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A. Radmacher complexity

1. Consider the class of functions H mapping from R to {+1,−1} such that

h(x) =

⎧⎪⎪
⎨
⎪⎪⎩

+1 for x ∈ [a, b],

−1 otherwise ,

for some a, b ∈ R. Use Sauer’s lemma to give an upper bound on the growth function ΠH(m) and prove
that the upper bound is tight in this example. Use it to derive an upper bound on Rm(H).

Solution: The VC-dimension of the hypothesis class of intervals on the real line is 2. Therefore, by
Sauer’s lemma, the following inequality holds:

ΠH(m) ≤ (
m

0
) + (

m

1
) + (

m

2
).

The above is actually an equality since we can compute the growth function as follows:

ΠH(m) = (
m + 1

2
) + 1 =

1

2
m2
+
1

2
m + 1.

The Rademacher complexity can be bounded in terms of the growth function as follows:

Rm(H) ≤

√
2 logΠH(m)

m
=

¿
Á
ÁÀ2 log( 1

2
m2 + 1

2
m + 1)

m
.

2. Prove that for any α,β ∈ R and any two hypothesis sets H1 and H2 of functions mapping from X to
R, the equality Rm(αH1 +βH2) = ∣α∣Rm(H1)+ ∣β∣Rm(H2) holds, where the linear combination of the
two hypothesis sets are defined by αH1 + βH2 = {αh1 + βh2∶h1 ∈H1, h2 ∈H2}.

Solution: Expand the definition of empirical Radmacher complexity.

3. Prove that if for two hypothesis sets H1 and H2 the inclusion H1 ⊆ H2 holds, then the following
inequality holds for any finite sample S: R̂S(H1) ≤ R̂S(H2).

Solution: Definition of Radmacher complexity and supremum over H1 is upper bounded by supre-
mum over H2.

4. Let H1 be a family of functions mapping from X to {0,1} and let H2 be a family of functions mapping
from X to {−1,+1}. Let H = {h1h2∶h1 ∈H1, h2 ∈H2}. Show that the empirical Rademacher complexity
of H for any sample S of size m can be bounded as follows:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

[hint: write h1h2 in a way such that you can apply Talagrand’s lemma.]
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Solution: Consider ϕ(x) = ∣x∣ − 1. Then, one can verify that h1h2 can be written as

h1h2 = ϕ(h1 + h2).

As ϕ is a 1-Lipschitz function, by Talagrand’s Contraction Lemma, we have

R̂S(H) ≤ R̂S(H1 +H2) = R̂S(H1) + R̂S(H2).

B. VC-dimension

1. What is the VC-dimension of axis-aligned squares in R2? Is this value the same as the VC-dimension
of squares (not necessarily axis-aligned) in R2? Why?

Solution: 3. First we prove that there exists a 3-point set such that it can be fully shattered by
axis-aligned squares. For example, suppose 3 points are vertices of an isosceles right triangle. It is easy
to see that they can be fully shattered. We also need to prove no 4-points set could be fully shattered
by axis-aligned squares. It is easy to see when 3 points are collinear, they can not be fully shattered
(for example + - +). Suppose no 3 points are collinear and mark the 4 points clockwise as A,B,C,D.
Assume ∣AC ∣ > ∣BD∣ and we can not generate both A+, B-, C+, D- and A-, B+, C-, D+.

The VC-dimension of squares (not necessarily axis-aligned) in R2 is larger, since there exists a 4-point
set that can be fully shattered by squares.

2. What is the VC-dimension of intersections of 2 axis-aligned squares in R2?

Solution: 4. Same as axis-aligned rectangles.

3. (a) For two concept classes C1,C2, define the concept class C by

C = {c1c2 ∣ c1 ∈ C1, c2 ∈ C2}.

Prove that the following inequality holds:

ΠC(m) ≤ ΠC1(m)ΠC2(m).

Solution: For any set {x1, . . . , xm} ⊂ X, it is straightforward to see that the following inequalities
hold:

∣{(c1(x1)c2(x1), ..., c1(xm)c2(xm)) ∣ c1 ∈ C1, c2 ∈ C2}∣

≤ ∣{(c1(x1), ..., c1(xm)) ∣ c1 ∈ C1}∣∣{(c2(x1), ..., c2(xm)) ∣ c2 ∈ C2}∣

≤ ΠC1(m)ΠC2(m).

Taking max on the left hand side we close the proof.

(b) Let C be a concept class whose VC-dimension is 3. Show that the VC-dimension of intersections
of k concepts from C is upper bounded by 6k log2(3k). [hint: use Sauer’s lemma and the result
of (a).]

Solution: We denote Ck as the set of intersections of k concepts from C. Then by the previous
question, we have ΠCk(m) ≤ (ΠC(m))

k for any m ∈ N. We only need to prove that (ΠC(m))
k < 2m

for m = 6k log2(3k). By Sauer’s lemma and the fact that VCdim(C) = 3 we get ΠC(m) ≤ (
em
3
)3.

Thus (ΠC(m))
k ≤ ( em

3
)3k. We substitute m by 6k log2(3k) then the inequality turns out to be

2e log2(3k) < 9k, which is trivially true.
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C. Support Vector Machines

1. (a) SVMs are “sparse” in the sense that the number of support vectors is usually small compared to
total number of observations. Suppose we explicitly maximize sparsity by penalizing the L2 norm
of the vector α that defines the weight vector w:

min
α,b,ξ

1

2
∥α∥2 +C (

m

∑
i=1

ξi) (1)

subject to yi
⎛

⎝

⎛

⎝

m

∑
j=1

αjyjxj

⎞

⎠
⋅ xi + b

⎞

⎠
≥ 1 − ξi,

ξi ≥ 0, αi ≥ 0, i ∈ [m].

Show that the problem coincides with an instance of the primal optimization problem of SVMs,
modulo the non-negativity constraint on α. You should indicate exactly how to view it as such.

Solution: Let
x′i = (y1(x1 ⋅ xi), . . . , ym(xm ⋅ xi)).

Then the optimization problem becomes

min
α,b,ξ

1

2
∥α∥2 +C (

m

∑
i=1

ξi)

subject to yi (α ⋅ x
′

i + b) ≥ 1 − ξi,

ξi ≥ 0, αi ≥ 0, i ∈ [m].

This is the standard formulation of the primal SVM optimization problem on samples (x′1, y1), . . . , (x
′

m, ym),
modulo the non-negativity constraints on αi.

(b) Derive the dual optimization problem of (1).

Solution: Define Lagrange variables pi ≥ 0, qi ≥ 0, ri ≥ 0. The Lagrangian is

L(α, b,ξ, p, q, r) =
1

2
∥α∥2 +C (

m

∑
i=1

ξi)

−
m

∑
i=1

pi

⎧⎪⎪
⎨
⎪⎪⎩

yi

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

m

∑
j=1

αjyjxj

⎞

⎠
⋅ xi + b

⎤
⎥
⎥
⎥
⎥
⎦

− 1 + ξi

⎫⎪⎪
⎬
⎪⎪⎭

−
m

∑
i=1

qiξi −
m

∑
i=1

riαi.

Note that

m

∑
i=1

pi

⎧⎪⎪
⎨
⎪⎪⎩

yi

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

m

∑
j=1

αjyjxj

⎞

⎠
⋅ xi + b

⎤
⎥
⎥
⎥
⎥
⎦

− 1 + ξi

⎫⎪⎪
⎬
⎪⎪⎭

= (
m

∑
i=1

piyixi) ⋅ (
m

∑
i=1

αiyixi) +
m

∑
i=1

piyib −
m

∑
i=1

pi +
m

∑
i=1

piξi.

Set the gradient of the Lagrangian with respect to the primal variables to zero:

∇αiL = αi − yixi ⋅
⎛

⎝

m

∑
j=1

pjyjxj

⎞

⎠
− ri = 0 ⇒ αi = yixi ⋅

⎛

⎝

m

∑
j=1

pjyjxj

⎞

⎠
+ ri

∇bL = −
m

∑
i=1

piyi = 0 ⇒
m

∑
i=1

piyi = 0

∇ξiL = C − pi − qi = 0 ⇒ pi + qi = C
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Plugging in the expression of α in L gives

L(α, b,ξ, p, q, r)

=
1

2
∥α∥2 +C (

m

∑
i=1

ξi) −
m

∑
i=1

αi(αi − ri)

−
m

∑
i=1

piyib +
m

∑
i=1

pi −
m

∑
i=1

(pi + qi)ξi −
m

∑
i=1

riαi

=
1

2
∥α∥2 −

m

∑
i=1

α2
i +

m

∑
i=1

pi

= −
1

2
∥α∥2 +

m

∑
i=1

pi

= −
1

2
∥
m

∑
i=1

piyix
′

i + r∥
2
+

m

∑
i=1

pi.

Putting everything together, the dual optimization problem is

max
p,r

m

∑
i=1

pi −
1

2
∥
m

∑
i=1

piyix
′

i + r∥
2

subject to 0 ≤ pi ≤ C ∧ ri ≥ 0 ∧
m

∑
i=1

piyi = 0, i ∈ [m].

2. Suppose we replace in the primal optimization problem of SVMs the penalty term ∑
m
i=1 ξi = ∥ξ∥1

with ∥ξ∥∞ = maxmi=1 ξi. Give the associated dual optimization problem. Show that it differs from the
standard dual optimization problem of SVMs only by the constraints, which can be expressed in terms
of ∥α∥1.

Solution: The optimization problem for this version of SVMs can be written as follows:

min
w,b,ξ

1

2
∥w∥2 +Cξ (2)

subject to yi(w ⋅ xi + b) ≥ 1 − ξ∀i ∈ [m]

ξ ≥ 0.

The corresponding Lagrange function can be written as

L =
1

2
∥w∥2 +Cξ −

m

∑
i=1

αi[yi(w ⋅ xi + b) − 1 + ξ] − βξ.

Differentiating with respect to the primal variables gives:

∇wL = 0 Ô⇒ w =
m

∑
i=1

αiyixi

∇bL = 0 Ô⇒
m

∑
i=1

αiyi = 0

∇ξL = 0 Ô⇒
m

∑
i=1

αi + β = C.

Plugging in the first equality in L and using the second and third yields:

L =
m

∑
i=1

αi −
1

2

m

∑
i,j=1

αiαjyiyj(xi ⋅ xj).
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In view of the third equality, the condition β ≥ 0 can be equivalently written as ∑
m
i=1 αi ≤ C. Thus, the

equivalent dual optimization problem can be written as

max
α

m

∑
i=1

αi −
1

2

m

∑
i,j=1

αiαjyiyj(xi ⋅ xj)

subject to (α ≥ 0) ∧ (∥α∥1 ≤ C) ∧ (
m

∑
i=1

αiyi = 0).

More generally, a ∥ ⋅ ∥p-constraint on ξ in the primal optimization problem leads to a ∥ ⋅ ∥q-constraint
(dual norm constraint) on α in the dual, where p and q are conjugate: 1/p + 1/q = 1.
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