A. Kernel PCA

Read the Dimensionality Reduction Chapter 12 in the course textbook Foundations of ML with a focus on PCA and Kernel PCA. Sections 12.1 and 12.2 are recommended. In this problem we will analyze a hypothesis set based on KPCA projection. Let $K(x, y)$ be a kernel function, $\Phi_K(x)$ be its corresponding feature map and $S = \{x_1, \ldots, x_m\}$ be a sample of m points. When Π is the rank-r KPCA projection, we define the (regularized) hypothesis set of linear separators in the RKHS \mathbb{H} of kernel K as

$$H = \left\{ x \to \langle w, \Pi \Phi_K(x) \rangle_\mathbb{H} : \|w\|_\mathbb{H} \leq 1 \right\}. \quad (1)$$

This hypothesis set essentially means that the input data is projected onto a smaller dimensional subspace of the RKHS before fitting a separation hyperplane. This problem will show that we can use the eigenvectors and eigenvalues of the sample kernel matrix to give a closed form expression for the functions $h \in H$ without a need for explicit representation of the RKHS itself.

Let K be the sample kernel matrix for kernel K evaluated on m points of sample S, that is $K_{i,j} = K(x_i, x_j)$. Let $\lambda_1, \ldots, \lambda_r$ are the top r (nonzero) eigenvalues of K with the corresponding eigenvectors v_1, \ldots, v_r. Denote the j-th element of vector v_i as $[v_i]_j$. Follow the subproblems below to derive the explicit representation of $h \in H$.

1. Assume that the feature maps $\Phi_K(x)$ are centered on sample S and recall that the sample covariance operator is $\Sigma = \sum_{i=1}^m \frac{1}{m} \Phi_K(x_i) \Phi_K(x_i)^\top$. Prove that $h(x) = \sum_{i=1}^r \alpha_i \langle u_i, \Phi_K(x) \rangle_\mathbb{H}$ for some $\alpha_i \in \mathbb{R}$, where u_1, \ldots, u_r are the eigenvectors of Σ corresponding to its top r eigenvalues.

2. Prove that $u_i = X \sqrt{\lambda_i}$, where $X = [\Phi_K(x_1), \ldots, \Phi_K(x_m)]$
3. Using the result above, prove that any function \(h \in H \) can be represented as
\[
h(x) = \sum_{i=1}^{r} \sum_{j=1}^{m} \frac{\alpha_i}{\sqrt{\lambda_i}} K(x_j, x)[v_i]_j,
\]
for some \(\alpha_i \in \mathbb{R} \).

4. Bonus question: derive the Rademacher complexity bound on the hypothesis set \(H \) defined in this problem.

B. Multi-class boosting

Lecture 10 introduces the AdaBoost.MH algorithm, which is AdaBoost for multi-class classification. (Consult with Lecture 10’s slides if you are unfamiliar with multi-class learning setting.) AdaBoost.MH is defined by objective function \(F(\alpha) \):
\[
F(\alpha) = k \sum_{l=1}^{k} \sum_{i=1}^{m} e^{-y_i[l] \sum_{t=1}^{n} \alpha_t h_t(x_i, l)},
\]
where \(y_i \in \mathcal{Y} = \{-1, +1\}^k \), and \(y_i[l] \) denotes the \(l \)-th coordinate of \(y_i \) for any \(i \in [m] \) and \(l \in [k] \). The base classifiers come from \(H = \{ h : \mathcal{X} \times [k] \rightarrow \{-1, +1\} \} \). Consider an alternative objective function for the same problem:
\[
G(\alpha) = \sum_{i=1}^{m} e^{-\frac{1}{k} \sum_{l=1}^{k} y_i[l] \sum_{t=1}^{n} \alpha_t h_t(x_i, l)}.
\]

1. Compare \(G(\alpha) \) with \(F(\alpha) \). Show that \(F(\alpha) \geq kG(\alpha) \).

2. Let \(g_n(x_i, l) = \sum_{t=1}^{n} \alpha_t h_t(x_i, l) \). Assume that \(|g_n(x_i, l)| \leq 1 \) for all \(x_i \in \mathcal{X}, l \in [k] \). Show that \(kG(\alpha) \) is a convex function upper bounding the multi-label multi-class error:
\[
\sum_{i=1}^{m} \sum_{l=1}^{k} 1_{y_i[l] \neq \text{sgn}(g_n(x_i, l))} \leq kG(\alpha).
\]

3. Drive an algorithm defined by the application of coordinate descent to \(G(\alpha) \). You should give a full description of your algorithm, including the pseudocode, details for the choice of the step and direction, as well as a generalization bound.