Mehryar Mohri Advanced Machine Learning 2018 Courant Institute of Mathematical Sciences Homework assignment 1 February 20, 2018 Due: March 06, 2018

A. Exponentially Weighted algorithm

We consider the Exponentially Weighted algorithm and adopt the notation and setup discussed in class. Let N_L be the number of experts with cumulative loss at most L > 0 at time T: $N_L = |\{i \in [N]: \sum_{t=1}^T L(\hat{y}_{t,i}, y_t) \leq L\}|.$

1. Show that the following inequality holds for the cumulative loss of the algorithm, for any $\eta > 0$:

$$\sum_{t=1}^{T} L(\widehat{y}_t, y_t) \le L + \frac{1}{\eta} \log \frac{N}{N_L} + \frac{\eta T}{8}.$$

2. Suppose L is very close to $\min_{i=1}^{N} L_{T,i}$ and that N_L is very large, say $N_L = N/2$. What does the bound show?

B. Games

1. Find all pure and mixed Nash equilibria of the following game.

	L	\mathbf{R}
U	(0, 0)	(6, 2)
D	(2, 6)	(5, 5)

- 2. Can you find a correlated equilibrium for which the sum of the players' payoffs is more favorable than that of any Nash equilibrium?
- 3. Same two questions for the following game.

	L	\mathbf{C}	\mathbf{R}
U	(1, 1)	(2, 4)	(4, 2)
Μ	(4, 2)	(1, 1)	(2, 4)
D	(2, 4)	(4, 2)	(1, 1)

C. Alternative proof of the theorem of Nash

In class we gave a full proof of the theorem of Nash. Here, we will give an alternative proof using Bregman divergences. We will adopt the notation and terminology introduced in class.

For any $k \in [p]$, let F_k be a strictly convex nd differentiable function defined over an open and convex set C_k containing the simplex $\Delta(\mathcal{A}_k)$. We will denote by B_k the Bregman divergence associated to F_k .

1. For any $\mathbf{p} \in \Omega = \times_{k=1}^{p} \Delta(\mathcal{A}_{k})$ and $k \in [p]$, we define the function $\mathbf{q} \mapsto \Psi_{k}(\mathbf{q}, \mathbf{p})$ over $\Delta(\mathcal{A}_{k})$ by

$$\Psi_k(\mathsf{q},\mathsf{p}) = -u_k(\mathsf{q},\mathsf{p}_{-k}) + \mathsf{B}_k(\mathsf{q} \,\|\, \mathsf{p}_k).$$

Prove that, for any $\mathbf{p} \in \Omega$, $\min_{q \in \Delta(\mathcal{A}_k)} \Psi_k(\mathbf{q}, \mathbf{p})$ is attained.

- 2. Prove that the minimizer of $\Psi_k(\mathbf{q}, \mathbf{p})$ over $\Delta(\mathcal{A}_k)$ is unique (*hint*: show that $\mathbf{q} \mapsto \Psi_k(\mathbf{q}, \mathbf{p})$ is strictly convex).
- 3. Let $f: \Omega \to \Omega$ be the function defined for any $\mathbf{p} \in \Omega$ by $f(\mathbf{p}) = (\mathbf{q}_1, \ldots, \mathbf{q}_p)$, with $\mathbf{q}_k = \operatorname{argmin}_{\mathbf{q} \in \Delta(\mathcal{A}_k)} \Psi_k(\mathbf{q}, \mathbf{p})$. Assume that, for any $\mathbf{p} \in \Omega$, $\operatorname{argmin}_{\mathbf{q} \in \Delta(\mathcal{A}_k)} \Psi_k(\mathbf{q}, \mathbf{p})$ is a continuous function of \mathbf{p} .

Show that f is well defined and show that f admits a fixed-point.

- 4. Let $\mathbf{p} \in \Omega$ be a fixed-point of f. Show that for any $k \in [p]$ and $q \in \Delta(\mathcal{A}_k)$, the following inequality holds: $\Psi_k(\mathbf{q}, \mathbf{p}) \geq \Psi_k(\mathbf{p}_k, \mathbf{p})$ (*hint*: prove that the right-derivative of the function J defined over [0, 1] by $J(\alpha) = \Psi_k(\alpha \mathbf{q} + (1 \alpha)\mathbf{p}_k, \mathbf{p})$ is non-negative). Prove the theorem of Nash.
- 5. Show that the function F_k defining the Bregman divergence $\mathsf{B}_k(\mathsf{q} || \mathsf{p}_k) = \frac{1}{2} ||\mathsf{q} \mathsf{p}_k||_2^2$ satisfies the assumptions.
- 6. Let n_k be the cardinality of $\mathcal{A}_k = \{a_1, \ldots, a_{n_k}\}$ and let $\mathbf{v} \in \mathbb{R}^{n_k}$ be the vector whose *j*th coordinate is $u_k(a_j, \mathbf{p}_{-k}), j \in [n_k]$. Prove that

$$\operatorname*{argmin}_{\mathbf{q}\in\Delta(\mathcal{A}_k)}\Psi_k(\mathbf{q},\mathbf{p}) = \operatorname*{argmin}_{\mathbf{q}\in\mathcal{A}_k}\frac{1}{2}\|\mathbf{q} - (\mathbf{p}_k + \mathbf{v})\|_2^2.$$

7. [bonus question] Prove that $\mathbf{p} \mapsto \operatorname{argmin}_{\mathbf{q} \in \Delta(\mathcal{A}_k)} \Psi_k(\mathbf{q}, \mathbf{p})$ is continuous.