
Foundations of Machine Learning
Department of Computer Science, NYU
Homework assignment 1 – Solution

1. Bernstein’s Inequality [40 points]

(1) [20 bonus points]

(2) [10 points] Just a series of calculations of the derivatives starting
from:

∀x ≥ 0, f ′(x) =
(−cte−ctx + ect)(1 + x) − e−ctx − xect

(1 + x)2
1 + x

e−ctx + xect
.

This can be simplified into:

∀x ≥ 0, f ′(x) =
ect(x+1) − (ctx + ct + 1)

xect(x+1) + 1
.

The calculation of the second derivative leads to:

∀x ≥ 0, f ′′(x) = −
e2ct(x+1) + c2t2x2 + (c2t2 + 3ct)x + ct

(xect(x+1) + 1)2
≤ 0.

(3) [5 points] As already done in class in other instances, using Markov’s
inequality, for any t > 0,

Pr[X ≥ mε] = Pr[etX ≥ etmε] ≤ e−tmεE[etX ].

Using the inequality of (1) with X =
∑m

i=1 Xi leads directly the
desired inequality.

(4) [10 points] By the Taylor series expansion with remainder, there
exists θ ∈ [0, x] such that:

f(x) = f(0) + xf ′(x) +
x2

2
f ′′(θ)

By (2), f ′′(θ) ≤ 0, thus f(x) ≤ f(0) + xf ′(x).

(5) [5 points] Plugging in the expression obtained in (3) in the in-
equality of (4) gives:

Pr[
1

m

m∑

i=1

Xi ≥ ε] = exp[−mΦ(t)]
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with Φ(t) = tε − (ect − 1 − ct)σ2

c2
. It is easy to see that:

Φ′(t) ≥ 0 ⇔ t ≤ t0 =
1

c
log(1 +

εc

σ2
).

Thus, t0 is the optimal value.

(6) Replacing t by t0 leads directly to Bennett’s inequality.

(7) [5 points] It is sufficient to observe that: θ(0) = h(0) = 0, θ′(0) =
h′(0) = 0, and ∀x, θ′′(x) ≥ h′′(x).

θ′′(x) =
1

1 + x
and h′′(x) =

27

(x + 3)3

(8) [5 points] When E[Xi] = 0 and |X| ≤ c, Hoeffding’s inequality
(see also lemma proved in class) gives:

Pr[
1

m

m∑

i=1

Xi > ε] ≤ e−
mε

2

2c
2 .

For smaller values of the variance, σ2 � c2, Bernstein’s inequality
is tighter.

2. Two-Oracle Variant of PAC model [60 points]

• [20 points] Assume that C is efficiently PAC-learnable using H
in the standard PAC model using algorithm L. Consider the
distribution D = 1

2(D− + D+). Let h ∈ H be the hypothesis
output by L. Choose δ such that:

Pr[errorD(h) ≤ ε/2] ≥ 1 − δ.

From

errorD(h) = Pr
x∼D

[h(x) 6= c(x)]

=
1

2
( Pr
x∼D

−

[h(x) 6= c(x)] + Pr
x∼D+

[h(x) 6= c(x)])

=
1

2
(errorD

−

(h) + errorD+
(h)),

it follows that:

Pr[errorD
−

(h) ≤ ε] ≥ 1 − δ and Pr[errorD+
(h) ≤ ε] ≥ 1 − δ.

This implies two-oracle PAC-learning with the same computa-
tional complexity.
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• [40 points] Assume now that C is efficiently PAC-learnable in the
two-oracle PAC model. Thus, there exists a learning algorithm
L such that for c ∈ C, ε > 0, and δ > 0, there exist m− and
m+ polynomial in 1/ε, 1/δ, and size(c), such that if we draw m−

negative examples or more and m+ positive examples or more,
with confidence 1 − δ, the hypothesis h output by L verifies:

Pr[errorD
−

(h)] ≤ ε and Pr[errorD+
(h)] ≤ ε.

Now, let D be a probability distribution over negative and posi-
tive examples. If we could draw m examples according to D such
that m ≥ max {m−,m+}, m polynomial in 1/ε, 1/δ, and size(c),
then two-oracle PAC-learning would imply standard PAC-learning:

Pr[errorD(h)] ≤ Pr[errorD(h)|c(x) = 0]Pr[c(x) = 0] +
Pr[errorD(h)|c(x) = 1]Pr[c(x) = 1] ≤
ε(Pr[c(x) = 0] + Pr[c(x) = 1]) = ε.

If D is not too biased, that is if the probability of drawing a posi-
tive example, or that of drawing a negative example is more than
ε, it is not hard to show, using Chernoff bounds or just Cheby-
shev’s inequality, that drawing a polynomial number of examples
in 1/ε and 1/δ suffices to guarantee that m ≥ max {m−,m+}
with high confidence.

Otherwise, D is biased towards negative (or positive examples),
in which case returning h = h0 (respectively h = h1) guarantees
that Pr[errorD(h)] ≤ ε.

To show the claim about the not-too-biased case, let Sm denote
the number of positive examples obtained when drawing m exam-
ples when the probability of a positive example is ε. By Chernoff
bounds,

Pr[Sm ≤ (1 − α)mε] ≤ e−mεα2/2.

We want to ensure that at least m+ examples are found. With
α = 1

2 and m = 2m+

ε ,

Pr[Sm > m+] ≤ e−m+/4.

Setting the bound to be less than or equal to δ/2, leads to the
following condition on m:

m ≥ min{
2m+

ε
,
8

ε
log

2

δ
}
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A similar analysis can be done in the case of negative examples.
Thus, when D is not too biased, with confidence 1 − δ, we will
find at least m− negative and m+ positive examples if we draw
m examples, with

m ≥ min{
2m+

ε
,
2m−

ε
,
8

ε
log

2

δ
}.
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