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A. Exponentially Weighted algorithm

We consider the Exponentially Weighted algorithm and adopt the notation
and setup discussed in class. Let NL be the number of experts with cumu-
lative loss at most L > 0 at time T : NL = |{i ∈ [N ] :

∑T
t=1 L(ŷt,i, yt) ≤ L}|.

1. Show that the following inequality holds for the cumulative loss of the
algorithm, for any η > 0:

T∑
t=1

L(ŷt, yt) ≤ L+
1

η
log

N

NL
+
ηT

8
.

Solution: Using the proof and notation presented in class, observe that
the lower bound can be written as follows:

ΦT − Φ0 = log
N∑
i=1

e−ηLT,i − logN ≥ log
N∑

LT,i≤L
e−ηLT,i − logN

≥ logNLe
−ηL − logN

= − log
N

NL
− ηL.

Comparing this lower bound with the upper bound given in class yields

− log
N

NL
− ηL ≤ −η

T∑
t=1

L(ŷt, yt) +
η2T

8

⇒
T∑
t=1

L(ŷt, yt) ≤ L+
1

η
log

N

NL
+
ηT

8
.

2. Suppose L is very close to minNi=1 LT,i and that NL is very large, say
NL = N/2. What does the bound show?
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Solution: When a very large number of experts admit a cumulative loss close
to the best in hinsight, the bound shows that the regret at time T of the
algorithm is upper bounded by 1

η log 2 + ηT
8 , which is a significantly more

favorable guarantee. FOr the best choice of η, the regret is bounded by the
following:

√
2T log(2).

B. Games

1. Find all pure and mixed Nash equilibria of the following game.

L R

U (0, 0) (6, 2)
D (2, 6) (5, 5)

Solution: It is easy to check that both (D,L) and (U,R) are pure Nash
equilibria. The sum of payoffs is 8 .

Let c = (p, 1−p) be column player mixed strategy to play {U,D}, and
let r = (q, 1− q) be row player’s mixed strategy to play {L,R}, where
0 < p < 1 and 0 < q < 1. If (c, r) is a mixed Nash equilibrium, then
the expected payoff for column player to play L and R should be the
same, otherwise the column player has incentive to remove probability
from suboptimal action. Therefore,

6 ∗ (1− q) = 2 ∗ q + 5 ∗ (1− q),

thus q = 1
3 . By the symmetry of the game, p = 1

3 . We have the unique
mixed Nash equilibrium

c =

(
1

3
,
2

3

)
, r =

(
1

3
,
2

3

)
.

The sum of payoffs is 1
9 ∗ 0 + 2

9 ∗ (6 + 2) ∗ 2 + 4
9 ∗ (5 + 5) = 8.

2. Can you find a correlated equilibrium for which the sum of the players’
payoffs is more favorable than that of any Nash equilibrium?

Solution: Consider the following correlated strategy:

L R

U 0 1/3
D 1/3 1/3
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We show that it is a correlated equilibrium. Consider the payoffs of
row player:

p(U,L)u(U,L) + p(U,R)u(U,R) = 2,

p(U,L)u(D,L) + p(U,R)u(D,R) =
5

3
< 2,

p(D,L)u(D,L) + p(D,R)u(D,R) =
7

3
,

p(D,L)u(U,L) + p(D,R)u(U,R) = 2 <
7

3
.

Therefore the row player has no incentive to deviate from the action
recommended. By the symmetry of the game, the same result holds
for the column player. Therefore this is a correlated equilibrium.

The sum of expected payoffs is 1
3 ∗ 8 ∗ 2 + 1

3 ∗ 10 = 26
3 , which is more

favorable than that of any Nash equilibrium.

3. Same two questions for the following game.

L C R

U (1, 1) (2, 4) (4, 2)
M (4, 2) (1, 1) (2, 4)
D (2, 4) (4, 2) (1, 1)

Solution: There is no pure Nash equilibrium. Let c = (p1, p2, 1 −
p1 − p2) be column player’s mixed strategy to play {L,C,R}, and
let r = (q1, q2, 1 − q1 − q2) be row player’s mixed strategy to play
{U,M,D}. We first assume that all actions have positive probabilities.
If (c, r) is a mixed Nash equilibrium, then column player should have
same expected payoff for each action, which implies that

q1 + 2q2 + 4(1− q1 − q2)

= 4q1 + q2 + 2(1− q1 − q2)

= 2q1 + 4q2 + (1− q1 − q2).

These linear equations admit a unique solution q1 = q2 = 1
3 . By

symmetry, p1 = p2 = 1
3 . Thus,

c =

(
1

3
,
1

3
,
1

3

)
, r =

(
1

3
,
1

3
,
1

3

)
is a Nash equilibrium, its sum of expected payoffs is 14

3 .
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Next we show that any Nash equilibrium must have positive proba-
bilities on all actions. Assume there exists a Nash equilibrium where
column player put 0 probability on R. By symmetry, row player must
put 0 probability on D. However, since 2q1 +4q2 = 2(q1 +2q2), column
player must have twice expected payoff of playing R then that of play-
ing L, therefore he has incentive to move probabilities from L to R,
which contradicts the assumption of equilibrium. By the same argu-
ment, a Nash equilibrium must put positive probabilities on all actions.
Thus

(
(1/3, 1/3, 1/3), (1/3, 1/3, 1/3)

)
is the unique Nash equilibrium.

It is easy to verify that the following is a correlated equilibrium.

L C R

U 0 1/6 1/6
M 1/6 0 1/6
D 1/6 1/6 0

Its sum of expected payoffs is 6, which is greater than that of Nash
equilibrium.

C. Alternative proof of the theorem of Nash

In class, we gave a full proof of the theorem of Nash. Here, we will give an
alternative proof using Bregman divergences. We will adopt the notation
and terminology introduced in class.

For any k ∈ [p], let Fk be a strictly convex and differentiable function
defined over an open and convex set Ck containing the simplex ∆(Ak). We
will denote by Bk the Bregman divergence associated to Fk.

1. For any p ∈ Ω = ×pk=1∆(Ak) and k ∈ [p], we define the function
q 7→ Ψk(q, p) over ∆(Ak) by

Ψk(q, p) = −uk(q, p−k) + Bk(q ‖ pk).

Prove that, for any p ∈ Ω, minq∈∆(Ak) Ψk(q, p) is attained.

Solution: Since Fk is differentiable, q 7→ Bk(q ‖ pk) is also differentiable
and therefore continuous. q 7→ uk(q, p−k) is linear thus continuous.
Thus, q 7→ Ψk(q, p) is a continuous function as a sum of continuous
functions and attains its minimum over the compact set ∆(Ak).

2. Prove that the minimizer of Ψk(q, p) over ∆(Ak) is unique (hint : show
that q 7→ Ψk(q, p) is strictly convex).
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Solution: Since Fk is strictly convex, q 7→ Bk(q ‖ pk) is also strictly
convex a sum of Fk and affine function. Thus, q 7→ Ψk(q, p) is also
strictly convex a sum of q 7→ Bk(q ‖ pk) and a linear function.

Now, suppose q and q′ 6= q are both minimizers. Then, for any α ∈
(0, 1), αq + (1− α)q′ is in αq + (1− α)q′ and

Ψk(αq + (1− α)q′, p) < αΨk(q, p) + (1− α)Ψk(q
′, p)

= αΨk(q, p) + (1− α)Ψk(q, p)

= Ψk(q, p),

which contradicts the minimality of Ψk(q, p). Thus, the minimizer is
unique.

3. Let f : Ω → Ω be the function defined for any p ∈ Ω by f(p) =
(q1, . . . , qp), with qk = argminq∈∆(Ak) Ψk(q, p). Assume that, for any
p ∈ Ω, argminq∈∆(Ak) Ψk(q, p) is a continuous function of p.

Show that f is well defined and show that f admits a fixed-point.

Solution: f is well defined by the existence and uniqueness of qk es-
tablished in previous questions. The continuity of f is a direct conse-
quence of the assumption. Thus, the existence of a fixed-point follows
Brouwer’s theorem.

4. Let p ∈ Ω be a fixed-point of f . Show that for any k ∈ [p] and
q ∈ ∆(Ak), the following inequality holds: Ψk(q, p) ≥ Ψk(pk, p) (hint :
prove that the right-derivative of the function J defined over [0, 1] by
J(α) = Ψk(αq + (1− α)pk, p) is non-negative). Prove the theorem of
Nash.

Solution: Observe that J(0) = Ψk(pk, p) = −uk(pk, p−k). For any α ∈
(0, 1], by definition of p as a fixed-point of f , and thus the minimizing
property of pk, we have

J(α)− J(0)

α
=

Ψk(αq + (1− α)pk, p)−Ψk(pk, p)

α
≥ 0.

This implies the inequality J ′(0) ≥ 0. Now,

[B(αq + (1− α)pk ‖ pk)]′α=0

= [F (αq + (1− α)pk)− F (pk)− 〈∇F (pk), α(q− pk)〉]′α=0

= 〈∇F (pk), q− pk〉 − 〈∇F (pk), q− pk〉
= 0.
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−uk(αq + (1− α)pk, p−k) is a linear function of α, thus, we can write

J ′(0) = −uk(q− pk, p−k) = −uk(q, p−k) + uk(pk, p−k) ≥ 0,

which proves the theorem of Nash.

5. Show that the function Fk defining the Bregman divergence Bk(q ‖ pk) =
1
2‖q− pk‖22 satisfies the assumptions.

Solution: The function Fk(q) = 1
2‖q‖

2
2 is strictly convex on Rnk and

differentiable.

6. Let nk be the cardinality of Ak = {a1, . . . , ank
} and let v ∈ Rnk be the

vector whose jth coordinate is uk(aj , p−k), j ∈ [nk]. Prove that

argmin
q∈∆(Ak)

Ψk(q, p) = argmin
q∈Ak

1

2
‖q− (pk + v)‖22.

Solution: Observe that u(q, pk) =
∑nk

j=1 q(a)uk(aj , p−k) = q · v. Thus,

Ψk(q, p) = −u(q, pk) +
1

2
‖q− pk‖22

= −q · v +
1

2
‖q‖22 − q · pk +

1

2
‖pk‖22

=
1

2
‖q− (pk + v)‖22 +

1

2
‖pk‖22 −

1

2
‖pk + v‖22.

Since the last two terms do not depend on q, this proves the result.

7. [bonus question] Prove that p 7→ argminq∈∆(Ak) Ψk(q, p) is continuous.
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