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Weather Forecast
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e
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. —n
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Route selection
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Goal:
Fastest route

Challenge:
Partial Information



Rock-Paper-Scissors
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e Play multiple times

— a repeated zero-sum game

 How should you “learn” to play the game?!
— How can you know if you are doing “well”

— Highly opponent dependent

— In retrospect we should always win ...
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Rock-Paper-Scissors
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* The (1-shot) zero-sum game has a value

— Each player has a mixed strategy that can enforce
the value

e Alternative 1: Compute the minimax strategy
— Value V=0

— Strategy = (Y3, 3, 13)
« Drawback: payoff will always be the value V

— Even if the opponent 1s “weak” (always plays & )
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* Alternative 2: Model the opponent

— Finite Automata
* Optimize our play given the opponent model.
* Drawbacks:

— What is the “right” opponent model.

— What happens 1f the assumption 1s wrong.



Rock-Paper-Scissors
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 Alternative 3: Online setting
— Adjust to the opponent play

— No need to know the entire game 1n advance

— Payoff can be more than the game’s value V

* Conceptually:

— Have a set of comparison class of strategies.

— Compare performance 1n hindsight
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e Comparison Class H:
— Example : A={& ,<, @}
— Other plausible strategies:

« Play what you opponent played last time
 Play what will beat your opponent previous play

 Goal:

Online payoff near the best strategy in the class H

 Tradeoft:

— The larger the class H, the difference grows.
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Rock-Paper-Scissors: Regret

e Consider A={® = =}
— All the pure strategies
e /ero-sum game:
Given any mixed strategy o of the opponent,
there exists a pure strategy ae 4
whose expected payoff is at least V'
e Corollary:
For any sequence of actions (of the opponent)

We have some action whose average value i1s V
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Rock-Paper-Scissors: Regret

we |opponent |payoff
| -1
“2x <3 1
S S 0
¥/ | W 0
B | W -1
s =% -1

Average payoff -1/3

play<z| opponent |payoff
<3 % 1
S s 0
<3 <3 0
<3 M 1
<3 ah 1
<3 =% -1
New average payoff 1/3
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Rock-Paper-Scissors: Regret

* More formally:
After T games,
U = our average payoff,
U(h) = the payoff if we play using h
regret(h) = U(h)- U
e Claim:

If for every aed we have regret(a) <e, then U > V- ¢

o External regret: max, , regret(h)
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RECRET

MININ' ZATION

[Blum & M] and [Cesa-Bianchi, M & Stoltz]
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Regret Minimization: Setting

e Online decision making problem (single agent)

« At each time, the agent:
— selects an action

— observes the loss/gain
* Goal: minimize loss (or maximize gain)
e Environment model:

— stochastic versus adversarial

e Performance measure:
— optimality versus regret
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Regret Minimization: Model

 Actions A={1, ... ,N}

 Number time steps: 1 €{ 1, ..., T}

e At time step f:
— The agent selects a distribution p/ over A
— Environment returns costs ¢/ € [0,1]
— Online loss: I' =2, ¢/ p;!

e Cumulative loss : L =21

online

e Information Models:
— Full information: observes every action’s cost

— Partial information: observes only 1t own cost
16



Stochastic Environment

* Costs: ¢/ are i.i.d. random variables

— Assuming an oblivious opponent
* Tradeoff: Exploration versus Exploitation

» Approximate solution:
— sample each action O(logT) times

— select the best observed action
e Gittin’s Index

— Simple optimal selection rule

» under some Bayesian assumptions

17



Competitive Analysis

* Costs: ¢/ are generated adversarially,

— might depend on the online algorithm decisions

* 1n line with our game theory applications

e Online Competitive Analysis:
— Strategy class = any dynamic policy
— too permissive
* Always wins rock-paper-scissors
e Performance measure:

— compare to the best strategy in a class of strategies
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External Regret

e Static class

— Best fixed solution
« Compares to a single best strategy (in H)

* The class H 1s fixed beforehand.

— optimization 1s done with respect to H
* Assume H=A4

— Best action: L,,, = MIN. {2 ¢/}

— External Regret = L
* Normalized regret is divided by T

—L best

online
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External regret: Bounds

* Average external regret goes to zero

— No regret
— Hannan [1957]

* Explicit bounds
— Littstone & Warmuth ‘94
— CFHHSW 97
— External regret = O(NTlog N)
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External Regret: Greedy

« Simple Greedy:

— Go with the best action so

far. ll l l
* For simplicity loss 1s {0, 1}

 [.oss can be /N times the

best action
— holds for any deterministic
online algorithm
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External Regret: Randomized Greedy

 Randomized Greedy:

— Go with a random best

action.
* Lossis /n(N) times the I l
best action
* Analysis:

When the best increases
from k to k+1 expected
loss 1s

N+ I/N-1) + ... =~In(N)
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External Regret: PROD Algorithm

e Regretis VTlog N
« PROD Algorithm:

— plays sub-best actions
— Uses exponential weights
w, = (I-n)*
— Normalize weights
e Analysis:
— W'= weights of all actions at time ¢

— F'= fraction of weight of actions
with loss 1 at time ¢

* Also, expected loss: Loy = F,

Wt

Wt+ 1

Ft
2 &
W =w (1-nF")
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External Regret: Bounds Derivation

 Bounding W'
* Lower bound:
w' > (]_;7 Lmin
« Upper bound:
w' =wII (I-nF)
<w II exp{-nkF"}
=W exp{-n Loy /

using l-x <e>

e Combined bound:
(1-n)tmin < W exp{-n Loy }

« Taking logarithms:

L,,log(1- 1) <log(W') -nL

* Final bound:

Lon=Lyyint ML,y tlog(N)/y

* Optimizing the bound:

n = log(N)/L,,,

LoyS Lyt 2V L, log(N)
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External Regret: Summary

» We showed a bound of 2VL_. log N
* More refined bounds

VO logN where Q=2 (¢!, )°
* More elaborate notions of regret ...
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External Regret: Summary

* How surprising are the results ...

— Near optimal result in online adversarial setting

* VEry rear ...

— Lower bound: stochastic model

* stochastic assumption do not help ...
— Models an “improved” greedy

— An “automatic” optimization methodology

 Find the best fixed setting of parameters
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Internal Regret

* Game theory applications:

— Avoiding dominated actions

— Correlated equilibrium

* Reduction from External Regret [Blum & M]
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Dominated actions

* Action g, 1s dominated by
b, if for every a” we have

ua;, a’) <uyb, a’)
* C(learly, we like to avoid

dominated action

— Remark: an action can be

also dominated by a mixed
action

e (Q: can we guarantee to

12

avold dominated actions?!
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Dominated Actions & Internal Regret

« How can we test 1t?!
— 1n retrospect
* a;1s dominates b,

— Every time we played a;
we do better with b,

e Define internal regret
— swapping a pair of actions
« No internal regret -

no dominated actions

our Our Modified | Internal

actions | payoff |Payoff |Regret
(a>b) |(@2b)

a 1 2 2-1=1

b

C

a 2 5 5-2=3

d

a 3 9 9-3=6

b

d

a 0 1 1-0=1
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Dominated actions & swap regret

* Swap regret
— An action sequence 6 =Gy, ..., G,
— Modification function F:A 2> A
— A modified sequence
o(F)=F(oy), ..., F(o,)
 Swap regret =
maxy V(o (F)) - V(o)
* Theorem: If Swap regret <R

then 1n at most R/e steps we
play e-dominated actions.

c o(F)
a b
b C
C C
a b
d b
a b
b C
d b

o
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Correlated Equilibrium

* Q a distribution over joint
actions

e Scenario:
— Draw joint action a from Q,
— player i receives action a;
 and no other information
* Q1s acorrelated Eq if:

— for every player i, the
recommended action g; 1s a
best response

 given the induced distribution.
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Swap Regret & Correlated Eq.

» Correlated Eq < NO Swap regret
* Repeated game setting

* Assume swap regret<g

— Consider the empirical distribution

A distribution Q over joint actions
— For every player it 1s € best response

— Empirical history 1s an € correlated Eq.
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Internal/Swap Regret

* Comparison 1s based on online’s decisions.
— depends on the actions of the online algorithm

— modify a single decision (consistently)
* Each time action A was done do action B

« Comparison class 1s not well define 1n
advanced.

e Scope:
— Stronger then External Regret
— Weaker then competitive analysis.
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Internal & Swap Regret

* Assume action sequence A=a, ... a;
— Modified input (b — d ) :
» Change every a/=b to a/=d, and create actions seq. B.
e L(b—d) 1s the cost of B

— using the same costs ¢/

* Internal regret
Lonline_min{b,d}Lonline (b—d) = maxXe, g 2y’ = )py
* Swap Regret:

— Change action i to action F (i) 35



Internal regret

* No regret bounds
— Foster & Vohra

— Hart & Mas-Colell

— Based on the approachability theorem
» Blackwell ’56

— Cesa-Bianchi & Lugasi ’03
e Internal regret = O(log N + T log N)
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External Regret to Internal Regret:
Generic reduction

* Input:
— N (External Regret) algorithms
— Algorithm A, for any input sequence :
* L,;=<L t R,

best,i

A4, =

[ ——
= 4, >
——




External to Internal:
Generic reduction

* General setting (at time t):

— Each A4, outputs a distribution g,
* A matrix QO

— We decide on a distribution p
— Adversary decides on costs c=<c; ... ¢,>
— We return to 4, some cost vector

d;
A4, |m=m——>

——
q;
>

Jn




Combining the experts

* Approach I:

Q

— Select an expert 4; with probability 7,

B

— Let the “selected” expert decide the outcome

— action distribution p=0r
* Approach II:
— Directly decide on p.

* Our approach: make p=r
— Find a p such that p=0p
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Distributing loss

* Adversary selects costs c=<c; ... c,>

e Reduction:

— Return to 4, cost vector ¢; = p; ¢
— Note: X ¢, = ¢

-A]
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External to Internal:
Generic reduction Q

 Combination rule:
— Each 4 outputs a distribution g,

* Defines a matrix Q
— Compute p such that p=0p
*DPi~ 2;p; q;;
— Adversary selects costs c=<c; ... c,>

— Return to 4; cost vector p; ¢
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Motivation

e Dual view of P:
— p; 1s the probability of selecting action i
— p, 1s the probability of selecting algo. 4,
* Then use 4, probability, namely ¢,
* Breaking symmetry:
— The feedback to A; depends on p,
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Proof of reduction:

Loss of 4; (from 1ts view)
- <(r:¢) 47> =P~ q;, ¢

* Regret guarantee (for any action i):

— L, =2,p/ <q/!,c™> < 2, p/ Cjt t R,
* Online loss:
_ L =2, <p',c’>
=2, <p' OJ.c">
=2,2;p! <q/,c>=2,L,
* For any swap function F:
— L <L + 2. R,

online — online, F

online
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Swap regret

e Corollary: For any swap F-.
L <L + O(N/Tlog(N) + N log(N))

online online , F

Improved bound:
— Note that 2. L .<T

e worse case all L .are equal.

max,l1

max,

— Improved bound:

Loise < Ly + TN 10g(W)

online
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Reductions between Regrets

[CMS]

External Regret
Full Information

External Regret
Partial Information

[BM]

Internal Regret
Full Information

Internal Regret

1 Partial Information
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More elaborate regret notions

* Time selection functions [Blum & M]
— determines the relevance of the next time step
— 1dentical for all actions

— multiple time-selection functions

* Wide range regret [Lehrer, Blum & M]

— Any set of modification functions

* mapping histories to actions
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Conclusion and Open problems

 Reductions

— External to Internal Regret
 full information

e partial information
« SWAP regret Lower Bound
— poly in N= |A|
* Very weak lower bounds
 Wide Range Regret
— Applications ...
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