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A. Rademacher complexity

1. Non-negativity of empirical Rademacher complexity: Show that for
any hypothesis set H and sample S, we have R̂S(H) ≥ 0.

2. Empirical Rademacher complexity of products: let H1 and H2 be
two hypothesis sets of functions mappiing from the input space X to
{0, 1}. Let H = {h1h2 : h1 ∈ H2, h2 ∈ H2}. Show that the following
inequality holds:

R̂S(H) ≤ R̂S(H1) + R̂S(H2).

Hint : you could use Talagrand’s contraction lemma.

B. VC-dimension of neural networks

Let C be a concept class over Rr with VC-dimension d. A C-neural net-
work with one intermediate layer is a concept defined over Rn that can be
represented by a directed acyclic graph such as that of Figure 1, in which
the input nodes are those at the bottom and in which each other node is
labeled with a concept c ∈ C.

The output of the neural network for a given input vector (x1, . . . , xn)
is obtained as follows. First, each of the n input nodes is labeled with the
corresponding value xi ∈ R. Next, the value at a node u in the higher layer
and labeled with c is obtained by applying c to the values of the input nodes
admitting an edge ending in u. Note that since c takes values in {0, 1}, the
value at u is in {0, 1}. The value at the top or output node is obtained
similarly by applying the corresponding concept to the values of the nodes
admitting an edge to the output node.

1. Let H denote the set of all neural networks defined as above with
k ≥ 2 internal nodes. Show that the growth function ΠH(m) can be
upper bounded in terms of the product of the growth functions of the
hypothesis sets defined at each intermediate layer.
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Figure 1: A neural network with one intermediate layer.

2. Use that to upper bound the VC-dimension of the C-neural networks
(Hint : you can use the implicationm = 2x log2(xy)⇒ m > x log2(ym)
valid for m ≥ 1, and x, y > 0 with xy > 4).

3. Let C be the family of concept classes defined by threshold functions
C = {sgn(

∑r
j=1wjxj) : w ∈ Rr}. Give an upper bound on the VC-

dimension of H in terms of k and r.

C. Support Vector Machines (SVMs)

1. Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

2. Download the abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone

Use the libsvm scaling tool to scale the features of all the data. Use
the first 3133 examples for training, the last 1044 for testing. The
scaling parameters should be computed only on the training data and
then applied to the test data.

3. Download the abalone data set:

http://archive.ics.uci.edu/ml/datasets/Abalone

Use the libsvm scaling tool to scale the features of all the data. Use
the first 3133 examples for training, the last 1044 for testing. The
scaling parameters should be computed only on the training data and
then applied to the test data.
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4. Consider the binary classification that consists of distinguishing classes
1 through 9 from the rest. Use SVMs combined with polynomial ker-
nels to tackle this binary classification problem.

To do that, randomly split the training data into ten equal-sized dis-
joint sets. For each value of the polynomial degree, d = 1, 2, 3, 4, plot
the average cross-validation error plus or minus one standard devia-
tion as a function of C (let other parameters of polynomial kernels
in libsvm be equal to their default values), varying C in powers of 2,
starting from a small value C = 2−k to C = 2k, for some value of k.
k should be chosen so that you see a significant variation in training
error, starting from a very high training error to a low training error.
Expect longer training times with libsvm as the value of C increases.

5. Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation error and the test errors for the hypotheses
obtained as a function of d. Plot the average number of support vectors
obtained as a function of d. How many of the support vectors lie on
the margin hyperplanes?

6. In class, we gave two types of argument in favor of the SVMs algorithm:
one based on the sparsity of the support vectors, another based on the
notion of margin. Suppose that instead of maximizing the margin,
we choose instead to maximize sparsity by minimizing the norm p of
the vector α that defines the weight vector w, for some p ≥ 1. For
simplicity, fix p = 2. This gives the following optimization problem
for a kernel function K:

min
α,b

1

2

m∑
i=1

α2
i + C

m∑
i=1

ξi (1)

subject to yi

( m∑
j=1

αjyjK(xi, xj) + b
)
≥ 1− ξi, i ∈ [1,m]

ξi, αi ≥ 0, i ∈ [1,m].

(a) Show that modulo the non-negativity constraint on α, the prob-
lem coincides with an instance of the primal optimization problem
of SVMs (indicate exactly how to view it as such).

(b) Is the positive-definiteness of the kernel function K needed to
ensure that this is a convex optimization problem? Justify your
response.
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(c) Derive the dual optimization of problem of (1).

(d) Suppose we omit the non-negativity constraint on α. Use libsvm

to solve the problem. Plot the ten-fold cross-validation training
and test errors for the hypotheses obtained based on the solution
α as a function of d, for the best value of C measured on the
validation set.
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