
Mehryar Mohri
Foundations of Machine Learning 2023
Courant Institute of Mathematical Sciences
Homework assignment 1
September 12, 2023
Due: September 26, 2023

A Consistent hypotheses

We showed in class that for a finite hypothesis set H, a consistent learning algorithm A is a PAC-learning
algorithm. Here, we consider a converse question. Let Zk be a finite set of mk labeled points, for 1 ≤ k ≤ p.
Suppose that you are given a PAC-learning algorithm A. Show that you can use A and a finite training
sample S to find in polynomial time a hypothesis h ∈H that is consistent with all the p finite sets Z1, . . . ,Zp,
with high probability. [hint: you can select an appropriate distribution D and give a condition on R(h) for
h to be consistent.]

Solution: Since PAC-learning with A is possible for any distribution, let D be the uniform distribution
over the union of Zk’s, ∪

p
k=1Zk. Let m be the size of the union set ∪pk=1Zk. Note that, in that case, the cost

of an error of a hypothesis h on any point z ∈ ∪pk=1Zk is PD[z] = 1/m. Thus, if RD(h) < 1/m, we must have
RD(h) = 0 and h is consistent. Thus, choose ϵ = 1/(m + 1). Then, for any δ > 0, with probability at least
1− δ over samples S with ∣S∣ ≥ P ((m+ 1),1/δ) points (where P is some fixed polynomial) the hypothesis hS

returned by A is consistent with ∪pk=1Zk since RD(hS) ≤ 1/(m + 1) < 1/m.

B Learning unions of intervals

Give a PAC-learning algorithm for the concept class C2 formed by unions of two closed intervals, that is
[a, b]∪ [c, d], with a, b, c, d ∈ R. You should carefully describe and justify your algorithm. Extend your result
to derive a PAC-learning algorithm for the concept class Cp formed by unions of p ≥ 1 closed intervals, thus
[a1, b1]∪⋯∪[ap, bp], with ak, bk ∈ R for k ∈ [p]. What are the time and sample complexities of your algorithm
as a function of p?

Solution: Given a sample S, our algorithm consists of the following steps:

(a) Sort S in ascending order.

(b) Loop through sorted S, marking where intervals of consecutive positively labeled points begin and end.

(c) Return the union of intervals found on the previous step. This union is represented by a list of tuples
that indicate start and end points of the intervals.

This algorithms works both for p = 2 and for a general p. We will now consider the problem for C2. To
show that this is a PAC-learning algorithm we need to distinguish between two cases.

The first case is when our target concept is a disjoint union of two closed intervals: I = [a, b] ∪ [c, d].
Note, there are two sources of error: false negatives in [a, b] and [c, d] and also false positives in (b, c). False
positives may occur if no sample is drawn from (b, c). By linearity of expectation and since these two error
regions are disjoint, we have that R(hS) = RFP(hS) +RFN,1(hS) +RFN,2(hS), where

RFP(hS) = P
x∼D
[x ∈ hS , x /∈ I],

RFN,1(hS) = P
x∼D
[x /∈ hS , x ∈ [a, b]],

RFN,2(hS) = P
x∼D
[x /∈ hS , x ∈ [c, d]].

1

Since we need to have that at least one of RFP(hS), RFN,1(hS), RFN,2(hS) exceeds ϵ/3 in order for R(hS) > ϵ,
by union bound

P(R(hS) > ϵ) ≤ P(RFP(hS) > ϵ/3 or RFN,1(hS) > ϵ/3 or RFN,2(hS) > ϵ/3)

≤ P(RFP(hS) > ϵ/3) +
2

∑
i=1

P(RFN,i(hS) > ϵ/3). (1)

We first bound P(RFP(hS) > ϵ/3). Note that if RFP(hS) > ϵ/3, then P((b, c)) > ϵ/3 and hence

P(RFP(hS) > ϵ/3) ≤ (1 − ϵ/3)
m
≤ e−mϵ/3.

Now we can bound P(RFN,i(hS) > ϵ/3) by 2e−mϵ/6 using the same argument as in the previous question.
Therefore,

P(R(hS) > ϵ) ≤ e
−mϵ/3

+ 4e−mϵ/6
≤ 5e−mϵ/6.

Setting the right-hand side to δ and solving for m yields that m ≥ 6
ϵ
log 5

δ
.

The second case that we need to consider is when I = [a, d], that is, [a, b] ∩ [c, d] ≠ ∅. In that case,
our algorithm reduces to that of learning a single [a, b] interval and it is easy to show that only m ≥ 2

ϵ
log 2

δ
samples is required to learn this concept, as with the axis-aligned rectangles case discussed in class. Therefore,
we conclude that our algorithm is indeed a PAC-learning algorithm.

Extension of this result to the case of Cp is straightforward. The only difference is that in (1), one has
two summations for p − 1 regions of false positives and 2p regions of false negatives. In that case sample

complexity is m ≥ 2(2p−1)
ϵ

log 3p−1
δ

.
Sorting step of our algorithm takes O(m logm) time and steps (b) and (c) are linear in m, which leads

to overall time complexity O(m logm).

C Rejection

We first introduce a method for testing a hypothesis h, with high probability. Fix ϵ > 0, δ > 0, and define
the sample size n by n = 32

ϵ
[log 2 + log 2

δ
]. Suppose we draw an i.i.d. sample S of size n according to some

unknown distribution D. We will say that a hypothesis h is accepted if it makes at most (3/4)ϵ errors on S
and that it is rejected otherwise. Thus, h is accepted iff R̂(h) ≤ (3/4)ϵ.

1. Assume that R(h) ≥ ϵ. Use the (multiplicative) Chernoff bound to show that in that case:

P
S∼Dn

[h is accepted] ≤
δ

4
.

Solution: By definition of acceptance,

P[h is accepted] = P[R̂S(h) ≤ (3/4)ϵ]

≤ P[R̂S(h) ≤ (3/4)R(h)] (R(h) ≥ ϵ)

≤ exp (−
n

2
R(h)(1/4)2) (Chernoff bound)

= exp (−
R(h)

ϵ
log

4

δ
) (def. of n)

≤ exp (− log
4

δ
) =

δ

4
. (R(h) ≥ ϵ).

2. Assume that R(h) ≤ ϵ/2. Use the (multiplicative) Chernoff bounds to show that in that case:

P
S∼Dn

[h is rejected] ≤
δ

4
.

2

Solution: By definition, P[h is rejected] = P[R̂S(h) ≥
3
4
ϵ]. Since R(h) ≤ ϵ/2, P[h is rejected] ≤

P[R̂S(h) ≥
3
4
ϵ ∣ R(h) = ϵ/2]. By the Chernoff bounds, we can thus write

P[h is rejected] ≤ exp (−
n

3

ϵ

2
(1/2)2) (Chernoff bound)

= exp (−
4

3
log

4

δ
) (def. of n)

≤ exp (− log
4

δ
) =

δ

4
.

D Oracle PAC learning

1. In Problem B, the learning algorithm was given p as input.

(a) Is PAC-learning possible even when p is not provided?

Solution: Argue that it is not possible in general since the union of all Cps is not PAC-learnable
(infinite VC-dimension).

Now, consider, more generally, a family of concept classes {Cs}s where Cs is the set of concepts in C

with size at most some integer s. Suppose we have a PAC-learning algorithm A that can be used for
learning any concept class Cs when s is given. Can we convert A into a PAC-learning algorithm B that
does not require the knowledge of s? This is the main objective of the rest of this problem.
To do so, we will use the definitions and results introduced in the previous problem.
Assume that the target concept belongs to some class Cs, with s unknown to the learner. Algorithm B
is then defined as follows: we start with i = 1 and, at each round i ≥ 1, we guess the parameter size s
to be s̃ = ⌊2(i−1)/ log

2
δ ⌋. We draw a sample S of size n = 32

ϵ
[i log 2 + log 2

δ
] (which depends on i) to test

the hypothesis hi returned by A when it is trained with a sample of size SA(ϵ/2,1/2, s̃), that is the
sample complexity of A for a required precision ϵ/2, confidence 1/2, and size s̃ (we ignore the size of the
representation of each example here). If hi is accepted, the algorithm stops and returns hi, otherwise
it proceeds to the next iteration.

(b) Show that if at iteration i, the estimate s̃ is larger than or equal to s, then P[hi is accepted] ≥ 3/8.

Solution: The estimate s̃ is then an upper bound on s and thus, by definition of algorithm B,
P[R(hi) ≤ ϵ/2] ≥ 1/2. If a hypothesis hi has error at most ϵ/2 it is rejected with probability at
most δ/2i+1 ≤ δ/4 ≤ 1/4, therefore, it is accepted with probability at least 3/4. Thus, for s̃ ≥ s,
P[hi is accepted] ≥ (1/2) × (3/4) = 3/8.

(c) Show that the probability that B does not halt after j = ⌈log 2
δ
/ log 8

5
⌉ iterations with s̃ ≥ s is at

most δ/2.

Solution: By the previous question, the probability that algorithm B fails to halt while s̃ ≥ s
is at most 1 − 3/8 = 5/8. Thus, the probability that it does not halt after j iterations is at most

(5/8)j ≤ (5/8)log
2
δ / log

8
5 = exp (log 2

δ
/ log 8

5
log 5

8
) = δ/2.

(d) Show that for i ≥ ⌈1 + (log2 s) log
2
δ
⌉, the inequality s̃ ≥ s holds.

3

Solution: By definition,

s̃ ≥ s ⇐⇒ ⌊2(i−1)/ log
2
δ ⌋ ≥ s

⇐⇒ 2(i−1)/ log
2
δ ≥ s

⇐⇒
i − 1

log 2
δ

≥ log2 s

⇐⇒ i ≥ 1 + (log2 s) log
2

δ

⇐⇒ i ≥ ⌈1 + (log2 s) log
2

δ
⌉.

(e) Show that with probability at least 1−δ, algorithm B halts after at most j′ = ⌈1 + (log2 s) log
2
δ
⌉+j

iterations and returns a hypothesis with error at most ϵ.

Solution: In view of the two previous questions, with probability at least 1 − δ/2, algorithm B
halts after at most j′ iterations. The probability that the hypothesis it returns be accepted while
its error is greater than ϵ is at most δ/2j

′+1 ≤ δ/2. Thus, with probability 1 − δ, the algorithm
halts and the hypothesis it returns has error at most ϵ.

4

