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Weather Forecast

• Sunny:

• Rainy:

forecastWeb site

CNN
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• Rainy:

• No meteorological 
understanding!
– using other web sites

BBC

weather.com

OUROUR

Goal: Nearly the most accurate forecast



Route selection

Goal: 

Fastest route
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Challenge:

Partial Information



Rock-Paper-Scissors
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(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)



Rock-Paper-Scissors

• Play multiple times
– a repeated zero-sum game

• How should you “learn” to play the game?! 

(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)
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• How should you “learn” to play the game?! 
– How can you know if you are doing “well”

– Highly opponent dependent

– In retrospect we should always win …



Rock-Paper-Scissors

• The (1-shot) zero-sum game has a value
– Each player has a mixed strategy that can enforce 

the value 

• Alternative 1: Compute the minimax strategy

(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)
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• Alternative 1: Compute the minimax strategy
– Value V= 0
– Strategy = (⅓, ⅓, ⅓)

• Drawback: payoff will always be the value V
– Even if the opponent is “weak” (always plays     ) 



Rock-Paper-Scissors

• Alternative 2: Model the opponent
– Finite Automata

• Optimize our play given the opponent model.

(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)
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• Optimize our play given the opponent model.

• Drawbacks: 
– What is the “right” opponent model.

– What happens if the assumption is wrong.



Rock-Paper-Scissors

• Alternative 3: Online setting
– Adjust to the opponent play

– No need to know the entire game in advance

(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)
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– No need to know the entire game in advance

– Payoff can be more than the game’s value V

• Conceptually:
– Have a set of comparison class of strategies.

– Compare performance in hindsight 



Rock-Paper-Scissors

• Comparison Class H:
– Example : A={      ,     ,     }

– Other plausible strategies: 
• Play what you opponent played last time

(1,-1)(-1,1)(0, 0)

(-1,1)(0, 0)(1,-1)

(0, 0)(1,-1)(-1,1)
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• Play what you opponent played last time

• Play what will beat your opponent previous play

• Goal:

Online payoff near the best strategy in the class H

• Tradeoff:
– The larger the class H, the difference grows.



Rock-Paper-Scissors: Regret

• Consider A={      ,     ,     }
– All the pure strategies

• Zero-sum game: 
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Given any mixed strategy σ of the opponent, 

there exists a pure strategy a∊ A 

whose expected payoff is at least V

• Corollary:
For any sequence of actions (of the opponent)

We have some action whose average value is V



Rock-Paper-Scissors: Regret

payoffopponentwe

-1

1

payoffopponentplay 

1

0

12

1

0

0 

-1

-1

Average payoff -1/3 

0 

1

1

-1

New average payoff 1/3 



Rock-Paper-Scissors: Regret

• More formally:
After T games,

Û = our average payoff,

U(h) = the payoff if we play using h
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U(h) = the payoff if we play using h

regret(h) = U(h)- Û

• Claim: 

If for every a∊A we have regret(a) ≤ ε, then Û ≥ V- ε

• External regret: maxh∊H regret(h)
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Regret Minimization: Setting

• Online decision making problem (single agent)

• At each time, the agent:
– selects an action
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– observes the loss/gain

• Goal: minimize loss (or maximize gain)

• Environment model:
– stochastic versus adversarial

• Performance measure:
– optimality versus regret



Regret Minimization: Model

• Actions A={1, … ,N}
• Number time steps: t { 1, … , T}
• At time step t:

– The agent selects a distribution p t over A
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– The agent selects a distribution pi
t over A

– Environment  returns costs ci
t [0,1]

– Online loss: lt = Σi ci
t pi

t

• Cumulative loss : Lonline = Σt lt

• Information Models:
– Full information: observes every action’s cost 
– Partial information: observes only it own cost



Stochastic Environment

• Costs: ci
t are i.i.d. random variables

– Assuming an oblivious opponent

• Tradeoff: Exploration versus Exploitation
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• Tradeoff: Exploration versus Exploitation

• Approximate solution:
– sample each action O(logT) times

– select the best observed action

• Gittin’s Index
– Simple optimal selection rule

• under some Bayesian assumptions



Competitive Analysis

• Costs: ci
t are generated adversarially,

– might depend on the online algorithm decisions
• in line with our game theory applications

• Online Competitive Analysis:
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• Online Competitive Analysis:
– Strategy class = any dynamic policy

– too permissive 
• Always wins rock-paper-scissors

• Performance measure:
– compare to the best strategy in a class of strategies



External Regret

• Static class
– Best fixed solution

• Compares to a single best strategy (in H)

• The class H is fixed beforehand.
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• The class H is fixed beforehand.
– optimization is done with respect to H

• Assume H=A
– Best action: Lbest = MINi {Σt ci

t }

– External Regret = Lonline – Lbest

• Normalized regret is divided by T



External regret: Bounds

• Average external regret goes to zero
– No regret

– Hannan [1957]
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– Hannan [1957]

• Explicit bounds
– Littstone & Warmuth ‘94 

– CFHHSW ‘97

– External regret = O(√Tlog N)



External Regret: Greedy

• Simple Greedy:
– Go with the best action so 

far.

• For simplicity loss is {0,1}

21

• For simplicity loss is {0,1}

• Loss can be N times the 
best action
– holds for any deterministic 

online algorithm



External Regret: Randomized Greedy

• Randomized Greedy:
– Go with a random best 

action.

• Loss is ln(N) times the 
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• Loss is ln(N) times the 
best action

• Analysis: 
When the bestbest increases 

from k to k+1 expected 
loss is 

1/N + 1/(N-1) + …  ≈ ln(N)



External Regret: PROD Algorithm

• Regret is √Tlog N 

• PROD Algorithm:
– plays sub-best actions

– Uses exponential weights 

FtWt

(1-η)
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– Uses exponential weights 

wa = (1-η)La

– Normalize weights

• Analysis:
– Wt= weights of all actions at time t

– Ft= fraction of weight of actions 
with loss 1 at time t

• Also, expected loss: LON = ∑ Ft

Wt+1 = Wt (1-ηFt)

Wt+1



External Regret: Bounds Derivation

• Bounding WT

• Lower bound:
WT > (1-η)Lmin

• Combined bound:
(1-η)Lmin ≤ W1 exp{-η LON }

• Taking logarithms:

24

W > (1-η)Lmin

• Upper bound:
WT = W1 Πt (1-ηFt)

≤ W1 Πt exp{-ηFt }

= W1 exp{-η LON }
using 1-x ≤ e-x

Lminlog(1- η) ≤ log(W1) -ηLON

• Final bound:

LON≤ Lmin+ ηLmin+log(N)/η

• Optimizing the bound:
η = √log(N)/Lmin

LON≤ Lmin+2√ Lmin log(N)



External Regret: Summary

• We showed a bound of 2√Lmin log N 

• More refined bounds

√Q log N     where Q = Σ (ct )2

25

√Q log N     where Q = Σt (ct
best )2

• More elaborate notions of regret …



External Regret: Summary

• How surprising are the results …
– Near optimal result in online adversarial setting

• very rear …
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• very rear …

– Lower bound: stochastic model
• stochastic assumption do not help …

– Models an “improved” greedy

– An “automatic” optimization methodology
• Find the best fixed setting of parameters
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Internal Regret

• Game theory applications:
– Avoiding dominated actions

– Correlated equilibrium
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– Correlated equilibrium

• Reduction from External Regret [Blum & M]



Dominated actions

• Action ai is dominated by 
bi if for every a-i we have 
ui(ai, a-i) < ui(bi, a-i)

• Clearly, we like to avoid 
13021 a
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• Clearly, we like to avoid 
dominated action
– Remark: an action can be 

also dominated by a mixed 
action

• Q: can we guarantee to 
avoid dominated actions?!

129152 b



Dominated Actions & Internal Regret

• How can we test it?!
– in retrospect 

• ai is dominates bi

– Every time we played ai

Internal 
Regret 
(ab)

Modified

Payoff  
(ab)

Our

Payoff

our 
actions

2-1=121a

b
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– Every time we played ai

we do better with bi

• Define internal regret
– swapping a pair of actions

• No internal regret 

no dominated actions

b

c

5-2=352a

d

9-3=693a

b

d

1-0=110a



Dominated actions & swap regret

• Swap regret 
– An action sequence σ = σ1, …, σt

– Modification function F:A  A

– A modified sequence

σ(F)σ

ba

cb

cc
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– A modified sequence

σ(F) = F(σ1), …, F(σt)

• Swap_regret = 

maxF V(σ (F))  - V(σ ) 

• Theorem: If Swap_regret < R 
then in at most R/ε steps we 
play ε-dominated actions.

cc

ba

bd

ba

cb

bd

ba



Correlated Equilibrium

• Q a distribution over joint 
actions

• Scenario: 
– Draw joint action a from Q,

Q
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– Draw joint action a from Q,
– player i receives action ai

• and no other information

• Q is a correlated Eq if:
– for every player i, the 

recommended action ai is a 
best response 

• given the induced distribution.

a1 a2
a3

a4



Swap Regret & Correlated Eq.

• Correlated Eq  NO Swap regret 

• Repeated game setting

• Assume swap_regret ≤ ε
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• Assume swap_regret ≤ ε
– Consider the empirical distribution

• A distribution Q over joint actions

– For every player it is ε best response

– Empirical history is an ε correlated Eq.



Internal/Swap Regret

• Comparison is based on online’s decisions.
– depends on the actions of the online algorithm
– modify a single decision (consistently)
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• Each time action A was done do action B

• Comparison class is not well define in 
advanced.

• Scope:
– Stronger then External Regret
– Weaker then competitive analysis.



Internal & Swap Regret

• Assume action sequence A=a1 … aT

– Modified input (b → d ) :
• Change every ai

t=b to ai
t=d, and create actions seq. B.

35

• Change every ai =b to ai =d, and create actions seq. B.

• L(b→d) is the cost of B
– using the same costs ci

t

• Internal regret
Lonline–min{b,d}Lonline (b→d) = max{b,d} Σt(cb

t –cd
t)pb

t

• Swap Regret:
– Change action i to action F(i)



Internal regret

• No regret bounds
– Foster & Vohra

– Hart & Mas-Colell
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– Hart & Mas-Colell

– Based on the approachability theorem
• Blackwell ’56

– Cesa-Bianchi & Lugasi ’03
• Internal regret = O(log N + √T log N)



External Regret to Internal Regret:
Generic reduction
• Input:

– N (External Regret) algorithms

– Algorithm Ai, for any input sequence :
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– Algorithm Ai, for any input sequence :
• LAi ≤ Lbest,i + Ri

A1

Ai

An



External to Internal:
Generic reduction

• General setting (at time t):
– Each Ai outputs a distribution qi

• A matrix Q

– We decide on a distribution p
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– We decide on a distribution p
– Adversary decides on costs c=<c1 … cN>
– We return to Ai some cost vector

A1

Ai

An

q1

qi

qn

pc



Combining the experts

• Approach I:
– Select an expert Ai with probability ri

– Let the “selected” expert decide the outcome

Q p
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– action distribution p=Qr

• Approach II:
– Directly decide on p.

• Our approach: make p=r
– Find a p such that p=Qp



Distributing loss

• Adversary selects costs c=<c1 … cN>

• Reduction:
– Return to Ai cost vector ci = pi c
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– Return to Ai cost vector ci = pi c

– Note: Σ ci = c

A1

Ai

An

c



External to Internal:
Generic reduction
• Combination rule:

– Each Ai outputs a distribution qi

• Defines a matrix Q

Q p
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• Defines a matrix Q

– Compute p such that p=Qp
• pj = Σi pi qi,j

– Adversary selects costs c=<c1 … cN>

– Return to Ai cost vector pi c



Motivation

• Dual view of P:
– pi is the probability of selecting action i

– pi is the probability of selecting algo. Ai
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– pi is the probability of selecting algo. Ai

• Then use Ai probability, namely qi

• Breaking symmetry:
– The feedback to Ai depends on pi



Proof of reduction:

• Loss of Ai (from its view)
– <(pi c), qi> = pi< qi , c>

• Regret guarantee (for any action i):
– L = Σ p t <q t ,ct>  ≤ Σ p t c t + R
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– Li = Σt pi
t <qi

t ,ct>  ≤ Σt pi
t cj

t + Ri

• Online loss:
– Lonline = Σt <pt ,ct> 

= Σt <pt Qt,ct>  
= Σt Σi pi

t <qi
t ,ct> =Σi Li

• For any swap function F:
– Lonline ≤  Lonline,F + Σi Ri



Swap regret

• Corollary: For any swap F:

• Improved bound:

))log()log((, NNNTNOLL Fonlineonline 

44

• Improved bound:
– Note that i Lmax,i T

• worse case all Lmax,i are equal.

– Improved bound:

 )log(, NTNOLL Fonlineonline 
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Reductions between Regrets

External Regret
Full Information

Internal Regret
Full Information

[BM]

[CMS]
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External Regret
Partial Information

Internal Regret
Partial Information

[AM]

[BM]



More elaborate regret notions

• Time selection functions [Blum & M]
– determines the relevance of the next time step 

– identical for all actions
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– identical for all actions

– multiple time-selection functions

• Wide range regret [Lehrer, Blum & M]

– Any set of modification functions
• mapping histories to actions



Conclusion and Open problems

• Reductions
– External to Internal Regret

• full information

• partial information
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• partial information

• SWAP regret Lower Bound
– poly in N= |A| 

• Very weak lower bounds

• Wide Range Regret
– Applications …
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