a focus
on PCA and Kernel PCA. Sections 15.1 and 15.2 are recommended. In this problem we will analyze a
hypothesis set based on KPCA projection. Let K(x, y) be a kernel function, ΦK(x) be its corresponding
feature map and S = {x1, . . . , xm} be a sample of m points. When Π is the rank-r KPCA projection, we
define the (regularized) hypothesis set of linear separators in the RKHS H of kernel K as

H = {x↦ ⟨w,ΠΦK(x)⟩H∶ ∥w∥H ≤ 1}. (1)

This hypothesis set essentially means that the input data is projected onto a smaller dimensional subspace of
the RKHS before fitting a separation hyperplane. This problem will show that we can use the eigenvectors
and eigenvalues of the sample kernel matrix to give a closed form expression for the functions h ∈H without
a need for explicit representation of the RKHS itself.

Let K be the sample kernel matrix for kernel K evaluated on m points of sample S, that is Ki,j =
K(xi, xj). Let λ1, . . . , λr be the top r (nonzero) eigenvalues of K with the corresponding eigenvectors
v1, . . . ,vr. Denote the j-th element of vector vi as [vi]j . Follow the subproblems below to derive the
explicit representation of h ∈H.

1. Assume that the feature maps ΦK(x) are centered on sample S and recall that the sample covariance
operator is Σ = ∑m

i=1
1
m
ΦK(xi)ΦK(xi)⊺. Prove that h(x) = ∑r

i=1 αi⟨ui,ΦK(x)⟩H for some αi ∈ R, where
u1, . . . ,ur are the eigenvectors of Σ corresponding to its top r eigenvalues.

Solution: This is a direct application of the orthonormal basis u1, . . . ,ur.

h(x) = ⟨w,UrU
⊺
rΦK(x)⟩H

= ⟨w,
r

∑
i=1

uiu
⊺
iΦK(x)⟩

H

=
r

∑
i=1

⟨w,ui⟩H⟨ui,ΦK(x)⟩H.

Denoting αi = ⟨w,ui⟩H, we obtain the solution.

2. Prove that ui =X vi√
λi
, where X = [ΦK(x1), . . . ,ΦK(xm)].

Solution: For more details see Ch15, Section 15.2 of the textbook. The eigenvalue-eigenvector equa-
tion for Σ is

Σui = γiui.

Substituting Σ = 1
m
XX⊺ and ui = Xwi for some wi ∈ Rm since ui belongs to the span of X =

[ΦK(x1), . . . ,ΦK(xm)]. Also multiplying by X⊺ from the left, we get

1

m
(X⊺X)(X⊺X)wi = γi(X⊺X)wi.

Divide both sides by m,

( 1
m
K)

2

wi =
γi
m
Kwi.

It can be shown that the solution to the equation above is wi = vi√
λi
, which directly leads to ui =X vi√

λi
.
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3. Using the result above, prove that any function h ∈H can be represented as

h(x) =
r

∑
i=1

m

∑
j=1

αi√
λi

K(xj , x)[vi]j ,

for some αi ∈ R.

Solution:

⟨ui,ΦK(x)⟩H = Φ
⊺
K(x)X

vi√
λi

= 1√
λi

m

∑
j=1

K(xj , x)[vi]j .

Substituting the above in the result from part 1 provides the final expression for h(x).

4. Bonus question: derive the Rademacher complexity bound on the hypothesis set H defined in this
problem.

Solution: Use the standard techniques for deriving generalization bounds described in this course,
as well as Cauchy-Schwarz inequality and Jensen’s inequality. For example, one can derive an upper

bound O(
√

Tr(K)
m
) and even tighter one O(

√
∑

r
i=1 λi

m
).

B. Boosting

1. Implement AdaBoost with boosting stumps and apply the algorithm to the spambase dataset

http://archive.ics.uci.edu/ml/datasets/Spambase.

Download a shuffled version of that dataset (will be sent by email). Scale the features of all the data.
Use the first 3450 examples for training, the last 1151 for testing. The scaling parameters should be
computed only on the training data and then applied to the test data.

Consider the binary classification that consists of predicting if the e-mail message is a spam using
the 57 features. Randomly split the training data into ten equal-sized disjoint sets. Plot the average
cross-validation error plus or minus one standard deviation as a function of the number of rounds of
boosting T by selecting the value of this parameter out of {10,102, . . . ,10k} for a suitable value of k.
Let T ∗ be the best value found for the parameter. Plot the error on the training and test set as a
function of the number of rounds of boosting for t ∈ [1, T ∗].

Solution: For the average cross-validation error, it should first decrease and eventually level out after
roughly 400 iterations.

The test error should eventually level off, while the training error continues to decrease towards zero.

2. Consider the following variant of the classification problem where, in addition to the positive and
negative labels +1 and −1, points may be labeled with 0. This can correspond to cases where the true
label of a point is unknown, a situation that often arises in practice, or more generally to the fact that
the learning algorithm incurs no loss for predicting −1 or +1 for such a point. Let X be the input space
and let Y = {−1,0,+1}. As in standard binary classification, the loss of f ∶X→ R on a pair (x, y) ∈ X×Y
is defined by 1yf(x)<0.

Consider a sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and a hypothesis set H of base functions
taking values in {−1,0,+1}. For a base hypothesis ht ∈H and a distribution Dt over indices i ∈ [1,m],
define ϵst for s ∈ {−1,0,+1} by ϵst = Ei∼Dt[1yiht(xi)=s].

(a) Derive a boosting-style algorithm for this setting in terms of ϵst s, using the same objective function
as that of AdaBoost. You should carefully justify the definition of the algorithm.

2



Solution: Say a ‘boosting-style algorithm’ is just AdaBoost with a possibly different step size
αt. Recall these definitions from the description of AdaBoost: The final hypothesis is f(x) =
∑t αtht(x) and the normalization constant in round t is Zt = ∑iDt(i) exp(−αtyiht(xi)). We
proved in class that

1

m
∑
i

1yif(xi)<0 ≤
1

m
∑
i

exp(−yif(xi)) =∏
t

Zt

and that AdaBoost’s step size can be derived by minimizing this objective in each round t. Taking
that same approach, observe that

Zt =∑
i

Dt(i) exp(−αtyiht(xi)) = ϵ0t + ϵ−t exp(αt) + ϵ+t exp(−αt).

Differentiating the right-hand side with respect to αt and setting equal to zero shows that Zt is

minimized by letting αt = 1
2
log ( ϵ

+

t

ϵ−t
).

(b) What is the weak learning condition in this setting?

Solution: One possible assumption is
ϵ+t−ϵ

−

t√
1−ϵ0t
≥ γ > 0. Informally, this assumption says that the

difference between the accuracy and error of each weak hypothesis is non-negligible relative to
the fraction of examples on which the hypothesis makes any prediction at all. In part (d) we will
prove that this assumption suffices to drive the training error to zero.

(c) Write the full pseudocode of the algorithm.

Solution:

1. Given: Training examples ((x1, y1), . . . , (xm, ym)).
2. Initialize D1 to the uniform distribution on training examples.

3. for t = 1, . . . , T :
a. ht ← base classifier in H with small error ϵ−t − ϵ+t .
b. αt ← 1

2
log ( ϵ

+

t

ϵ−t
).

c. For each i = 1, . . . ,m: Dt+1(i)← Dt(i) exp(−αtyiht(xi))

Zt
, where Zt ← ∑iDt(i) exp(−αtyiht(xi))

is the normalization constant.

i. f ← ∑T
t=1 αtht.

4. Return: sign(f).
(d) Give an upper bound on the training error of the algorithm as a function of the number of rounds

of boosting and ϵst s.

Solution: Plug in the value of αt from part (a) into Zt = ϵ0t + ϵ−t exp(αt)+ ϵ+t exp(−αt) to obtain
Zt = ϵ0t + 2

√
ϵ−t ϵ
+
t . Therefore

1

m
∑
i

1yif(xi)<0 ≤∏
t

Zt =∏
t

(ϵ0t + 2
√
ϵ−t ϵ
+
t ) .

Morever, if the weak learning condition from part (b) is satisfied then

ϵ0t + 2
√
ϵ−t ϵ
+
t = ϵ0t +

√
(1 − ϵ0t )2 − (ϵ+t − ϵ−t )2

= ϵ0t + (1 − ϵ0t )
¿
ÁÁÀ1 − (ϵ

+
t − ϵ−t )2
(1 − ϵ0t )2

≤
¿
ÁÁÀ1 − (ϵ

+
t − ϵ−t )2
1 − ϵ0t

≤
√
1 − γ2.
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The first equality follows from (ϵ+t + ϵ−t )2 − (ϵ+t − ϵ−t )2 = 4ϵ+t ϵ−t (just multiply and gather terms) and
ϵ+t + ϵ−t = 1 − ϵ0t . The first inequality follows from the fact that square root is concave on [0,∞),
and thus λ

√
x + (1 − λ)√y ≤

√
λx + (1 − λ)y for λ ∈ [0,1]. The last inequality follows from the

weak learning condition.

Therefore we have 1
m ∑i 1yif(xi)<0 ≤ (

√
1 − γ2)

T
≤ exp (−γ2T

2
), where we used 1 + x ≤ exp(x).

3. Let X be the input space and Y = {−1,+1} the binary label space. Consider the exponential loss used
in AdaBoost: ℓ(h,x, y) = exp(−yh(x)). Given a distribution D over X × Y, the Bayes error for the
exponential loss ℓ is defined as the infimum of the errors achieved by measurable functions h∶X→ R:

R∗ℓ = inf
h∶X→R measurable

Rℓ(h),

where Rℓ(h) = E(x,y)∼D[ℓ(h,x, y)]. A hypothesis hexp with Rℓ(hexp) = R∗ℓ is called a Bayes optimal
solution. Define η(x) = P[y = +1∣x].

(a) Give the expression of the Bayes optimal solution hexp for the exponential loss in terms of η(x).

Solution: By the definition, Rℓ(h) can be expressed as follows:

Rℓ(h) = E
(x,y)∼D

[exp(−yh(x))]

= E
x
E
y∣x
[exp(−yh(x))]

= E
x
[η(x) exp(−h(x)) + (1 − η(x)) exp(h(x))]

≥ E
x
[2
√
η(x)(1 − η(x))],

where the equality holds if and only if for any x ∈ X, we have h(x) = 1
2
log( η(x)

1−η(x)
). Therefore,

R∗ℓ = Ex[2
√
η(x)(1 − η(x))] is the Bayes error for the exponential loss and hexp∶x↦ 1

2
log( η(x)

1−η(x)
)

is the Bayes optimal solution.

(b) Define the generalization error and the Bayes error for the binary classification loss as follows:

R(h) = E
(x,y)∼D

[1sign(h(x))≠y], R∗ = inf
h∶X→R measurable

R(h),

where sign(t) = 1t≥0 − 1t<0. Show that R(hexp) = R∗.

Solution: By the definition, R(h) can be expressed as follows:

R(h) = E
(x,y)∼D

[1sign(h(x))≠y]

= E
x
E
y∣x
[1sign(h(x))≠y]

= E
x
[η(x)1h(x)<0 + (1 − η(x))1h(x)≥0]

≥ E
x
[min{η(x),1 − η(x)}],

where the equality holds if and only if for any x ∈ X, sign(h(x)) = sign(η(x) − 1/2). Since for any
x ∈ X, sign(hexp(x)) = sign(η(x) − 1/2), we prove that R(hexp) = R∗.
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