Regret Minimization: Algorithms and Applications

Yishay Mansour Google & Tel Aviv Univ.

Many thanks for my co-authors: A. Blum, N. Cesa-Bianchi, and G. Stoltz

EARNING

Weather Forecast

- Sunny:
- Rainy:

- No meteorological understanding!
 - using other web sites

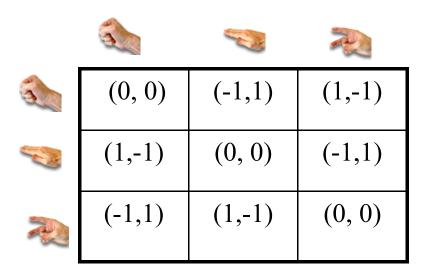
Web site	<u>forecast</u>
CNN	0
BBC	-118 101
weather.com	0
OUR	- 11/1-12/

Goal: Nearly the most accurate forecast

Route selection

Goal: Fastest route Challenge:

Partial Information



- Play multiple times
 - a repeated zero-sum game
- How should you "learn" to play the game?!
 - How can you know if you are doing "well"
 - Highly opponent dependent
 - In retrospect we should always win ...

and a

(1,-1)

(-1,1)

(0, 0)

(0, 0)

(1, -1)

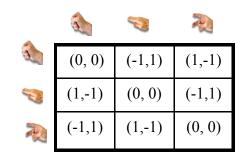
(-1,1)

and a

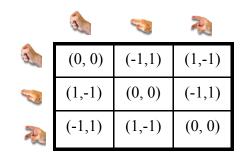
(-1,1)

(0, 0)

(1,-1)

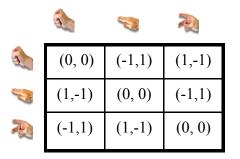


- The (1-shot) zero-sum game has a value
 - Each player has a mixed strategy that can enforce the value
- Alternative 1: Compute the minimax strategy
 - Value V= 0
 - Strategy = $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- Drawback: payoff will always be the value V
 - − Even if the opponent is "weak" (always plays \$\)



- Alternative 2: Model the opponent

 Finite Automata
- Optimize our play given the opponent model.
- Drawbacks:
 - What is the "right" opponent model.
 - What happens if the assumption is wrong.



- Alternative 3: Online setting
 - Adjust to the opponent play
 - No need to know the entire game in advance
 - Payoff can be more than the game's value V
- Conceptually:
 - Have a set of comparison class of strategies.
 - Compare performance in hindsight

Image: Non-Structure Imag

Rock-Paper-Scissors

- Comparison Class H:
 - Example : $A = \{ \$, \$, \$ \}$
 - Other plausible strategies:
 - Play what you opponent played last time
 - Play what will beat your opponent previous play
- Goal:

Online payoff near the best strategy in the class H

- Tradeoff:
 - The larger the class H, the difference grows.

Rock-Paper-Scissors: Regret

• Consider $A = \{$ $\ \ , \ \ , \ \ , \ \ \}$

– All the pure strategies

• Zero-sum game:

Given any mixed strategy σ of the opponent, there exists a pure strategy $a \in A$ whose expected payoff is at least *V*

• Corollary:

For any sequence of actions (of the opponent) We have some action whose average value is V

Rock-Paper-Scissors: Regret

we	opponent	payoff
R	a la	-1
P.		1
	C)	0
	3	0
R	3	-1
	R	-1

Average payoff -1/3

play🤏	opponent	payoff
P		1
C.	C)	0
<i>Constant</i>		0
C)		1
		1
	N.	-1

New average payoff 1/3

Rock-Paper-Scissors: Regret

- More formally:
 - After T games,
 - $\hat{U} =$ our average payoff,
 - U(h) = the payoff if we play using h regret(h) = U(h)- Û
- Claim:

If for every $a \in A$ we have $regret(a) \leq \varepsilon$, then $\hat{U} \geq V - \varepsilon$

• External regret: **max**_{*h*∈*H*} *regret(h)*

REGRET

MININ ZATION

[Blum & M] and [Cesa-Bianchi, M & Stoltz]

Regret Minimization: Setting

- Online decision making problem (single agent)
- At each time, the agent:
 - selects an action
 - observes the loss/gain
- Goal: minimize loss (or maximize gain)
- Environment model:
 - stochastic versus <u>adversarial</u>
- Performance measure:
 - optimality versus <u>regret</u>

Regret Minimization: Model

- Actions $A = \{1, ..., N\}$
- Number time steps: $t \in \{1, ..., T\}$
- At time step *t*:
 - The agent selects a distribution p_i^t over A
 - Environment returns costs $c_i^t \in [0, 1]$
 - Online loss: $l^t = \sum_i c_i^t p_i^t$
- Cumulative loss : $L_{online} = \Sigma_t l^t$
- Information Models:
 - <u>Full information</u>: observes every action's cost
 - Partial information: observes only it own cost

Stochastic Environment

- Costs: c_i^t are *i.i.d.* random variables
 Assuming an oblivious opponent
- Tradeoff: Exploration versus Exploitation
- Approximate solution:
 - sample each action O(logT) times
 - select the best observed action
- Gittin's Index
 - Simple optimal selection rule
 - under some Bayesian assumptions

Competitive Analysis

- Costs: c_i^t are generated adversarially,
 - might depend on the online algorithm decisions
 - in line with our game theory applications
- Online Competitive Analysis:
 - Strategy class = any dynamic policy
 - too permissive
 - Always wins rock-paper-scissors
- Performance measure:
 - compare to the best strategy in a class of strategies

External Regret

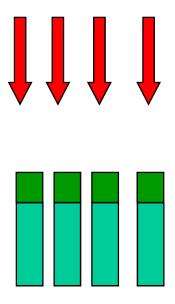
- Static class
 - Best fixed solution
 - Compares to a single best strategy (in *H*)
- The class *H* is fixed beforehand.
 - optimization is done with respect to H
- Assume H=A
 - Best action: $L_{best} = MIN_i \{\Sigma_t c_i^t\}$
 - External Regret = $L_{online} L_{best}$
 - Normalized regret is divided by *T*

External regret: Bounds

- Average external regret goes to zero
 - No regret
 - Hannan [1957]
- Explicit bounds
 - Littstone & Warmuth '94
 - CFHHSW '97
 - External regret = $O(\sqrt{T \log N})$

External Regret: Greedy

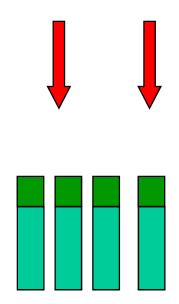
- Simple Greedy:
 - Go with the best action so far.
- For simplicity loss is {0,1}
- Loss can be *N* times the best action
 - holds for any deterministic online algorithm



External Regret: Randomized Greedy

- Randomized Greedy:
 - Go with a *random* best action.
- Loss is *ln(N)* times the best action
- Analysis:
 - When the *best* increases from *k* to *k*+1 expected loss is

 $1/N + 1/(N-1) + ... \approx ln(N)$

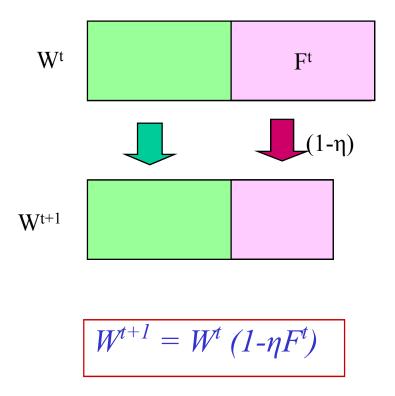


External Regret: PROD Algorithm

- Regret is $\sqrt{\text{Tlog N}}$
- PROD Algorithm:
 - plays sub-best actions
 - Uses exponential weights

 $w_a = (1 - \eta)^{L_a}$

- Normalize weights
- Analysis:
 - W^t = weights of all actions at time t
 - F^t = fraction of weight of actions with loss 1 at time *t*
 - Also, expected loss: $L_{ON} = \sum F_t$



External Regret: Bounds Derivation

- Bounding W^T
- Lower bound: $W^T > (1-\eta)^{L_{min}}$
- Upper bound: $W^{T} = W^{l} \Pi_{t} (1 - \eta F^{t})$ $\leq W^{l} \Pi_{t} \exp\{-\eta F^{t}\}$ $= W^{l} \exp\{-\eta L_{ON}\}$ using $1 - x \leq e^{-x}$

- Combined bound: $(1-\eta)^{L_{min}} \leq W^l \exp\{-\eta L_{ON}\}$
- Taking logarithms:

 $L_{min}log(1-\eta) \leq log(W^{l}) - \eta L_{ON}$

• Final bound:

 $L_{ON} \leq L_{min} + \eta L_{min} + log(N)/\eta$

• Optimizing the bound: $\eta = \sqrt{\log(N)/L_{min}}$ $L_{ON} \leq L_{min} + 2\sqrt{L_{min} \log(N)}$

External Regret: Summary

- We showed a bound of $2\sqrt{L_{min} \log N}$
- More refined bounds $\sqrt{Q \log N}$ where $Q = \Sigma_t (c^t_{best})^2$
- More elaborate notions of regret ...

External Regret: Summary

- How surprising are the results ...
 - Near optimal result in online adversarial setting
 - very rear ...
 - Lower bound: stochastic model
 - stochastic assumption do not help ...
 - Models an "improved" greedy
 - An "automatic" optimization methodology
 - Find the best fixed setting of parameters

Reg ret

Internal Regret

- Game theory applications:
 - Avoiding dominated actions
 - Correlated equilibrium
- Reduction from External Regret [Blum & M]

Dominated actions

- Action a_i is dominated by b_i if for every a^{-i} we have $u_i(a_i, a^{-i}) < u_i(b_i, a^{-i})$
- Clearly, we like to avoid dominated action
 - Remark: an action can be also dominated by a mixed action
- Q: can we guarantee to avoid dominated actions?!

1	2	0	3	1	a
2	5	1	9	12	b

Dominated Actions & Internal Regret

- How can we test it?!
 - in retrospect
- a_i is dominates b_i
 - Every time we played a_i we do better with b_i
- Define internal regret
 - swapping a pair of actions
- No internal regret \rightarrow no dominated actions

our actions	Our Payoff	Modified Payoff (a→b)	Internal Regret $(a \rightarrow b)$
а	1	2	2-1=1
b			
с			
а	2	5	5-2=3
d			
а	3	9	9-3=6
b			
d			
а	0	1	1-0=1

30

Dominated actions & swap regret

- Swap regret
 - An action sequence $\sigma = \sigma_1, ..., \sigma_t$
 - Modification function F:A \rightarrow A
 - A modified sequence

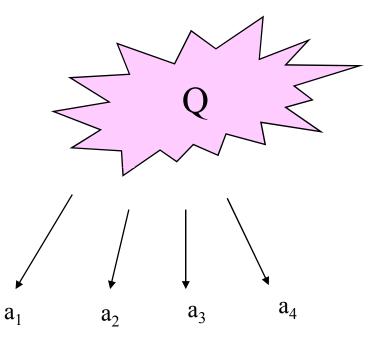
 $\sigma(F) = F(\sigma_1), \ldots, F(\sigma_t)$

- Swap_regret = $\max_{F} V(\sigma(F)) - V(\sigma)$
- Theorem: If Swap_regret < R then in at most R/ε steps we play ε-dominated actions.

σ	σ (F)
a	b
b	с
с	с
a	b
d	b
a	b
b	с
d	b
a	b

Correlated Equilibrium

- Q a distribution over joint actions
- Scenario:
 - Draw joint action *a* from Q,
 - player *i* receives action a_i
 - and no other information
- Q is a correlated Eq if:
 - for every player *i*, the recommended action a_i is a best response
 - given the induced distribution.



Swap Regret & Correlated Eq.

- Correlated Eq ⇔ NO Swap regret
- Repeated game setting
- Assume swap_regret $\leq \epsilon$
 - Consider the empirical distribution
 - A distribution Q over joint actions
 - For every player it is ε best response
 - Empirical history is an ε correlated Eq.

Internal/Swap Regret

- Comparison is based on online's decisions.
 - depends on the actions of the online algorithm
 - modify a single decision (consistently)
 - Each time action A was done do action B
- Comparison class is not well define in advanced.
- Scope:
 - Stronger then External Regret
 - Weaker then competitive analysis.

Internal & Swap Regret

• Assume action sequence $A = a_1 \dots a_T$

– Modified input $(b \rightarrow d)$:

- Change every $a_i^t = b$ to $a_i^t = d$, and create actions seq. *B*.
- $L(b \rightarrow d)$ is the cost of *B*

– using the same costs c_i^t

• Internal regret

 $L_{\text{online}} - \min_{\{b,d\}} L_{\text{online}} (b \rightarrow d) = \max_{\{b,d\}} \Sigma_t (c_b^t - c_d^t) p_b^t$

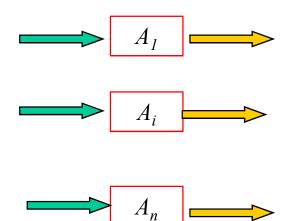
- Swap Regret:
 - Change action i to action F(i)

Internal regret

- No regret bounds
 - Foster & Vohra
 - Hart & Mas-Colell
 - Based on the approachability theorem
 - Blackwell '56
 - Cesa-Bianchi & Lugasi '03
 - Internal regret = $O(\log N + \sqrt{T \log N})$

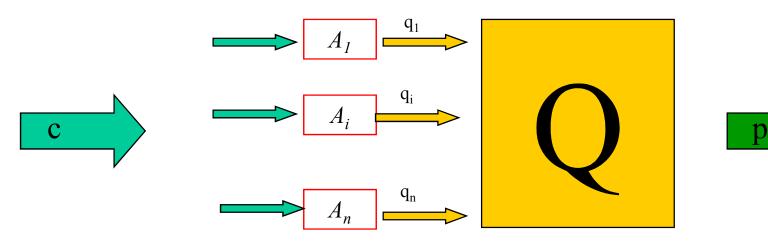
External Regret to Internal Regret: Generic reduction

- Input:
 - N (External Regret) algorithms
 - Algorithm A_i , for any input sequence :
 - $L_{Ai} \leq L_{best,i} + R_i$



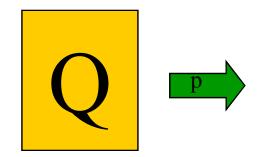
External to Internal: Generic reduction

- General setting (at time t):
 - Each A_i outputs a distribution q_i
 - A matrix Q
 - We decide on a distribution p
 - Adversary decides on costs $c = \langle c_1 \dots c_N \rangle$
 - We return to A_i some cost vector



Combining the experts

• Approach I:

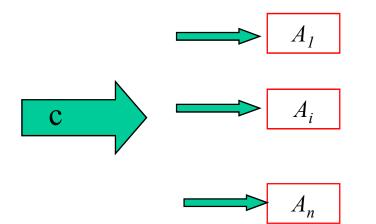


- Select an expert A_i with probability r_i
- Let the "selected" expert decide the outcome
- action distribution p=Qr
- Approach II:
 - Directly decide on *p*.
- Our approach: make p=r
 - Find a p such that p=Qp

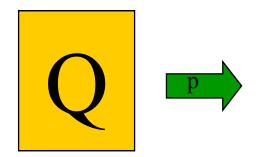
Distributing loss

- Adversary selects costs $c = \langle c_1 \dots c_N \rangle$
- Reduction:
 - Return to A_i cost vector $c_i = p_i c$

- Note:
$$\sum c_i = c$$



External to Internal: Generic reduction



- Combination rule:
 - Each A_i outputs a distribution q_i
 - Defines a matrix Q
 - Compute p such that p=Qp
 - $p_j = \Sigma_i p_i q_{i,j}$
 - Adversary selects costs $c = \langle c_1 \dots c_N \rangle$
 - Return to A_i cost vector $p_i c$

Motivation

- Dual view of P:
 - $-p_i$ is the probability of selecting action *i*
 - $-p_i$ is the probability of selecting algo. A_i
 - Then use A_i probability, namely q_i
- Breaking symmetry:
 - The feedback to A_i depends on p_i

Proof of reduction:

- Loss of A_i (from its view) - <($p_i c$), q_i > = p_i < q_i , c>
- Regret guarantee (for any action *i*): $-L_i = \Sigma_t p_i^t \langle q_i^t, c^t \rangle \leq \Sigma_t p_i^t c_i^t + R_i$
- Online loss:

$$\begin{split} - \ L_{online} &= \Sigma_t < p^t \,, c^t > \\ &= \Sigma_t < p^t \, Q^t , c^t > \\ &= \Sigma_t \, \Sigma_i \, p_i^{\,t} < q_i^{\,t} \,, c^t > = \Sigma_i \, L_i \end{split}$$

• For any swap function *F*:

 $-L_{online} \leq L_{online,F} + \Sigma_i R_i$

Swap regret

- Corollary: For any swap *F*: $L_{online} \leq L_{online,F} + O(N\sqrt{T\log(N)} + N\log(N))$
- Improved bound:
 - Note that $\Sigma_i L_{max,i} \leq T$
 - worse case all $L_{max,i}$ are equal.

– Improved bound:

$$L_{online} \leq L_{online,F} + O\left(\sqrt{TN\log(N)}\right)$$

Summary

Reductions between Regrets



More elaborate regret notions

- Time selection functions [Blum & M]
 - determines the relevance of the next time step
 - identical for all actions
 - multiple time-selection functions
- Wide range regret [Lehrer, Blum & M]
 - Any set of modification functions
 - mapping histories to actions

Conclusion and Open problems

- Reductions
 - External to Internal Regret
 - full information
 - partial information
- SWAP regret Lower Bound
 - poly in N= |A|
 - Very weak lower bounds
- Wide Range Regret
 - Applications ...

Thank Voul

Many thanks for my co-authors: A. Blum, N. Cesa-Bianchi, and G. Stoltz