
Mehryar Mohri
Foundations of Machine Learning 2020
Courant Institute of Mathematical Sciences
Homework assignment 2
Oct 08, 2020
Due: Oct 28, 2020 [before class starts].

A. Rademacher complexity

1. Non-negativity of empirical Rademacher complexity: Show that for
any hypothesis set H and sample S, we have R̂S(H) ≥ 0.

Solution: By the sub-additivity of supremum, we can write:

R̂S(H) =
1

m
E
σ

[
sup
h∈H

m∑
i=1

σih(xi)

]

≥ 1

m
sup
h∈H

E
σ

[
m∑
i=1

σih(xi)

]

=
1

m
sup
h∈H

m∑
i=1

E
σ

[σi]h(xi) = 0.

ut

2. Empirical Rademacher complexity of products: let H1 and H2 be
two hypothesis sets of functions mappiing from the input space X to
{0, 1}. Let H = {h1h2 : h1 ∈ H2, h2 ∈ H2}. Show that the following
inequality holds:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

Hint : you could use Talagrand’s contraction lemma.

Solution: Observe that for any h1 ∈ H1 and h2 ∈ H2, we can write
h1h2 = (h1 + h2− 1)1h1+h2−1≥0 = (h1 + h2− 1)+. Since x 7→ (x− 1)+
is 1-Lipschitz over [0, 2], by Talagrand’s lemma, the following holds:
R̂S(H) ≤ R̂S(H1 + H2) ≤ R̂S(H1) + R̂S(H2). ut

B. VC-dimension of neural networks

Let C be a concept class over Rr with VC-dimension d. A C-neural net-
work with one intermediate layer is a concept defined over Rn that can be

1

represented by a directed acyclic graph such as that of Figure 1, in which
the input nodes are those at the bottom and in which each other node is
labeled with a concept c ∈ C.

The output of the neural network for a given input vector (x1, . . . , xn)
is obtained as follows. First, each of the n input nodes is labeled with the
corresponding value xi ∈ R. Next, the value at a node u in the higher layer
and labeled with c is obtained by applying c to the values of the input nodes
admitting an edge ending in u. Note that since c takes values in {0, 1}, the
value at u is in {0, 1}. The value at the top or output node is obtained
similarly by applying the corresponding concept to the values of the nodes
admitting an edge to the output node.

1. Let H denote the set of all neural networks defined as above with
k ≥ 2 internal nodes. Show that the growth function ΠH(m) can be
upper bounded in terms of the product of the growth functions of the
hypothesis sets defined at each intermediate layer.

Solution: Let Πu(m) denote the growth function at a node u in the
intermediate layer. For a fixed set of values at the intermediate layer,
using the concept class C the output node can generate at most ΠC(m)
distinct labelings. There are

∏
u Πu(m) possible sets of values at the

intermediate layer since, by definition, for a sample of size m, at
most Πu(m) distinct values are possible at each u. Thus, at most
ΠC(m)×

∏
u Πu(m) labelings can be generated by the neural network

and ΠH(m) ≤ ΠC(m)
∏
u Πu(m). ut

2. Use that to upper bound the VC-dimension of the C-neural networks
(Hint : you can use the implicationm = 2x log2(xy)⇒ m > x log2(ym)
valid for m ≥ 1, and x, y > 0 with xy > 4).

Solution: For any intermediate node u, Πu(m) = ΠC(m). Thus, for

k̃ = k + 1, ΠH(m) ≤ ΠC(m)k̃. By Sauer’s lemma, ΠC(m) ≤
(
em
d

)d
,

thus ΠH(m) ≤
(
em
d

)dk̃
. Let m = 2k̃d log2(ek̃). In view of the inequal-

ity given by the hint and ek̃ > 4, this implies m > dk̃ log2
(
em
d

)
, that

is 2m >
(
em
d

)dk̃
. Thus, the VC-dimension of H is less than

2k̃d log2(ek̃) = 2(k + 1)d log2(e(k + 1)).

ut

2

Figure 1: A neural network with one intermediate layer.

3. Let C be the family of concept classes defined by threshold functions
C = {sgn(

∑r
j=1wjxj) : w ∈ Rr}. Give an upper bound on the VC-

dimension of H in terms of k and r.

Solution: For threshold functions, the VC-dimension of C is r, thus,
the VC-dimension of H is upper bounded by

2(k + 1)r log2(e(k + 1)).

ut

C. Support Vector Machines (SVMs)

1. Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

2. Download the abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone

Use the libsvm scaling tool to scale the features of all the data. Use
the first 3133 examples for training, the last 1044 for testing. The
scaling parameters should be computed only on the training data and
then applied to the test data.

Solution:

gunzip libsvm-3.0.tar.gz

tar xvf libsvm-3.0.tar

cd libsvm-3.0

make

3

ut

3. Download the abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone

Use the libsvm scaling tool to scale the features of all the data. Use
the first 3133 examples for training, the last 1044 for testing. The
scaling parameters should be computed only on the training data and
then applied to the test data.

Solution:

Rewrite the dataset in a libsvm compatible format,

skipping the first feature which is the Abalone’s age,

and turning the Abalone’s sex in 3 binary features.

awk -F, ’

BEGIN {

sex["M"] = "1:1 2:0 3:0";

sex["F"] = "1:0 2:1 3:0";

sex["I"] = "1:0 2:0 3:1";

}

{

class = ($NF <= 9) ? -1 : 1;

printf("%d %s", class, sex[$1]);

for (i = 2; i <= NF - 1; ++i)

printf(" %d:%s", i + 2, $i);

printf("\n");

}’ data/abalone.data.txt > output/dataset.txt

Split in training and test set.

awk ’NR <= 3133 { print; }’ data/dataset.txt \

> output/train.txt

awk ’NR > 3133 { print; }’ data/dataset.txt \

> output/test.txt

Scale training and test set.

libsvm-3.0/svm-scale -s output/scale.txt \

output/train.txt > output/train.scaled.txt

libsvm-3.0/svm-scale -r output/scale.txt \

output/test.txt > output/test.scaled.txt

ut

4. Consider the binary classification that consists of distinguishing classes
1 through 9 from the rest. Use SVMs combined with polynomial ker-
nels to tackle this binary classification problem.

4

To do that, randomly split the training data into ten equal-sized dis-
joint sets. For each value of the polynomial degree, d = 1, 2, 3, 4, plot
the average cross-validation error plus or minus one standard devia-
tion as a function of C (let other parameters of polynomial kernels
in libsvm be equal to their default values), varying C in powers of 2,
starting from a small value C = 2−k to C = 2k, for some value of k.
k should be chosen so that you see a significant variation in training
error, starting from a very high training error to a low training error.
Expect longer training times with libsvm as the value of C increases.

Solution:

Split the training data into ten equal-sized disjoint sets:

sort -R output/train.scaled.txt \

> output/train.scaled.shuffled.txt

NUM_SAMPLES=$(cat output/train.scaled.shuffled.txt \

| wc --lines)

for SPLIT in $(seq 1 10); do

awk "NR < $NUM_SAMPLES * ($SPLIT - 1) / 10.0 \

|| NR >= $NUM_SAMPLES * $SPLIT / 10.0" \

output/train.scaled.shuffled.txt \

> output/train.$SPLIT.txt

awk "NR >= $NUM_SAMPLES * ($SPLIT - 1) / 10.0 \

&& NR < $NUM_SAMPLES * $SPLIT / 10.0" \

output/train.scaled.shuffled.txt \

> output/dev.$SPLIT.txt

done

Compute accuracy for different values of C and

for degrees 1 through 4 of the polynomial kernel.

for LOG2C in $(seq -10 10); do

for DEGREE in 1 2 3 4; do

for SPLIT in $(seq 1 10); do

Train models.

C=$(python -c "print 2 ** $LOG2C")

echo "c="$C "d="$DEGREE "split="$SPLIT

libsvm-3.0/svm-train -t 1 -d $DEGREE -c $C \

output/train.$SPLIT.txt \

output/model.$LOG2C.$DEGREE.$SPLIT.txt \

> output/train.$LOG2C.$DEGREE.$SPLIT.log.txt

libsvm-3.0/svm-predict output/dev.1.txt \

output/model.$LOG2C.$DEGREE.$SPLIT.txt \

output/dev.$LOG2C.$DEGREE.$SPLIT.prediction.txt \

5

0

0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 102 103 104

C
ro

ss
 V

al
id

at
io

n
E

rr
or

C

d = 4

0

0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 102 103 104

C
ro

ss
 V

al
id

at
io

n
E

rr
or

C

d = 3

0

0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 102 103 104
C

ro
ss

 V
al

id
at

io
n

E
rr

or
C

d = 2

0

0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 102 103 104

C
ro

ss
 V

al
id

at
io

n
E

rr
or

C

d = 1

Figure 2: Mean cross validation error ± 1 standard deviation for different
degrees d of the polynomial kernel, as a function of C.

6

> output/dev.$LOG2C.$DEGREE.$SPLIT.log.txt

done

done

done

Compute mean and standard deviation

of classification accuracy.

echo -n > output/dev.results.txt

for F in output/dev.*.log.txt; do

echo $F $(cat $F) | \

sed ’s;.*\.\(.*\)\.\(.*\)\.\(.*\)\.log.* = \(.*\)%.*;\1 \2 \3 \4;’ \

| grep -v ’classification’ \

>> output/dev.results.txt;

done

awk ’{

acc = $4 / 100;

accuracy_mean[$1" "$2] += acc / 10;

accuracy_var[$1" "$2] += acc ^ 2 / (10 - 1);

}

END {

for (cond in accuracy_mean) {

mean = accuracy_mean[cond];

std = sqrt(accuracy_var[cond] - mean ^ 2 * 10 / (10 - 1));

print cond, mean, std;

}

}’ output/dev.results.txt \

| sort -n -k 3 > output/dev.results.summary.txt

Plots of the results are shown in Figure 2. The best C and d from cross-

validation are (C∗, d∗) = (1024, 3). ut

5. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation error and the test errors for the hypotheses
obtained as a function of d. Plot the average number of support vectors
obtained as a function of d. How many of the support vectors lie on
the margin hyperplanes?

Solution:

Plots for this question are shown in Figure 3. The number of support vector

on margin hyperplanes are obtained as nSV − nBSV (number of support

vectors - number of bounded support vectors). They are respectively 9, 26,

43, 48 for polynomial kernel degrees 1 through 4. ut

6. In class, we gave two types of argument in favor of the SVMs algorithm:
one based on the sparsity of the support vectors, another based on the

7

1310

1320

1330

1340

1350

1360

1370

1380

1 1.5 2 2.5 3 3.5 4

nS
V

d

Number of Support Vectors.

0.2

0.205

0.21

0.215

0.22

0.225

1 1.5 2 2.5 3 3.5 4
E

rr
or

d

Test Error

0.17

0.18

0.19

0.2

0.21

0.22

0.23

1 1.5 2 2.5 3 3.5 4

E
rr

or

d

Tenfold Cross-validation Error

Figure 3: Tenfold cross-validation and test error, and average number of
support vectors as a function of the degree d of the polynomial kernel.

8

notion of margin. Suppose that instead of maximizing the margin,
we choose instead to maximize sparsity by minimizing the norm p of
the vector α that defines the weight vector w, for some p ≥ 1. For
simplicity, fix p = 2. This gives the following optimization problem
for a kernel function K:

min
α,b

1

2

m∑
i=1

α2
i + C

m∑
i=1

ξi (1)

subject to yi

(m∑
j=1

αjyjK(xi, xj) + b
)
≥ 1− ξi, i ∈ [1,m]

ξi, αi ≥ 0, i ∈ [1,m].

(a) Show that modulo the non-negativity constraint on α, the prob-
lem coincides with an instance of the primal optimization problem
of SVMs (indicate exactly how to view it as such).

Solution: Let

x′i = (y1K(xi, x1), . . . , ymK(xi, xm)) .

Then the optimization problem becomes

min
α,b,ξ

1

2
||α||2 + C

m∑
i=1

ξi

subject to yi (α · x′i + b) ≥ 1− ξ
ξi, αi ≥ 0, i ∈ [1,m]

which is the standard formulation of the primal SVM optimization prob-

lem on samples x′i, modulo the non-negativity constraints on αi. ut
(b) Is the positive-definiteness of the kernel function K needed to

ensure that this is a convex optimization problem? Justify your
response.

Solution: Modulo the non-negativity constraints on αi, the optimiza-

tion problem in (a) is known to be convex for any set of samples x′i. Re-

stricting the domain of the problem with additional convex constraints

αi ≥ 0 preserves convexity, so the problem is convex regardless of the

positive-definiteness of K. ut
(c) Derive the dual optimization of problem of (1).

9

Solution: The Lagrangian of (1) for all αi ≥ 0, ξi ≥ 0, b, α′i ≥ 0, βi ≥
0, γi ≥ 0, i ∈ [1,m] is

L =
1

2
||α||2 +C

m∑
i=1

ξi−
m∑
i=1

α′i(yi(α
Tx′i+b)−1+ξi)−

m∑
i=1

βiξi−
m∑
i=1

γiαi

and the KKT conditions are

∇αL = 0 ⇔ α =

m∑
i=1

α′iyix
′
i + γ

∇bL = 0 ⇔
m∑
i=1

α′iyi = 0

∇ξiL = 0 ⇔ α′i + βi = C

and

α′i(yi(α
Tx′i + b)− 1− ξi) = 0

βiξi = 0

γiαi = 0.

Using the KKT conditions on L we get

L =
1

2

(
m∑
i=1

α′iyix
′
i + γ

)T  m∑
j=1

α′jyjx
′
j + γ

+ C

m∑
i=1

ξi

−
m∑
i=1

α′i

yi

 m∑
j=1

α′jyjx
′
j + γ

T

x′i + b

− 1 + ξi


−
�
�
��

m∑
i=1

βiξi −
�
�

�
�m∑

i=1

γiαi

= −1

2

m∑
i=1

α′iyix
′T
i

 m∑
j=1

α′jyjx
′
j + γ

+
�

�
�1

2
γTα

+

m∑
i=1

Cξi − α′i (yib− 1 + ξi)

=

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′T
i

(
x′j + γ

)
+

���
����m∑

i=1

(C − α′i)ξi −
�
�

�
��m∑

i=1

α′iyib.

10

Thus the dual optimization problem is

max
α′,γ

m∑
i=1

α′i −
1

2

m∑
i,j=1

α′iα
′
jyiyjx

′T
i

(
x′j + γ

)
subject to

m∑
i=1

α′iyi = 0

0 ≤ α′i ≤ C, γi ≥ 0, i ∈ [1,m]

ut
(d) Suppose we omit the non-negativity constraint on α. Use libsvm

to solve the problem. Plot the ten-fold cross-validation training
and test errors for the hypotheses obtained based on the solution
α as a function of d, for the best value of C measured on the
validation set.

Solution: New datasets of samples x′i for different degrees of the poly-

nomial kernel K can be computed e.g. with the following Matlab code.

load dataset.txt

train_set = dataset(1:3133, :);

test_set = dataset(3134:end, :);

train_labels = train_set(:, 1);

train_x = train_set(:, 2:end);

test_labels = test_set(:, 1);

test_x = test_set(:, 2:end);

dim = size(train_x, 2);

for degree = 1:4

degree

train_x_prime = ...

(train_x * (repmat(train_labels, ...

[1 dim]) .* train_x)’) ...

.^ degree + 1;

train_set_prime = [train_labels, ...

train_x_prime];

save([’train.’ num2str(degree) ’.txt’], ...

’train_set_prime’);

test_x_prime = ...

(test_x * (repmat(train_labels, ...

[1 dim]) .* train_x)’) ...

.^ degree + 1;

test_set_prime = [test_labels, ...

test_x_prime];

save([’test.’ num2str(degree) ’.txt’], ...

11

’test_set_prime’);

end

\end{lstlisting}

Training, cross-validation and testing can then be conducted ex-
actly as in question 3. of this problem. The best value of C from
cross-validation is C∗ = 1024. Resulting error rates are shown in
Figure 4.

ut

12

0.205

0.21

0.215

0.22

0.225

0.23

0.235

1 1.5 2 2.5 3 3.5 4

E
rr

or

d

Test Error

Figure 4: Test error ± one standard deviation for C∗ = 1024 as a function
of the degree d of the polynomial kernel, where training is done by solving
the optimization problem described in question 5.

13

