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A. Radmacher complexity

1. Consider the class of functions H mapping from R to {+1,−1} such that

h(x) =
⎧⎪⎪⎨⎪⎪⎩

+1 for x ∈ [a, b],
−1 otherwise ,

for some a, b ∈ R. Use Sauer’s lemma to give an upper bound on the growth function ΠH(m) and prove
that the upper bound is tight in this example. Use it to derive an upper bound on Rm(H).

2. Prove that for any α,β ∈ R and any two hypothesis sets H1 and H2 of functions mapping from X to
R, the equality Rm(αH1 +βH2) = ∣α∣Rm(H1)+ ∣β∣Rm(H2) holds, where the linear combination of the
two hypothesis sets are defined by αH1 + βH2 = {αh1 + βh2∶h1 ∈H1, h2 ∈H2}.

3. Prove that if for two hypothesis sets H1 and H2 the inclusion H1 ⊆ H2 holds, then the following
inequality holds for any finite sample S: R̂S(H1) ≤ R̂S(H2).

4. Let H1 be a family of functions mapping from X to {0,1} and let H2 be a family of functions mapping
from X to {−1,+1}. Let H = {h1h2∶h1 ∈H1, h2 ∈H2}. Show that the empirical Rademacher complexity
of H for any sample S of size m can be bounded as follows:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

[hint: write h1h2 in a way such that you can apply Talagrand’s lemma.]

B. VC-dimension

1. What is the VC-dimension of axis-aligned squares in R2? Is this value the same as the VC-dimension
of squares (not necessarily axis-aligned) in R2? Why?

2. What is the VC-dimension of intersections of 2 axis-aligned squares in R2?

3. (a) For two concept classes C1,C2, define the concept class C by

C = {c1c2 ∣ c1 ∈ C1, c2 ∈ C2}.

Prove that the following inequality holds:

ΠC(m) ≤ ΠC1(m)ΠC2(m).

(b) Let C be a concept class whose VC-dimension is 3. Show that the VC-dimension of intersections
of k concepts from C is upper bounded by 6k log2(3k). [hint: use Sauer’s lemma and the result
of (a).]
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C. Support Vector Machines

1. (a) SVMs are “sparse” in the sense that the number of support vectors is usually small compared to
total number of observations. Suppose we explicitly maximize sparsity by penalizing the L2 norm
of the vector α that defines the weight vector w:

min
α,b,ξ

1

2
∥α∥2 +C (

m

∑
i=1

ξi) (1)

subject to yi
⎛
⎝
⎛
⎝

m

∑
j=1

αjyjxj

⎞
⎠
⋅ xi + b

⎞
⎠
≥ 1 − ξi,

ξi ≥ 0, αi ≥ 0, i ∈ [m].

Show that the problem coincides with an instance of the primal optimization problem of SVMs,
modulo the non-negativity constraint on α. You should indicate exactly how to view it as such.

(b) Derive the dual optimization problem of (1).

2. Suppose we replace in the primal optimization problem of SVMs the penalty term ∑m
i=1 ξi = ∥ξ∥1

with ∥ξ∥∞ = maxmi=1 ξi. Give the associated dual optimization problem. Show that it differs from the
standard dual optimization problem of SVMs only by the constraints, which can be expressed in terms
of ∥α∥1.
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