A. Structural Risk Minimization

As discussed in class, the Structural Risk Minimization (SRM) technique is based on a hypothesis set \mathcal{H} defined as a countable union of hypothesis sets \mathcal{H}_n with finite VC-dimension or favorable Rademacher complexity. In this problem, we study several questions related to such countable union hypothesis sets.

1. Let $\mathcal{H} = \bigcup_{n=1}^{+\infty} \{h_n\}$ be a countable hypothesis set and assume that the target labeling function is in \mathcal{H}. In the standard statistical learning scenario, the learner receives an i.i.d. sample that he uses to train an algorithm and return a predictor. Here, suppose instead that the learner can request more labeled samples drawn i.i.d., as needed. Consider the following algorithm: starting from $t = 1$, at each round t, sample $m_t = \frac{1}{\epsilon} \log \frac{1}{\delta t}$ labeled points; if h_t is consistent with m_t, return h_t and stop.

 (a) Prove that the algorithm terminates.

 Solution: Since the Bayes classifier f^* is in \mathcal{H}, there exists t such that $f^* = h_t$, thus the algorithm terminates at most after t rounds.

 (b) Fix $\epsilon, \delta > 0$ and choose $\delta_t = \frac{\delta}{2t^2}$. Show that with probability $1 - \delta$, the algorithm returns a hypothesis with error at most ϵ. Suppose we use the samples obtained from previous rounds to test consistency, then, what is the maximum number of samples needed by the algorithm?

 Solution: The probability that the algorithm stops at round t while h_t has error ϵ is $\mathbb{P}[h_t \text{ consistent}\mid R(h_t) \geq \epsilon] \leq (1 - \epsilon)^{m_t} \leq e^{-\epsilon m_t} = \delta_t$. Thus, by the union bound,

 \[
 \mathbb{P}\left[\exists t \geq 1: h_t \text{ consistent}\mid R(h_t) \geq \epsilon \right] \leq \sum_{t=1}^{+\infty} \delta_t = \frac{\delta}{2} \sum_{t=1}^{+\infty} \frac{1}{t^2} = \frac{\delta \pi^2}{2} \frac{1}{6} \leq \delta.
 \]
Let \(t^* \) be the time at which the algorithm terminates. \(t^* \) is upper bounded by the index \(t \) such that \(h_t = f^* \). If we reuse samples, at most \(\frac{1}{\sqrt{2\pi^2}} \) points are needed overall.

(c) Can you generalize these results to the case where \(\mathcal{H} = \bigcup_{n=1}^{+\infty} \mathcal{H}_n \) with \(\text{VCdim}(\mathcal{H}_n) = d_n < +\infty \)?

Solution: Same algorithm, except at round \(t \) a consistent hypothesis in \(\mathcal{H}_t \) is sought. Assume that the ordering of \(\mathcal{H}_n \) is such that \(\mathcal{H}_n \subseteq \mathcal{H}_{n+1} \). At each round \(t \), select a sample \(S_{m_t} \) of size \(m_t \) and return \(h_t \in \mathcal{H}_t \) if it is consistent with \(S_{m_t} \). To derive the error bound, let \(\delta_t = \frac{\delta}{2^t} \) and let \(m_t = O\left(\frac{d_t \log 1}{\delta_t} \right) \) and observe that:

\[
P \left(R_D(h_t) > \epsilon \right) \leq P \left(\cup_{t=0}^{\infty} \{ \exists h \in \mathcal{H}_t : \hat{R}_{S_{m_t}}(h) = 0, R_D(h) > 0 \} \right) \leq \sum_{t=1}^{\infty} \delta_t = \frac{\delta}{2} \sum_{t=1}^{\infty} \frac{1}{t^2} \leq \delta.
\]

2. Suppose \(S \) is an infinite set that can be fully shattered by \(\mathcal{H} \). We wish to show that \(\mathcal{H} \) cannot be written as a countable union \(\mathcal{H} = \bigcup_{n=1}^{+\infty} \mathcal{H}_n \) with \(\text{VCdim}(\mathcal{H}_n) = d_n < +\infty \).

(a) Show that we can define a family of subsets \((X_n)_{n \geq 1}\) such that \(|X_n| = d_n + 1\) and \(X_n \subseteq S - \bigcup_{1 \leq k \leq n-1} X_k\).

Solution: This is straightforward since \(S \) is an infinite sample and since \(d_n \) is finite for any \(n \geq 1 \).

(b) Show that for any \(n \geq 1 \), there exists a labeling \(X_n^t \) that cannot be obtained using \(\mathcal{H}_n \).

Solution: This follows directly the definition of the VC-dimension: no set of size \(d_n + 1 \) can be fully shattered by \(\mathcal{H}_n \).

(c) Consider the labeling \(X^t \) of \(X = \bigcup_{n=1}^{+\infty} X_n \) obtained using all the \(X_n^t \)s. Show that no labeling of \(S \) using \(\mathcal{H} \) can be consistent with \(X^t \). Conclude that that \(\mathcal{H} \) cannot be written as a countable union \(\mathcal{H} = \bigcup_{n=1}^{+\infty} \mathcal{H}_n \) with \(\text{VCdim}(\mathcal{H}_n) = d_n < +\infty \).
Solution: Note that, by definition, all X_n's are disjoint. Thus, the labeling X^l obtained from all X_n^l's is well defined. Let Y be a labeling of T consistent with X^l. Then, for any $n \geq 1$, $Y_{|X_n}$ is a labeling of X_n matching X_n^l and thus Y is not in \mathcal{H}_n. Since Y is not in \mathcal{H}_n for any $n \geq 1$, it is not in \mathcal{H}. This shows that the assumption that \mathcal{H} cannot be written as a countable union $\mathcal{H} = \bigcup_{n=1}^{+\infty} \mathcal{H}_n$ with $\text{VCdim}(\mathcal{H}_n) = d_n < +\infty$ does not hold.

3. Suppose you only know an upper bound α_n on $\text{VCdim}(\mathcal{H}_n) = d_n < +\infty$ with $\sum_{n=1}^{+\infty} e^{-\alpha_n} < +\infty$. Give a generalization bound for the SRM-type algorithm defined by

$$f^* = \arg\min_{k \geq 1, h \in \mathcal{H}_k} \hat{R}_S + \sqrt{\frac{32\alpha_k \log(em)}{m}}.$$

for a sample S of size m.

Solution: Let $F_k(h) = \hat{R}_S + \sqrt{\frac{32\alpha_k \log(em)}{m}}$. Then using $\mathcal{H} = \bigcup_{k=1}^{+\infty} \mathcal{H}_k$

$$\mathbb{P}\left(\sup_{h \in \mathcal{H}} R(h) - F_k(h)(h) - \sqrt{\frac{2dk(h) \log(em)/d_k(h)}{m}} > \epsilon \right)$$

can be bounded as follows:

$$\leq \sum_{k=1}^{+\infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}_k} R(h) - F_k(h) - \sqrt{\frac{2dk \log(em)/d_k}{m}} > \epsilon \right)$$

$$= \sum_{k=1}^{+\infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}_k} R(h) - F_k(h) - \hat{R}_S(h) - \sqrt{\frac{2dk \log(em)/d_k}{m}} > \epsilon + \sqrt{\frac{32\alpha_k \log(em)}{m}} \right)$$

$$\leq \sum_{k=1}^{+\infty} \exp\left(- 2m \left(\epsilon + \sqrt{\frac{32\alpha_k \log(em)}{m}} \right)^2 \right)$$

$$\leq \sum_{k=1}^{+\infty} \exp\left(- 2me^2 \right) \exp\left(- a_k \log m \right)$$

$$\leq Ce^{-2me^2}.$$

Applying similar steps and recalling that f^* is the minimizer of $\hat{R}_S +$
\[\sqrt{\frac{32\alpha_k \log(em)}{m}}, \] we can show that

\[\mathbb{P}\left(\sup_{h \in \mathcal{H}} F_k(f^*)(f^*) - R(h^*) - \sqrt{\frac{32\alpha_k (h^*) \log(em)}{m}} - \sqrt{\frac{2dk(h^*) \log em/ dk(h^*)}{m}} > \frac{\epsilon}{2} \right) \leq e^{-\frac{m\epsilon^2}{2}}. \]

Combining the results above and the union bound provides the generalization bound with \(\delta = (1 + C)e^{-\frac{m\epsilon^2}{2}}. \)

B. Learning kernels

Let \(\mathcal{K} \) be the family of all Gaussian kernels defined over \(\mathbb{R}^N \):

\[\mathcal{K} = \left\{ K_\gamma : K_\gamma(x, x') = e^{-\gamma \|x-x'\|^2}, \forall x, x' \in \mathbb{R}^N, \gamma > 0 \right\}. \]

Consider the hypothesis set defined via the reproducing kernel Hilbert space of the kernels in \(\mathcal{K} \):

\[\mathcal{H} = \left\{ h : h \in \mathbb{H}_K, K \in \mathcal{K}, \|h\|_{\mathbb{H}_K} \leq 1 \right\}. \]

1. Let \(S = (x_1, \ldots, x_m) \) be a sample of size \(m \). Show that \(\hat{\mathcal{R}}_S(\mathcal{H}) = \frac{1}{m} \mathbb{E}_\sigma \left[\sqrt{\sup_{\gamma > 0} \sigma^T K_\gamma \sigma} \right] \), where \(K_\gamma \) is the Gram matrix of kernel \(K_\gamma \) for the sample \(S \).
Solution:

\[
\hat{R}_S(\mathcal{H}) = \frac{1}{m} \mathbb{E} \left[\sup_{h \in \mathcal{H}_K, \|h\|_k \leq 1} \sum_{i=1}^{m} \sigma_i \langle h, \Phi_K(x_i) \rangle \right]
\]

\[
= \frac{1}{m} \mathbb{E} \left[\sup_{K \in \mathcal{K}} \left\| \sum_{i=1}^{m} \sigma_i \Phi_K(x_i) \right\|_{\mathbb{H}_K} \right]
\]

\[
= \frac{1}{m} \mathbb{E} \left[\sup_{K \in \mathcal{K}} \left(\sum_{i=1}^{m} \sigma_i \Phi_K(x_i) \right)^2 \right]
\]

\[
= \frac{1}{m} \mathbb{E} \left[\sup_{\gamma > 0} \sqrt{\sigma^\top K_{\gamma} \sigma} \right]
\]

\[
= \frac{1}{m} \mathbb{E} \left[\sqrt{\sup_{\gamma > 0} \sigma^\top K_{\gamma} \sigma} \right].
\]

2. Suppose \(\|x_i - x_j\| = 1\) for \(i \neq j\). Compute exactly \(\hat{R}_S(\mathcal{H})\).

Solution: Given that \(\|x_i - x_j\| = 1\) for \(i \neq j\), the diagonal terms of the kernel matrix are \(K_{i,j}^{i,j} = 1\) for \(i = j\) and the off-diagonal terms are \(K_{i,j}^{i,j} = e^{-\gamma}\) for \(i \neq j\).

\[
\sup_{\gamma > 0} \left[\sigma^\top K_{\gamma} \sigma \right] = \sup_{\gamma > 0} \left[\sum_{i,j} \sigma_i \sigma_j K_{i,j}^{i,j} \right]
\]

\[
= \sup_{\gamma > 0} \left[m + e^{-\gamma} \sum_{i \neq j} \sigma_i \sigma_j \right]
\]

\[
= \sup_{\gamma > 0} \left[\sum_{i,j} \sigma_i \sigma_j K_{i,j}^{i,j} \right]
\]

\[
= m + \sup_{\gamma > 0} e^{-\gamma} \sum_{i \neq j} \sigma_i \sigma_j
\]

\[
= m + \sum_{i \neq j} \sigma_i \sigma_j \mathbb{1}_{\sum_{i \neq j} \sigma_i \sigma_j > 0}.
\]
Observe that:

\[m + \sum_{i \neq j} \sigma_i \sigma_j = \sum_{i,j=1}^{m} \sigma_i \sigma_j = \sigma^\top 11^\top \sigma = (\sigma^\top 1)^2 = \left[\sum_{i=1}^{m} \sigma_i \right]^2. \]

It is also known that:

\[
\mathbb{E} \left[\left| \sum_{i=1}^{m} \sigma_i \right| \right] = \frac{1}{2^{m-1}} \left\lceil \frac{m}{2} \right\rceil \left(\left\lfloor \frac{m}{2} \right\rfloor \right) \leq \sqrt{m}. \quad \text{(Jensen’s ineq.)}
\]

Thus, we have:

\[
\sup_{\gamma > 0} [\sigma^\top K_{\gamma} \sigma] = \begin{cases}
|\sum_{i=1}^{m} \sigma_i| & \text{if } \sum_{i \neq j} \sigma_i \sigma_j > 0; \\
\sqrt{m} & \text{if } \sum_{i \neq j} \sigma_i \sigma_j < 0; \\
\sqrt{m} & \text{if } \sum_{i \neq j} \sigma_i \sigma_j = 0.
\end{cases}
\]

When \(m \) is odd, the event \(\sum_{i \neq j} \sigma_i \sigma_j = 0 \) cannot occur and the other two events are symmetric, each with probability 1/2. Thus, we have:

\[
\widehat{R}_S(\mathcal{H}) = \frac{1}{2m} \left(\frac{m}{2} + 1 \right) + \frac{1}{2} \sqrt{m}.
\]

When \(m \) is even, the event \(\sum_{i \neq j} \sigma_i \sigma_j = 0 \) occurs with probability \(\frac{1}{2^m} \left(\left\lceil \frac{m}{2} \right\rceil \right) \) and the other two events with equal probability \(p = \frac{1}{2} - \frac{1}{2^{m+1}} \left(\left\lceil \frac{m}{2} \right\rceil \right) \). Thus, we have:

\[
\widehat{R}_S(\mathcal{H}) = \left[\frac{1}{2} - \frac{1}{2^m+1} \left(\left\lceil \frac{m}{2} \right\rceil \right) \right] \frac{1}{2^m} \left(\frac{m}{2} \right) + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2^m+1} \left(\left\lceil \frac{m}{2} \right\rceil \right) \right] \frac{1}{\sqrt{m}}.
\]

We can express the solution in terms of \(\beta_0 \approx \sqrt{\frac{2}{\pi}} \), where \(\frac{1}{m} \mathbb{E}[|\sum_{i=1}^{m} \sigma_i|] = \frac{\beta_0}{\sqrt{m}} \), as follows:

\[
\widehat{R}_S(\mathcal{H}) = \begin{cases}
\frac{1}{2} \left[\beta_0 + 1 \right] \frac{1}{\sqrt{m}} & \text{if } m \text{ even} \\
\frac{1}{2} \left[\beta_0 + 1 \right] \frac{1}{\sqrt{m}} + \frac{1}{2} \left[\beta_0 - \beta_0^2 \right] \frac{1}{m} & \text{otherwise}.
\end{cases}
\]