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A. Learning kernels

In this problem, we will derive an alternative guarantee for learning kernels.
We will use the notation adopted in class.

1. Using the results presented in class, prove the following equality:

R̂S(H1) =
1

m
E

[
max
k∈[p]

√
σ>Kkσ

]
.

Solution: This follows immediately the equality at the bottom of slide
19. ut

2. Compute E[σ>Kkσ], for any k ∈ [p].

Solution: By definition, for any k ∈ [p],

E[σ>Kkσ] = E[
m∑

i,j=1

σiσj [Kk]ij ]

=
m∑

i,j=1

[Kk]ij E[σiσj ]

=

m∑
i=1

[Kk]ii = Tr[Kk]. (E[σiσj ] = 0 for i 6= j)

ut

3. Prove the following inequality for the empirical Rademacher complex-
ity of H1:

R̂S(H1) ≤ 1

m

√
max
k

Tr[Kk] +mλmax

√
log p

2
,
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where λmax is the largest eigenvalue of a matrix Kk, k ∈ [p] (hint :
you can use Jensen’s inequality and the proof technique in Massart’s
Lemma).

Solution: By Jensen’s inequality, in view of 1), we can write

R̂S(H1) =
1

m
E

[√
max
k∈[p]

σ>Kkσ

]
≤ 1

m

√
E

[
max
k∈[p]

σ>Kkσ

]
.

Now, for any t > 0, we can write

exp

(
tE

[
max
k∈[p]

σ>Kkσ

])
≤ E

[
exp

(
tmax
k∈[p]

σ>Kkσ

)]
(Jensen’s inequality)

= E

[
max
k∈[p]

exp

(
tσ>Kkσ

)]
≤ E

[ ∑
k∈[p]

exp

(
tσ>Kkσ

)]

=
∑
k∈[p]

E

[
exp

(
tσ>Kkσ

)]

=
∑
k∈[p]

etTr[Kk] E

[
exp

(
tσ>Kkσ − tE[σ>Kkσ]

)]
(in view of 2))

≤
∑
k∈[p]

etTr[Kk]et
2λ2

maxm
2/8 (Hoeffding’s inequality)

≤ p etmaxk Tr[Kk]et
2λ2

maxm
2/8.

When applying Hoeffding’s inequality, we used the fact that

0 ≤ σ>Kkσ ≤ mλmax.

Taking the log of both sides gives

E

[
max
k∈[p]

σ>Kkσ

]
≤ max

k
Tr[Kk] +

log p

t
+
tλ2

maxm
2

8
.

Choosing t to minimize the right-hand side (t =
√

8 log p/λmaxm) com-
pletes the proof. ut
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B. Model selection and convex surrogates

In class, we proved that the SRM technique benefits from very favorable
learning guarantees. However, SRM requires solving multiple ERM prob-
lems, which in general are NP-hard problems. Here, we will discuss guaran-
tees for using a convex surrogate loss instead of the original binary loss.

The hypotheses we consider are real-valued functions h : X → R. The
sign of h defines a binary classifier fh : X → {−1,+1} defined for all x ∈ X
by fh(x) = 1h(x)≥0 − 1h(x)<0. The loss or error of h at point (x, y) ∈
X × {−1,+1} is defined as the binary classification error of fh:

1fh(x)6=y = 1yh(x)<0 + 1h(x)=0∧y=−1 ≤ 1yh(x)≤0.

1. Show that, for any h, the generalization error of h can be expressed as
follows, where η(x) = P[y = +1|x] and where DX denote the marginal
distribution over X:

R(h) = E
x∼DX

[
η(x)1h(x)<0 + (1− η(x))1h(x)≥0

]
.

Solution:

R(h) = E
(x,y)∼D

[
1fh(x)6=y

]
= E

x∼DX

[
η(x)1h(x)<0 + (1− η(x))1h(x)>0 + (1− η(x))1h(x)=0

]
= E

x∼DX

[
η(x)1h(x)<0 + (1− η(x))1h(x)≥0

]
.

ut

2. Show that the Bayes classifier can be induced by h∗ defined for all
x ∈ X by h∗(x) = η(x)− 1

2 . We will denote by R∗ the Bayes error.

Solution: In view of (1), the Bayes classifier can be defined as assigning
label +1 to x when η(x) ≥ 1

2 , −1 and can therefore be induced by h∗.
ut

3. Prove that the following equality holds for the excess error of any
hypothesis h : X → R:

R(h)−R∗ = 2 E
x∼DX

[
|h∗(x)| 1h(x)h∗(x)≤0

]
.
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Solution: For any h, we can write

R(h) = E
x∼DX

[
η(x)1h(x)<0 + (1− η(x))1h(x)≥0

]
= E

x∼DX

[
η(x)1h(x)<0 + (1− η(x))(1− 1h(x)<0)

]
= E

x∼DX

[
[2η(x)− 1]1h(x)<0 + (1− η(x))

]
= E

x∼DX

[
2h∗(x)1h(x)<0 + (1− η(x))

]
,

where we used for the last step the equation established earlier on. In
view of that, for any h, the following holds:

R(h)−R(h∗) = E
x∼DX

[
2[h∗(x)](1h(x)≤0 − 1h∗(x)≤0)

]
= E

x∼DX

[
2[h∗(x)] sgn(h∗(x))1(h(x)h∗(x)≤0)∧((h(x),h∗(x))6=(0,0))

]
= 2 E

x∼DX

[
|h∗(x)| 1h(x)h∗(x)≤0

]
,

which completes the proof, since R(h∗) = R∗. ut

4. Let Φ: R → R be a strictly convex and non-decreasing function so
that for any u ∈ R, 1u≤0 ≤ Φ(−u). For any h, define LΦ(h) =
E(x,y)∼D

[
Φ(−yh(x))

]
. Show that LΦ(h) = Ex∼DX

[LΦ(x, h(x))], where
LΦ(x, u) = η(x)Φ(−u) + (1− η(x))Φ(u).

Solution: By definition,

LΦ(h) = E
(x,y)∼D

[
Φ(−yh(x))

]
= E

x∼DX

[
η(x)Φ(−h(x)) + (1− η(x))Φ(h(x))

]
.

ut

5. Let h∗Φ be defined by h∗Φ(x) = argminu∈[−∞,+∞] LΦ(x, u). Prove that
fh∗Φ is the Bayes classifier.

Solution: For a fixed x ∈ X, the minimum of LΦ(x, u) is achieved for
−η(x)Φ′(−u) + (1 − η(x))Φ′(u) = 0. Since Φ′ is non-decreasing, we
have u > 0 iff η(x) > 1

2 . ut
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6. Assume that there exists s ≥ 1 and c > 0 such that the following holds
for all x ∈ X: |h∗(x)|s =

∣∣η(x) − 1
2

∣∣s ≤ cs
[
LΦ(x, 0) − LΦ(x, h∗Φ(x))

]
.

Use Jensen’s inequality to prove the following

R(h)−R(h∗) ≤ 2c E
x∼DX

[[
Φ(0)− LΦ(x, h∗Φ(x))

]
1h(x)h∗(x)≤0

] 1
s
.

Solution: By definition, we can write

R(h)−R(h∗)

= E
x∼DX

[
|2η(x)− 1| 1h(x)h∗(x)≤0

]
≤ E

x∼DX

[
|2η(x)− 1|s 1h(x)h∗(x)≤0

] 1
s

(Jensen’s ineq.)

≤ 2c E
x∼DX

[[
Φ(0)− LΦ(x, h∗Φ(x))

]
1h(x)h∗(x)≤0

] 1
s

(assumption).

ut

7. Prove that Φ
(
−2h∗(x)h(x)

)
≤ LΦ(x, h(x)) (hint : use convexity).

Solution: Using the convexity of Φ, we can write

Φ
(
−2h∗(x)h(x)

)
= Φ

(
(1− 2η(x))h(x)

)
= Φ

(
η(x)(−h(x)) + (1− η(x))h(x)

)
≤ η(x)Φ((−h(x))) + (1− η(x))Φ(h(x)) = LΦ(x, h(x)).

ut

8. Use the previous inequalities to prove the following bound on the excess
error in terms of the excess surrogate loss:

R(h)−R∗ ≤ 2c
[
LΦ(h)− L∗Φ

] 1
s .
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Solution: Starting with the inequality previously proven, we can write

R(h)−R(h∗)

≤ 2c E
x∼DX

[[
Φ(0)− LΦ(x, h∗Φ(x))

]
1h(x)h∗(x)≤0

] 1
s

≤ 2c E
x∼DX

[[
Φ
(
−2h∗(x)h(x)

)
− LΦ(x, h∗Φ(x))

]
1h(x)h∗(x)≤0

] 1
s

(Φ non-decreasing)

≤ 2c E
x∼DX

[
[LΦ(x, h(x))− LΦ(x, h∗Φ(x))] 1h(x)h∗(x)≤0

] 1
s

(convexity ineq.)

≤ 2c E
x∼DX

[
LΦ(x, h(x))− LΦ(x, h∗Φ(x))

] 1
s
.

ut

9. [Bonus point] Show that the assumption holds for the logistic loss with
where (Φ(u) = log2(1 + eu)), with s = 2 and c = 1√

2
. Show the same

for the exponential loss.
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