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Software Libraries

2

FSM Library: Finite-State Machine Library. General
software utilities for building, combining, 
optimizing, and searching weighted automata and 
transducers (MM, Pereira, and Riley, 2000).

http://www.research.att.com/projects/mohri/fsm

OpenFst Library: Open-source Finite-state 
transducer Library (Allauzen et al., 2007). 

http://www.openfst.org
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Software Libraries

GRM Library: Grammar Library. General software
collection for constructing and modifying weighted 
automata and transducers representing grammars 
and statistical language models (Allauzen, MM, and 

Roark, 2005).

http://www.research.att.com/projects/mohri/grm

DCD Library: Decoder Library. General software
collection for speech recognition decoding and 
related functions (MM and Riley, 2003).

http://www.research.att.com/~fsmtools/dcd
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FSM Library

The FSM utilities construct, combine, minimize, and 
search weighted finite-states transducers.

• User Program Level: Programs that read from 
and write to files or pipelines, fsm(1):
        fsmintersect in1.fsm in2.fsm >out.fsm

• C(++) Library Level: Library archive of C(++) 
functions that implements the user program 
level, fsm(3):
            Fsm in1 = FSMLoad("in1.fsm");
        Fsm in2 = FSMLoad("in2.fsm");
        Fsm out = FSMIntersect(fsm1, fsm2);
        FSMDump("out.fsm", out);

4
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• Definition Level: Specification of labels, of costs,
and of types of FSM representations.

5
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture
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FSM File Types

Textual format

• automata/acceptor files,

• transducer files,

• symbols files.

Binary format: compiled representation used by 
all FSM utilities.

7
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Compiling, Printing, and Drawing

Compiling

• fsmcompile -s tropical -iA.syms <A.txt >A.fsm

• fsmcompile -s log -iA.syms -oA.syms -t <T.txt >T.fsm

Printing

• fsmprint -iA.syms <A.fsm >A.txt

• fsmprint -iA.syms -oA.syms <T.fsm | dot -Tps >T.ps

Drawing

• fsmdraw -iA.syms <A.fsm | dot -Tps >A.ps

• fsmdraw -iA.syms -oA.syms <T.fsm | dot -Tps >T.ps
8
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Weight Sets: Semirings

A semiring                     is a ring that may lack 
negation.

• sum: to compute the weight of a sequence  
(sum of the weights of the paths labeled with 
that sequence).

• product: to compute the weight of a path 
(product of the weights of constituent 
transitions).

(K,⊕,⊗, 0, 1)

9
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Semirings - Examples

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞,+∞} ⊕log + +∞ 0

Tropical R ∪ {−∞,+∞} min + +∞ 0

with ⊕log defined by: x ⊕log y = − log(e−x + e
−y).

10
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Automata/Acceptors

Graphical Representation (        )

Acceptor file (         )

Symbols file (            )

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

A.ps

A.txt

A.syms

0 0 red .5

0 1 green .3

1 2 blue

1 2 yellow .6

2 .8

red 1

green 2

blue 3

yellow 4

11
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Transducers

Graphical Representation (        )

Transducer file (          )

Symbols file (            )
red 1

green 2

blue 3

yellow 4

T.ps

0 

red:yellow/0.5

1 
green:blue/0.3

2 /0.8
blue:green/0

yellow:red/0.6

0 0 red yellow .5

0 1 green blue .3

1 2 blue green

1 2 yellow red .6

2 .8

T.txt

T.syms

12
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Paths - Definitions and Notation

Path   

Sets of paths

•                : paths from             to             .

•                   : paths in                 with input label x.

•                      : paths in                    with output 
label y.

P (R1, R2) R1 ⊆ Q R2 ⊆ Q

P (R1, x, R2) P (R1, R2)
P (R1, x, y, R2) P (R1, x, R2)

13

π

n[π]p[π]
i[π]:o[π]

input label output label

previous state
or source state

next state or
destination state

13
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General Definitions

Alphabets: input    , output    .

States:    , initial states  , final states  .

Transitions:                                                        .

Weight functions:

• initial:                  .

• final:                    .

Σ ∆

Q

E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × K × Q

λ : I → K

ρ : F → K

14

I F
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Automata and Transducers - Definitions

Automaton 

Transducer 

A = (Σ, Q, I, F, E, λ, ρ)

T = (Σ,∆, Q, I, F, E, λ, ρ)

[[T ]](x, y) =
⊕

π∈P (I,x,y,F )

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π])

∀x ∈ Σ
∗
, y ∈ ∆

∗
,

[[A]](x) =
⊕

π∈P (I,x,F )

λ(p[π]) ⊗ w[π] ⊗ ρ(n[π])

∀x ∈ Σ
∗
,

15

15



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Weighted Automata

Sum of the weights of all successful 
paths labeled with x

[[A]](x) =

0

1a/0.1
2

a/0.5

b/0.2

a/0.4
3/0.1

b/0.3

b/0.6

[[A]](abb) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1

16
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Weighted Transducers

[[T ]](x, y) = Sum of the weights of all successful 
paths with input x and output y.

0

1a:b/0.1
2

a:b/0.5

b:a/0.2

a:a/0.4
3/0.1

b:a/0.3

b:a/0.6

[[T ]](abb, baa) = .1 × .2 × .3 × .1 + .5 × .3 × .6 × .1

17
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture

18
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Rational Operations

Sum

Product

Closure

[[T1 ⊕ T2]](x, y) = [[T1]](x, y) ⊕ [[T2]](x, y)

[[T ∗]](x, y) =
∞⊕

n=0

[[T ]]n(x, y)

19

[[T1 ⊗ T2]](x, y) =
⊕

x=x1x2

y=y1y2

[[T1]](x1, y1) ⊗ [[T2]](x2, y2).

19
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• Conditions (on the closure operation): condition 
on T: e.g., weight of ε-cycles =    (regulated 
transducers), or semiring condition: e.g.,                
as with the tropical semiring (more generally 
locally closed semirings).

• Complexity and implementation:

• linear-time complexity:

• lazy implementation.

1 ⊕ x = 1

0

O((|E1| + |Q1|) + (|E2| + |Q2|))

O(|Q| + |E|)

or

20
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Program: fsmunion A.fsm B.fsm >C.fsm

Graphical representation:

Sum - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

21
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Program: fsmconcat A.fsm B.fsm >C.fsm

Graphical representation:

Product - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 
green/0.3

2 
blue/0

yellow/0.6
3 

eps/0.8

4 /0green/0.4

5 /0.3

blue/1.2

22
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Program: fsmclosure B.fsm >C.fsm

Graphical representation:

Closure - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

red/0.5

1 green/0.3 2 /0.8
blue/0

yellow/0.6

3 4 /0
green/0.4

5 /0.3

blue/1.2

6 

eps/0

eps/0

B.fsa

0 

1 /0green/0.4

2 /0.3

blue/1.2

C.fsa

0 

1 /0

green/0.4

2 /0.3

blue/1.2

eps/0

eps/0.3

3 /0
eps/0

23
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture

24
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Elementary Unary Operations

Reversal

Inversion

Projection

Linear-time complexity, lazy implementation (not 
for reversal).

[[T̃ ]](x, y) = [[T ]](x̃, ỹ)

[[T−1]](x, y) = [[T ]](y, x)

[[A]](x) =
⊕

y

[[T ]](x, y)

25
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Program: fsmreverse A.fsm >C.fsm

Graphical representation:

Reversal - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 
blue/0

yellow/0.6

3 /0green/1.2

4 /0.3

blue/2

C.fsa

0 

4 eps/0

5 

eps/0.3
3 

green/1.2

blue/2
1 /0

red/0.5

2 
green/0.3blue/0

yellow/0.6

A.fsa

0 

red/0.5

1 
green/0.3

2 
blue/0

yellow/0.6

3 /0green/1.2

4 /0.3

blue/2

C.fsa

0 

4 eps/0

5 

eps/0.3
3 

green/1.2

blue/2
1 /0

red/0.5

2 
green/0.3blue/0

yellow/0.6

26
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Program: fsminvert A.fsm >C.fsm

Graphical representation:

Inversion - Illustration

A.fst

0 

red:bird/0.5

1 
green:pig/0.3

2 /0.8
blue:cat/0

yellow:dog/0.6

C.fst

0 

bird:red/0.5

1 
pig:green/0.3

2 /0.8
cat:blue/0

dog:yellow/0.6

A.fst

0 

red:bird/0.5

1 
green:pig/0.3

2 /0.8
blue:cat/0

yellow:dog/0.6

C.fst

0 

bird:red/0.5

1 
pig:green/0.3

2 /0.8
cat:blue/0

dog:yellow/0.6

27
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Program: fsmproject -1 T.fsm >A.fsm

Graphical representation:

Projection - Illustration

A.fst

0 

red:bird/0.5

1 
green:pig/0.3

2 /0.8
blue:cat/0

yellow:dog/0.6

C.fst

0 

bird:red/0.5

1 
pig:green/0.3

2 /0.8
cat:blue/0

dog:yellow/0.6

T.fst

0 

red:bird/0.5

1 
green:pig/0.3

2 /0.8
blue:cat/0

yellow:dog/0.6

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

28
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture

29
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Some Fundamental Binary Operations

Composition (                      commutative)

Intersection (                      commutative)

Difference (     unweighted and deterministic)

(K,⊕,⊗, 0, 1)

[[T1 ◦ T2]](x, y) =
⊕

z

[[T1]](x, z) ⊗ [[T2]](z, y)

[[A1 ∩ A2]](x) = [[A1]](x) ⊗ [[A2]](x)

(K,⊕,⊗, 0, 1)

A2

[[A1 − A2]](x) = [[A1 ∩ A2]](x)

(Pereira and Riley, 1997; MM et al. 1996)

30
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• Complexity and implementation:

• quadratic complexity:

• path multiplicity in presence of ε-transitions: ε-
filter;

• lazy implementation.

O((|E1| + |Q1|) (|E2| + |Q2|))

31
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Program: fsmcompose A.fsm B.fsm >C.fsm

Graphical representation:

Composition - Illustration

0

1a:b/0.1

2

b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5
0 1

b:c/0.3
2/0.7

a:b/0.4

a:b/0.6

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

0

1a:b/0.1

2

b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5
0 1

b:c/0.3
2/0.7

a:b/0.4

a:b/0.6

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

0

1a:b/0.1

2

b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5
0 1

b:c/0.3
2/0.7

a:b/0.4

a:b/0.6

(0, 0) (1, 1)
a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

32
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Multiplicity and ε-Transitions - Problem

33

Springer Handbook on Speech Processing and Speech Communication 14

0,0 1,1 1,2

2,1 2,2

3,1 3,2

4,3

a:d !:e

b:!

c:!

b:!

c:!

!:e

!:e

d:a

b :e

(x:x) (!1:!1)

(!1:!1)

(!1:!1)

(!2:!2)(!2:!2)

(!2:!2) (!2:!2)

(x:x)

(!2:!1)

0 1
a:a

2
b:!

3
c:!

4
d:d

0 1
a:d

2
!:e

3
d:a

Figure 8: Redundant ε-paths. A straightforward generalization of the ε-free case could generate all the paths
from (1, 1) to (3, 2) when composing the two simple transducers on the right-hand side.

λ[p[π]]⊗w[π]⊗x. Thus, x can be viewed as the resid-
ual weight at state q. The algorithm takes as input a
weighted automaton A = (A, Q, I, F, E, λ, ρ) and,
when it terminates, yields an equivalent deterministic
weighted automatonA′ = (A, Q′, I ′, F ′, E′, λ′, ρ′).

The algorithm uses a queue S containing the set
of states of the resulting automaton A′, yet to be ex-

amined. The sets Q′, I ′, F ′, and E′ are initially

empty. The queue discipline for S can be arbitrar-
ily chosen and does not affect the termination of the

algorithm. The initial state set of A′ is I ′ = {i′}
where i′ is the weighted set of the initial states of A
with the respective initial weights. Its initial weight

is 1 (lines 1-2). S originally contains only the subset
I ′ (line 3). Each time through the loop in lines 4-16,
a new weighted subset p′ is dequeued from S (lines
5-6). For each x labeling at least one of the transi-
tions leaving a state p in the weighted subset p′, a
new transition with input label x is constructed. The
weight w′ associated to that transition is the sum of

the weights of all transitions in E[Q[p′]] labeled with
x pre-⊗-multiplied by the residual weight v at each
state p (line 8). The destination state of the transi-
tion is the subset containing all the states q reached
by transitions in E[Q[p′]] labeled with x. The weight
of each state q of the subset is obtained by taking the
⊕-sum of the residual weights of the states p ⊗-times
the weight of the transition from p leading to q and
by dividing that by w′. The new subset q′ is inserted
in the queue S when it is a new state (line 16). If any
of the states in the subset q′ is final, q′ is made a fi-

nal state and its final weight is obtained by summing
the final weights of all the final states in q′, pre-⊗-
multiplied by their residual weight v (line 14-15).

The worst case complexity of determinization is
exponential even in the unweighted case. However,

in many practical cases such as for weighted au-
tomata used in large-vocabulary speech recognition,

this blow-up does not occur. It is also important to

notice that just like composition, determinization has
a natural lazy implementation in which only the tran-

sitions required by an application are expanded in the

result automaton.

Unlike in the unweighted case, determinization

does not halt on all input weighted automata. We

say that a weighted automaton A is determinizable
if the determinization algorithm halts for the inputA.
With a determinizable input, the algorithm outputs an
equivalent deterministic weighted automaton.

The twins property for weighted automata char-

acterizes determinizable weighted automata under
some general conditions [Mohri, 1997]. Let A be

a weighted automaton over a weakly left-divisible

semiring K. Two states q and q′ of A are said to be
siblings if there are strings x and y in A∗ such that

both q and q′ can be reached from I by paths labeled
with x and there is a cycle at q and a cycle at q′ both
labeled with y. When K is a commutative and can-

cellative semiring, two sibling states are said to be
twins when for every string y:

w[P (q, y, q)] = w[P (q′, y, q′)]. (14)

Springer Handbook on Speech Processing and Speech Communication 14

0,0 1,1 1,2

2,1 2,2

3,1 3,2

4,3

a:d !:e

b:!

c:!

b:!

c:!

!:e

!:e

d:a

b :e

(x:x) (!1:!1)

(!1:!1)

(!1:!1)

(!2:!2)(!2:!2)

(!2:!2) (!2:!2)

(x:x)

(!2:!1)

0 1
a:a

2
b:!

3
c:!

4
d:d

0 1
a:d

2
!:e

3
d:a

Figure 8: Redundant ε-paths. A straightforward generalization of the ε-free case could generate all the paths
from (1, 1) to (3, 2) when composing the two simple transducers on the right-hand side.

λ[p[π]]⊗w[π]⊗x. Thus, x can be viewed as the resid-
ual weight at state q. The algorithm takes as input a
weighted automaton A = (A, Q, I, F, E, λ, ρ) and,
when it terminates, yields an equivalent deterministic
weighted automatonA′ = (A, Q′, I ′, F ′, E′, λ′, ρ′).

The algorithm uses a queue S containing the set
of states of the resulting automaton A′, yet to be ex-

amined. The sets Q′, I ′, F ′, and E′ are initially

empty. The queue discipline for S can be arbitrar-
ily chosen and does not affect the termination of the

algorithm. The initial state set of A′ is I ′ = {i′}
where i′ is the weighted set of the initial states of A
with the respective initial weights. Its initial weight

is 1 (lines 1-2). S originally contains only the subset
I ′ (line 3). Each time through the loop in lines 4-16,
a new weighted subset p′ is dequeued from S (lines
5-6). For each x labeling at least one of the transi-
tions leaving a state p in the weighted subset p′, a
new transition with input label x is constructed. The
weight w′ associated to that transition is the sum of

the weights of all transitions in E[Q[p′]] labeled with
x pre-⊗-multiplied by the residual weight v at each
state p (line 8). The destination state of the transi-
tion is the subset containing all the states q reached
by transitions in E[Q[p′]] labeled with x. The weight
of each state q of the subset is obtained by taking the
⊕-sum of the residual weights of the states p ⊗-times
the weight of the transition from p leading to q and
by dividing that by w′. The new subset q′ is inserted
in the queue S when it is a new state (line 16). If any
of the states in the subset q′ is final, q′ is made a fi-

nal state and its final weight is obtained by summing
the final weights of all the final states in q′, pre-⊗-
multiplied by their residual weight v (line 14-15).

The worst case complexity of determinization is
exponential even in the unweighted case. However,

in many practical cases such as for weighted au-
tomata used in large-vocabulary speech recognition,

this blow-up does not occur. It is also important to

notice that just like composition, determinization has
a natural lazy implementation in which only the tran-

sitions required by an application are expanded in the

result automaton.

Unlike in the unweighted case, determinization

does not halt on all input weighted automata. We

say that a weighted automaton A is determinizable
if the determinization algorithm halts for the inputA.
With a determinizable input, the algorithm outputs an
equivalent deterministic weighted automaton.

The twins property for weighted automata char-

acterizes determinizable weighted automata under
some general conditions [Mohri, 1997]. Let A be

a weighted automaton over a weakly left-divisible

semiring K. Two states q and q′ of A are said to be
siblings if there are strings x and y in A∗ such that

both q and q′ can be reached from I by paths labeled
with x and there is a cycle at q and a cycle at q′ both
labeled with y. When K is a commutative and can-

cellative semiring, two sibling states are said to be
twins when for every string y:

w[P (q, y, q)] = w[P (q′, y, q′)]. (14)
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Solution - Filter F for Composition

0 

x:x

!2:!1

1 
!1:!1

2 

!2:!2

x:x

!1:!1

x:x

!2:!2

Replace T1 ◦ T2 with T̃1 ◦ F ◦ T̃2.
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Program: fsmintersect A.fsm B.fsm >C.fsm

Graphical representation:

Intersection - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 /0 1 
red/0.2

blue/0.6

green/0.4

2 /0.5
yellow/1.3

C.fsa

0 1 
red/0.7

2 
green/0.7

3 /0.8blue/0.6

4 /1.3

yellow/1.9

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 /0 1 
red/0.2

blue/0.6

green/0.4

2 /0.5
yellow/1.3

C.fsa

0 1 
red/0.7

2 
green/0.7

3 /0.8blue/0.6

4 /1.3

yellow/1.9

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 /0 1 
red/0.2

blue/0.6

green/0.4

2 /0.5
yellow/1.3

C.fsa

0 1 
red/0.7

2 
green/0.7

3 /0.8blue/0.6

4 /1.3

yellow/1.9
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Program: fsmdifference A.fsm B.fsm >C.fsm

Graphical representation:

Difference - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 /0 1 
red/0.2

blue/0.6

green/0.4

2 /0.5
yellow/1.3

C.fsa

0 1 
red/0.7

2 
green/0.7

3 /0.8blue/0.6

4 /1.3

yellow/1.9

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 1 
red

blue

green

2 
yellow

C.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

red/0.5

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6

B.fsa

0 1 
red

blue

green

2 
yellow

C.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

red/0.5
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture
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Optimization Algorithms

Connection: removes non-accessible/non-
coaccessible states.

ε-Removal: removes ε-transitions.

Determinization: creates equivalent deterministic 
machine.

Pushing: creates equivalent pushed/stochastic 
machine.

Minimization: creates equivalent minimal 
deterministic machine.

38
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• Conditions: there are specific semiring conditions
for the use of these algorithms, e.g., not all 
weighted automata or transducers can be 
determinized using the determinization algorithm.
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Program: fsmconnect A.fsm >C.fsm

Graphical representation:

Connection - Illustration

Corinna Cortes and Mehryar Mohri - WFSTs in Computational Biology ISMB 200534page

• Program: fsmconnect A.fsm >C.fsm

• Graphical representation:

Connection - Illustration

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8blue/0

yellow/0.6

5 

red/0

3 4 /0.2
green/0.2

A.fsa

0 

red/0.5

1 
green/0.3

2 /0.8blue/0

yellow/0.6

5 

red/0

3 4 /0.2
green/0.2

C.fsa

0 

red/0.5

1 
green/0.3

2 /0.8
blue/0

yellow/0.6
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Definition:

• Input: weighted transducer     .

• Output: equivalent weighted transducer     with 
all states connected.

Description:
3. Depth-first search of     from    .

4. Mark accessible and coaccessible states.

5. Keep marked states and corresponding 
transitions.

Complexity: linear 

Connection - Algorithm

T1

T2

T1 I1

O(|Q1| + |E1|).
41
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Program: fsmrmepsilon T.fsm >TP.fsm

Graphical representation:

ε-Removal - Illustration

0 1
a:b/0.1

!:!/0.2

2

!:!/0.3

3b:a/0.4

b:b/0.5

!:!/0.6
4/0

b:a/0.7

b:a/0.9

!:!/1

a:a/0.8 0

1
0.2

30.8 2

0.3

0.6

1.6

1

4/0

0

4/0

a:a/1.6

b:a/1

1

a:b/0.1

b:a/1.7

3

b:a/0.4

2

b:b/0.7

a:a/1.4

b:a/2.3

b:a/1.5

b:b/0.5

a:a/0.8

b:a/1.7

b:a/0.9

b:a/0.7

0 1
a:b/0.1

!:!/0.2

2

!:!/0.3

3b:a/0.4

b:b/0.5

!:!/0.6
4/0

b:a/0.7

b:a/0.9

!:!/1

a:a/0.8 0

1
0.2

30.8 2

0.3

0.6

1.6

1

4/0

0

4/0

a:a/1.6

b:a/1

1

a:b/0.1

b:a/1.7

3

b:a/0.4

2

b:b/0.7

a:a/1.4

b:a/2.3

b:a/1.5

b:b/0.5

a:a/0.8

b:a/1.7

b:a/0.9

b:a/0.7

0 1
a:b/0.1

!:!/0.2

2

!:!/0.3

3b:a/0.4

b:b/0.5

!:!/0.6
4/0

b:a/0.7

b:a/0.9

!:!/1

a:a/0.8 0

1
0.2

30.8 2

0.3

0.6

1.6

1

4/0

0

4/0

a:a/1.6

b:a/1

1

a:b/0.1

b:a/1.7

3

b:a/0.4

2

b:b/0.7

a:a/1.4

b:a/2.3

b:a/1.5

b:b/0.5

a:a/0.8

b:a/1.7

b:a/0.9

b:a/0.7

42

42



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Definition:

• Input: weighted transducer     .

• Output: equivalent WFST     with no ε-transition.

Description:
• Computation of ε-closures.

• Removal of εs.

• Complexity:

• Acyclic 

• General case (tropical semiring): 

ε-Removal - Algorithm

T1

T2

Tε : O(|Q|2 + |Q||E|(T⊕ + T⊗)).

O(|Q||E| + |Q|2 log |Q|)

(MM, 2001)
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Computation of ε-closures

Definition: for p in Q,

Problem formulation: all-pairs shortest-distance 
problem in     (T reduced to its ε-transitions).

• closed semirings: generalization of Floyd-
Warshall algorithm.

• k-closed semirings: generic sparse shortest-
distance algorithm.

C[p] =
{

(q, w) : q ∈ ε[p], d[p, q] = w "= 0
}

,

where d[p, q] =
⊕

π∈P (p,ε,q)

w[π].

Tε

44
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Definition:

• Input: weighted automaton or transducer

• Output: equivalent subsequential or deterministic 
machine    : has a unique initial state and no two 
transitions leaving the same state share the same 
input label. 

Description:
3. Generalization of subset construction: weighted 

subsets                                    , where    s are 
remainder weights.

4. Computation of the weight of resulting transitions.

Determinization - Algorithm

T1

T2

{(q1, w1), . . . , (qn, wn)} wi

(MM,1997)
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Semiring: weakly left divisible semirings.

Definition: T is determinizable when the 
determinization algorithm applies to T.

• All unweighted automata are determinizable.

• All acyclic machines are determinizable.

• Not all weighted automata or transducers are 
determinizable.

• Characterization based on the twins property.

Complexity: exponential, but lazy implementation.

Determinization - Conditions

46
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Program: fsmdeterminize A.fsm >D.fsm

Graphical representation:

Determinization of Weighted Automata - 
Illustration

0

2
a/1

b/4

1/0

a/3

b/1

3/0

b/1

b/3

b/3

b/5

 {(0,0)} 

{(1,2),(2,0)}/2
a/1

{(1,0),(2,3)}/0

b/1

{(3,0)}/0

b/1

b/3

0

2
a/1

b/4

1/0

a/3

b/1

3/0

b/1

b/3

b/3

b/5

 {(0,0)} 

{(1,2),(2,0)}/2
a/1

{(1,0),(2,3)}/0

b/1

{(3,0)}/0

b/1

b/3
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Program: fsmdeterminize T.fsm >D.fsm

Graphical representation:

Determinization of Weighted Transducers - 
Illustration

0

2a:a/0.1

1

a:c/0.5

a:b/0.2 4/0.7

b:eps/0.4

3

b:b/0.3

c:eps/0.7

a:b/0.6

a:eps/0.5

Determinization of Weighted Transducers – Illustration

• Program: fsmdeterminize T.fsm >D.fsm

• Graphical Representation:

{(0, eps, 0)}
{(1, c, 0.4), 

(2, a, 0)}

a:eps/0.1

{(0, b, 0)}
a:a/0.2

{(3, b, 0), 

(4, eps, .1)}

/(eps, 0.8)

b:a/0.3

{(4, eps, 0)}

/(eps, 0.7)
c:c/1.1

a:b/0.1

a:b/0.5

a:b/0.6
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Definition:

• Input: weighted automaton or transducer

• Output: equivalent automaton or transducer     
such that the longest common prefix of all 
outgoing paths be ε or such that the sum of the 
weights of all outgoing transitions be   modulo 
the string or weight at the initial state.

Pushing - Algorithm

T1

T2

1

(MM,1997; 2004)
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• Description:
1. Single-source shortest distance computation: 

for each state q,

2. Reweighting: for each transition e such that 

d[q] =
⊕

π∈P (q,F )

w[π].

d[p[e]] != 0,

w[e] ← (d[p[e]])−1(w[e] ⊗ d[n[e]])

50
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• Conditions (automata case): weakly divisible 
semiring, zero-sum free semiring or automaton.

• Complexity:

• automata case

• acyclic case: linear

• general case (tropical semiring):

• transducer case:

O(|Q| + |E|(T⊕ + T⊗)).

O(|Q| log |Q| + |E|).

O((|Pmax| + 1) |E|).
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Program: fsmpush -ic A.fsm >P.fsm

Graphical representation:

• Tropical semiring:

Weight Pushing - Illustration

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

0

1

a/0

b/1

c/4

2

d/10

e/11

3/0

e/0

f/1

e/0

f/1

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

0

1

a/0

b/1

c/4

2

d/10

e/11

3/0

e/0

f/1

e/0

f/1
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• Log semiring:

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

0

1

a/0.3266

b/1.3266

c/4.3266

2

d/10.326

e/11.326

3/-0.639

e/0.3132

f/1.3132

e/0.3132

f/1.3132

0

1

a/0

b/1

c/4

2

d/0

e/1

3/0

e/0

f/1

e/10

f/11

0

1

a/0.3266

b/1.3266

c/4.3266

2

d/10.326

e/11.326

3/-0.639

e/0.3132

f/1.3132

e/0.3132

f/1.3132

53



Mehryar Mohri - Speech Recognition Courant Institute, NYUpage

Program: fsmpush -il T.fsm >P.fsm

Graphical representation:

Label Pushing - Illustration

0

a:a

1
c: !

b:d

2
a: !

3b:!

4

c:d

d:!

a:d

5
a: !

6
f:d

0

a:a

1
c:d

b:!
2

a:d

3b:!

4

c: !

d:d

a:d

5
a: !

6
f: !

0

a:a

1
c: !

b:d

2
a: !

3b:!

4

c:d

d:!

a:d

5
a: !

6
f:d

0

a:a

1
c:d

b:!
2

a:d

3b:!

4

c: !

d:d

a:d

5
a: !

6
f: !
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Definition:

• Input: deterministic weighted automaton or 
transducer    .

• Output: equivalent deterministic automaton or 
transducer    with the minimal number of states 
and transitions.

Description:

• Canonical representation: use pushing or other 
algorithm to standardize input automata.

• Automata minimization: encode pairs (label, 
weight) as labels and use classical unweighted 
minimization algorithm.

Minimization - Algorithm

T1

T2

(MM,1997)
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• Complexity:

• Automata case

• acyclic case: linear, 

• general case (tropical semiring):

• Transducer case

• acyclic case:  

• general case (tropical semiring):

O(|Q| + |E|(T⊕ + T⊗)).

O(|E| log |Q|).

O(S + |Q| + |E| (|Pmax| + 1)).

O(S + |Q| + |E| (log |Q| + |Pmax|)).
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Program: fsmminimize D.fsm >M.fsm

Graphical representation:

Minimization - Illustration

0 1
a/0

b/1

d/0

2
b/1

4

a/2

3

c/2

5

c/3

d/3

6

e/2

c/1

7/0
e/1

d/4 e/3

0 1
a/0

b/1

d/0

2
b/0

4

a/3

3

c/0

5

c/0

d/6

6

e/0

c/1

7/6
e/0

d/6 e/0

0 1
a/0

b/1

d/0

2

b/0

a/3

3

c/0

d/6 6
e/0

c/1

7/6
e/0

0 1
a/0

b/1

d/0

2
b/1

4

a/2

3

c/2

5

c/3

d/3

6

e/2

c/1

7/0
e/1

d/4 e/3

0 1
a/0

b/1

d/0

2
b/0

4

a/3

3

c/0

5

c/0

d/6

6

e/0

c/1

7/6
e/0

d/6 e/0

0 1
a/0

b/1

d/0

2

b/0

a/3

3

c/0

d/6 6
e/0

c/1

7/6
e/0
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Definition:

• Input: deterministic weighted automata A and B.

• Output: TRUE iff A and B equivalent.

Description

• Canonical representation: use pushing or other 
algorithm to standardize input automata.

• Automata minimization: encode pairs (label, 
weight) as labels and use classical algorithm for 
testing the equivalence of unweighted automata.

Complexity: (second stage is quasi-linear)

Equivalence - Algorithm

O(|E1| + |E2| + |Q1| log |Q1| + |Q2| log |Q2|).

(MM,1997):
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Program: fsmequiv [-v] D.fsm M.fsm

Graphical representation:

Equivalence - Illustration

D.fsa

0 1 
red/0.3

2 /0.3blue/0.7

3 /0.4

yellow/0.9

M.fsa

0 1 
red/0

2 /1.3
blue/0

yellow/0.3

D.fsa

0 1 
red/0.3

2 /0.3blue/0.7

3 /0.4

yellow/0.9

M.fsa

0 1 
red/0

2 /1.3
blue/0

yellow/0.3
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Weighted automata and transducers

Rational operations

Elementary unary operations

Fundamental binary operations

Optimization algorithms

Search algorithms

This Lecture
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Program: fsmbestpath [-n N] A.fsm >C.fsm

Graphical representation:

Single-Source Shortest-Distance Algorithms - 
Illustration

A.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

red/0.5

C.fsa

0 1 
green/0.3

2 /0.8
blue/0

A.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

red/0.5

C.fsa

0 1 
green/0.3

2 /0.8
blue/0
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Program: fsmprune -c1.0 A.fsm >C.fsm

Graphical representation:

Pruning - Illustration

A.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

red/0.5

C.fsa

0 1 
green/0.3

2 /0.8
blue/0

A.fsa

0 

1 red/0.5

3 green/0.3

2 
red/0.5

4 /0.8
blue/0

yellow/0.6

green/0.3

C.fsa

0 1 
green/0.3

2 /0.8
blue/0

yellow/0.6
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Summary

FSM Library:

• weighted finite-state transducers (semirings);

• elementary unary operations (e.g., reversal);

• rational operations (sum, product, closure);

• fundamental binary operations (e.g., composition);

• optimization algorithms (e.g., ε-removal, 
determinization, minimization);

• search algorithms (e.g., shortest-distance 
algorithms, n-best paths algorithms, pruning).
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