Foundations of Machine Learning
Department of Computer Science, NYU
Homework assignment 1 — Solution

1. Bernstein’s Inequality [40 points]
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[20 bonus points]

[10 points] Just a series of calculations of the derivatives starting
from:
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This can be simplified into:
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The calculation of the second derivative leads to:
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[5 points| As already done in class in other instances, using Markov’s
inequality, for any ¢ > 0,

Pr[X > me] = Pr[e!® > ™) < e "™ E[e!].
Using the inequality of (1) with X = Y~ X; leads directly the
desired inequality.

[10 points] By the Taylor series expansion with remainder, there
exists 0 € [0, z] such that:
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By (2), f(6) <0, thus f(z) < f(0) + z f'(2).

[5 points] Plugging in the expression obtained in (3) in the in-
equality of (4) gives:

1
Pr[—
m

ZXZ- > €] = exp[—mP(t)]
i=1

1



with ®(t) = te — (e — 1 — ct)‘é—j. It is easy to see that:

1
(1) >0 &t < tg =~ log(1+ ).
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Thus, tg is the optimal value.
(6) Replacing t by ¢y leads directly to Bennett’s inequality.

(7) [5 points] It is sufficient to observe that: #(0) = h(0) =0, 6/(0) =
R'(0) =0, and Vx,0"(x) > h'(z).
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(8) [6 points] When E[X;] = 0 and |X| < ¢, Hoeffding’s inequality
(see also lemma proved in class) gives:

For smaller values of the variance, 02 < ¢?, Bernstein’s inequality
is tighter.

2. Two-Oracle Variant of PAC model [60 points]

e [20 points| Assume that C is efficiently PAC-learnable using H
in the standard PAC model using algorithm L. Consider the
distribution D = %(D_ + D.). Let h € H be the hypothesis
output by L. Choose ¢ such that:

Prlerrorp(h) <€/2] > 1—6.

From
errorp(h) = IE%[h("E) # c(x)]
= 3R5 ) £ + Py 1) )
1

= §(errorD7 (h) 4+ errorp, (h)),
it follows that:
Prlerrorp_(h) <€ >1—6 and Prlerrorp,(h) <€ >1-0.

This implies two-oracle PAC-learning with the same computa-
tional complexity.



e [40 points] Assume now that C is efficiently PAC-learnable in the
two-oracle PAC model. Thus, there exists a learning algorithm
L such that for ¢ € C, € > 0, and 6 > 0, there exist m_ and
m4 polynomial in 1/e, 1/§, and size(c), such that if we draw m_
negative examples or more and my positive examples or more,
with confidence 1 — §, the hypothesis h output by L verifies:

Prlerrorp_(h)] <e and Prlerrorp (h)] <e.

Now, let D be a probability distribution over negative and posi-
tive examples. If we could draw m examples according to D such
that m > max {m_,m4}, m polynomial in 1/e, 1/, and size(c),
then two-oracle PAC-learning would imply standard PAC-learning:

Prlerrorp(h)]
Prlerrorp(h)|c(x
e(Prle(z) = 0]

If D is not too biased, that is if the probability of drawing a posi-
tive example, or that of drawing a negative example is more than
€, it is not hard to show, using Chernoff bounds or just Cheby-
shev’s inequality, that drawing a polynomial number of examples
in 1/e and 1/§ suffices to guarantee that m > max{m_,m,}
with high confidence.
Otherwise, D is biased towards negative (or positive examples),
in which case returning h = hg (respectively h = hj) guarantees
that Prlerrorp(h)] <e.
To show the claim about the not-too-biased case, let S, denote
the number of positive examples obtained when drawing m exam-
ples when the probability of a positive example is . By Chernoff
bounds,

Pr[S,, < (1 — a)me] < e~mee?/2,
We want to ensure that at least m, examples are found. With

2
a=1and m= =%

€ )

Pr[S,, > my] < e ™+/4,

Setting the bound to be less than or equal to §/2, leads to the
following condition on m:

2 8
m > min{&, —log 5}
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A similar analysis can be done in the case of negative examples.
Thus, when D is not too biased, with confidence 1 — §, we will
find at least m_ negative and my positive examples if we draw
m examples, with




