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Logistics

• Prerequisites: basics in linear algebra, probability, and analysis of 
algorithms.

• Workload: homework assignments (4-5) + project (topic of your 
choice).

• Textbooks: no single textbook covering the material presented in 
this course, lecture slides will be made available electronically.
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Machine Learning

• Definition: computational methods using experience to improve 
performance [e.g., to make accurate predictions].

• Experience: data-driven task [thus statistics, probability].

• Example: use height and weight to predict gender.

• Computer science: need to design efficient and accurate 
algorithms, analysis of complexity, theoretical guarantees.
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Examples of Learning Tasks

• Optical character recognition

• Text or document classification, spam detection

• Morphological analysis, part-of-speech tagging, parsing

• Speech recognition, speech synthesis, speaker verification

• Image recognition, face recognition

• Fraud detection (credit card, telephone), network intrusion

• Games (chess, backgammon)

• Unassisted control of a vehicle (robots, navigation)

• Medical diagnosis
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Some Broad Areas of ML

• Classification: assign a category to each object (OCR, text 
classification, speech recognition; note: the number of categories 
may be infinite in some difficult tasks).

• Regression: predict a real value for each object (prediction of stock 
values, variations of economic variables).

• Ranking: order objects according to some criterion (relevant web 
pages returned by a search engine).

• Clustering: partition data into homogenous groups (analysis of very 
large data sets).

• Dimensionality reduction: find lower-dimensional manifold 
preserving some properties of the data (computer vision).
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Objectives of Machine Learning

• Algorithms: design of efficient, accurate, and general learning 
algorithms to

• deal with large-scale problems (|data| > 1-10M).

• make accurate predictions (unseen examples).

• handle a variety of different learning problems.

• Theoretical questions

• what can be learned efficiently? Under what conditions?

• how well can it be learned computationally?

• Other: better understanding of (human or animal) learning? Help 
human learning? Better learning than humans.
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This Course

• Several major and mathematically well-studied algorithms, e.g.,

• support vector machines (SVMs), kernel methods

• boosting algorithms

• automata learning algorithms

• Theoretical foundations

• analysis of algorithms

• generalization bounds

• Applications

• illustration of the use of these algorithms
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Topics

• Probability, general bounds

• PAC learning model, error bounds, VC-dimension, bounds on sample complexity

• Support vector machines (SVMs), Perceptron, Winnow

• Kernel methods

• Boosting, generalization error, margin

• On-line learning, halving algorithm, weighted majority algorithm, mistake bounds

• Ranking problems and algorithms

• Empirical evaluation, confidence intervals, comparison of learning algorithms

• Learning automata and transducers, Angluin-type algorithms, other algorithms

• Reinforcement learning
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Definitions and Terminology

• Example: an object, instance of the data used.

• Features: the set of attributes, often represented as a vector, 
associated to an example (e.g., height and weight for gender 
prediction).

• Labels: in classification, category associated to an object (e.g., positive 
or negative in binary classification); in regression real value.

• Training data: data used for training learning algorithm (often labeled 
data).

• Test data: data used for testing learning algorithm (unlabeled data).

• Unsupervised learning: no labeled data; supervised learning: uses 
labeled data; semi-supervised learning: intermediate situations.
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Example - SPAM Detection

• Problem: classify each e-mail message as SPAM or non-SPAM (binary 
classification problem)

• Potential data: large collection of SPAM and non-SPAM messages 
(labeled examples)

• Learning stages:

• divide labeled collection into training and test data.

• associate relevant features to examples (e.g., presence or 
absence of some sequences; importance of prior knowledge).

• use training data and features to train machine learning 
algorithm.

• predict labels of examples in test data, evaluate algorithm.
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Example

• Problem: Predict next symbol (regression problem)

• It is sometimes difficult to find relevant features

• Knowledge about the problem can be very useful!
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Example

• Problem: Predict next symbol (regression problem)

• It is sometimes difficult to find relevant features

• Knowledge about the problem can be very useful!
Training 

data
Test data

n v p d
d n v d
a n v b
d n v p
d a n v

n
n
b
n
b

n v d a
n v n b

-
-
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Example

• Problem: Predict next symbol (regression problem)

• It is sometimes difficult to find relevant features

• Knowledge about the problem can be very useful!
Training 

data
Test data

n v p d
d n v d
a n v b
d n v p
d a n v

n
n
b
n
b

n v d a
n v n b

-
-

Training data Test data

noun verb prep det
det noun verb det 
a noun verb adv 
det noun verb prep
det a noun verb

noun
noun
adv
noun
adv

noun verb det a
noun verb noun adv

noun
adv
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Generalization

• Definition: a learning algorithm is a consistent learner when it 
commits no error on examples from the training data

• Naive consistent learners are poor predictors, e.g.,

• Arbitrary linear separation:

• Learning DNF formulas: the disjunction of all positive examples is 
a consistent learner, but learning k-term DNF is NP-complete!

                                                 with

• Problem: poor generalization, closer to memorization, 
computational complexity.

w · x + b = 0

∨k

i=1
ai(X1) ∧ · · · ∧ ai(Xn), ai(Xj) ∈ {Xj , Xj , 1}.
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Probabilistic Model

• Sample space:    , set of all outcomes or elementary 
events possible in a trial, e.g., casting a die or 
tossing a coin.

• Event: subset            of sample space. The set of all 
events must be closed under complementation 
and countable union and intersection.

• Probability distribution: mapping      from the set 
of all events to        such that                , and for 
all mutually exclusive events,

15

Ω

A ⊆ Ω

Pr

[0, 1] Pr[Ω] = 1

Pr[A1 ∪ . . . ∪ An] =
n∑

i=1

Pr[Ai].
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Random Variables

• Definition: a random variable is a function
                  such that for any interval  , the subset 
of the sample space                         is an event. 
Such a function is said to be measurable. 

• Example: the sum of the values obtained when 
casting a die.

• Probability density function of random variable   : 
function 

• Joint probability density function of    and    :

16

X : Ω → R I

{A : X(A) ∈ I}

X

f : x !→ f(x) = Pr[X = x].

X Y

f : (x, y) !→ f(x, y) = Pr[X = x ∧ Y = y].
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Conditional Probability and
Independence

• Conditional probability of event    given   :

when 

• Independence: two events    and    are independent 
when

Equivalently,                              when 

17

A B

Pr[A | B] =
Pr[A ∧ B]

Pr[B]
,

Pr[B] != 0.

A B

Pr[A ∧ B] = Pr[A] Pr[B].

Pr[A | B] = Pr[A], Pr[B] != 0.
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Some Probability Formulae

• Sum rule:

• Union bound:

• Bayes formula:

18

Pr[A ∨ B] = Pr[A] + Pr[B] − Pr[A ∧ B].

Pr[
n∨

i=1

Ai] ≤
n∑

i=1

Pr[Ai].

Pr[X | Y ] =
Pr[Y | X] Pr[X]

Pr[Y ]
(Pr[Y ] != 0).
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Some Probability Formulae

• Chain rule:

• Theorem of total probability: assume that 

then for any event   ,

19

Pr[
∧n

i=1
Xi] = Pr[X1] Pr[X2 | X1] Pr[X3 | X1 ∧ X2]

. . .Pr[Xn |
∧n−1

i=1
Xi].

Ω = A1 ∪ A2 ∪ . . . ∪ An, with Ai ∩ Aj = ∅ for i $= j;

B

Pr[B] =
n∑

i=1

Pr[B | Ai] Pr[Ai].
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Application - Maximum a Posteriori 

• Problem formulation: given some observation O, determine the 
most likely outcome out of a set of hypotheses H:

Example - medical diagnosis: laboratory test with two results 
O={Positive, Negative} used to determine if a patient has specific disease 
d, thus H = {d, no-d}. Assumptions:

• Pr[d] = .005 (a priori probability of d); 

• Pr[ Positive | d] = .98 (probability of true positive)

• Pr[ Negative | no-d] = .95 (probability of true negative)

• If the test is Positive, what should be the diagnosis?
Pr[ Positive | d] Pr[d] = .98 x .005 = .0049
Pr[ Positive | no-d] Pr[no-d] = (1 - .95) x (1 - .005) = .04975 > .0049

ĥ = argmax
h∈H

Pr[h | O] = argmax
h∈H

Pr[O|h]Pr[h]

Pr[O]
= argmax

h∈H

Pr[O|h]Pr[h]
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Expectation

• Definition: the expectation (or mean) of a random 
variable    is

• Properties: 

• linearity, 

• if    and    are independent,

21

X

E[X] =
∑

x

xPr[X = x].

E[aX + bY ] = aE[X] + bE[Y ].

X Y

E[XY ] = E[X]E[Y ].
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Expectation

• Theorem (Markov’s inequality): let    be a non-
negative random variable with                 , then 
for all         ,

• Proof:

22

X

t > 0

Pr[X ≥ tE[X]] ≤
1

t
.

Pr[X ≥ tE[X]] =
∑

x≥tE[X] Pr[X = x]
≤

∑
x≥tE[X] Pr[X = x] x

tE[X]

≤
∑

x
Pr[X = x] x

tE[X]

= E[ x

tE[X] ] = 1
t
.

E[X] < ∞
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Variance

• Definition: the variance of a random variable    is 

      is called the standard deviation of the random 
variable   .

• Properties: 

•  

• if    and    are independent,

23

X

Var[X] = σ
2

X = E[(X − E[X])2].

σX

X

Var[aX] = a
2Var[X].

X Y

Var[X + Y ] = Var[X] + Var[Y ].
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Variance

• Theorem (Chebyshev’s inequality): let    be a 
random variable with                    , then for all 

• Proof: Observe that

The result follows Markov’s inequality. 

24

X

Var[X] < ∞

t > 0,

Pr[|X − E[X]| ≥ tσX ] ≤
1

t2
.

Pr[|X − E[X]| ≥ tσX ] = Pr[(X − E[X])2 ≥ t
2
σ

2

X ].
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Application

• Experiment: roll a pair of fair dice n times. Can we give a good 
estimate of total value of the n rolls?

• Mean: 7n, variance: 35/6 n; thus by Chebyshev’s inequality, the final 
sum will lie between

in at least 99% of all experiments. The odds are better than 99 to 1 
that the sum be roughly between 6.976M and 7.024M after 1M rolls.

7n − 10

√

35

6
n and 7n + 10

√

35

6
n
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Weak Law of Large Numbers

• Theorem: let              be a sequence of random 
variables with the same mean    and variance     
and let                           , then for any         ,

• Proof: Since the variables are independent, 

• Thus, by Chebyshev’s inequality,

26

(Xn)n∈N

µ σ
2

< ∞

ε > 0

lim
n→∞

Pr[|Xn − µ| ≥ ε] = 0.

Xn =
1

n

∑n

i=1
Xi

Var[Xn] =
n∑

i=1

Var[
Xi

n
] =

nσ2

n2
=

σ2

n
.

Pr[|Xn − µ| ≥ ε] ≤
σ2

nε2
.
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