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A. Exponentially Weighted algorithm

We consider the Exponentially Weighted algorithm and adopt the notation
and setup discussed in class. Let NL be the number of experts with cumu-
lative loss at most L > 0 at time T : NL = |{i ∈ [N ] :

∑T
t=1 L(ŷt,i, yt) ≤ L}|.

1. Show that the following inequality holds for the cumulative loss of the
algorithm, for any η > 0:

T∑
t=1

L(ŷt, yt) ≤ L+
1

η
log

N

NL
+
ηT

8
.

2. Suppose L is very close to minN
i=1 LT,i and that NL is very large, say

NL = N/2. What does the bound show?

B. Games

1. Find all pure and mixed Nash equilibria of the following game.

L R

U (0, 0) (6, 2)
D (2, 6) (5, 5)

2. Can you find a correlated equilibrium for which the sum of the players’
payoffs is more favorable than that of any Nash equilibrium?

3. Same two questions for the following game.

L C R

U (1, 1) (2, 4) (4, 2)
M (4, 2) (1, 1) (2, 4)
D (2, 4) (4, 2) (1, 1)
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C. Alternative proof of the theorem of Nash

In class we gave a full proof of the theorem of Nash. Here, we will give an
alternative proof using Bregman divergences. We will adopt the notation
and terminology introduced in class.

For any k ∈ [p], let Fk be a strictly convex nd differentiable function
defined over an open and convex set Ck containing the simplex ∆(Ak). We
will denote by Bk the Bregman divergence associated to Fk.

1. For any p ∈ Ω = ×p
k=1∆(Ak) and k ∈ [p], we define the function

q 7→ Ψk(q, p) over ∆(Ak) by

Ψk(q, p) = −uk(q, p−k) + Bk(q ‖ pk).

Prove that, for any p ∈ Ω, minq∈∆(Ak) Ψk(q, p) is attained.

2. Prove that the minimizer of Ψk(q, p) over ∆(Ak) is unique (hint : show
that q 7→ Ψk(q, p) is strictly convex).

3. Let f : Ω → Ω be the function defined for any p ∈ Ω by f(p) =
(q1, . . . , qp), with qk = argminq∈∆(Ak) Ψk(q, p). Assume that, for any
p ∈ Ω, argminq∈∆(Ak) Ψk(q, p) is a continuous function of p.

Show that f is well defined and show that f admits a fixed-point.

4. Let p ∈ Ω be a fixed-point of f . Show that for any k ∈ [p] and
q ∈ ∆(Ak), the following inequality holds: Ψk(q, p) ≥ Ψk(pk, p) (hint :
prove that the right-derivative of the function J defined over [0, 1] by
J(α) = Ψk(αq + (1− α)pk, p) is non-negative). Prove the theorem of
Nash.

5. Show that the function Fk defining the Bregman divergence Bk(q ‖ pk) =
1
2‖q− pk‖22 satisfies the assumptions.

6. Let nk be the cardinality of Ak = {a1, . . . , ank
} and let v ∈ Rnk be the

vector whose jth coordinate is uk(aj , p−k), j ∈ [nk]. Prove that

argmin
q∈∆(Ak)

Ψk(q, p) = argmin
q∈Ak

1

2
‖q− (pk + v)‖22.

7. [bonus question] Prove that p 7→ argminq∈∆(Ak) Ψk(q, p) is continuous.

2


