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Conflicting Views in Semi-supervised Learning

Given n iid labeled sample {(xi , yi )}i=1,...,n and m iid unlabeled
sample {x ′i }i=1,...,m, can we do better than supervised learning from
merely n labeled points {(xi , yi )}i=1,...,n.

Not always better: Only when there exists a link between the
marginal data distribution P(x) and the target function to be
learned y = f (x).

Links: cluster assumption and manifold assumption.

Does unlabeled data help in error convergence rate under different
assumptions?

SSL helps SSL does not help

Cluster assumption Castelli and Cover[1, 2] Rigollet[5]
Manifold assumption Lafferey and Wasserman[3] Niyogi[4]
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Conflicting Views in Semi-supervised Learning

This work focuses on learning under the cluster assumption and
provides finite sample bounds to identify situations in which
unlabeled data will help to improve learning.
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The Cluster Assumption: Marginal Distributions

The marginal distribution p(x) =
∑K

k=1 akpk (x) is the mixture of a
finite, but unknown, number of component densities {pk}K

k=1.

Restrictions on pk :
1 pk is supported on a compact connected set Ck ∈ X with Lipschitz

boundaries. Specifically:

Ck = { x ≡ (x1, x2, . . . , xd ) ∈ X :

g
(1)
k (x1, x2, . . . , xd−1) ≤ xd ≤ g

(2)
k (x1, x2, . . . , xd−1)}

(1)

2 pk is bounded from above and below, 0 < b ≤ pk ≤ B.
3 pk is Holder-α smooth on Ck with Holder constant K1.
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The Cluster Assumption: Dicision Sets

Let D denote the collection of all non-empty sets obtained as
intersections of {Ck}K

k=1.

Cluster assumption: the target function y = f (x) to be learnt
is smooth on each set D ∈ D.
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The Cluster Assumption: Margin γ

The margin γ of a distribution is defined to be the minimal width of
a decision set.

The margin γ is assigned a positive sign if there is no overlap
between components,otherwise it is assigned a negative sign.
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Summary

Under cluster assumption, we are trying to figure out for what
(n,m, γ)(and possibly other constraints) SSL surpasses SL for all
general learners.

SSL > SL
⇑

SSL Learner ≈ Clairvoyant Learner > General SL Learner
⇑(definition)

Supervised learners with perfect knowledge of the decision
sets D
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Learning the Decision Sets:
SSL Learner ≈ Clairvoyant Learner

Decision sets are learnable using unlabeled data: marginal density p
is smooth within each decision set but exhibits jumps at the decision
set boundaries.

Main learning procedure:
1 Marginal Density Estimation: From unlabeled sample {xi}i=1,...,m to

density estimator p̂(x)
2 Decision Set Estimation: From p̂(x) to decision set estimator D̂
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Learning the Decision Sets: Marginal Density Estimation

Sup-norm kernel density estimator[6]: Consider a uniform grid over
the feature space X = [0, 1]d with spacing 2hm, where
hm = κ0((logm)2/m)1/d .
Make a histogram-style density estimation on the grid using kernel
density estimation:

p̂(x) =
1

mhd
m

m∑
i=1

G (H−1
m (Xi − x̄)) (2)

Where x̄ is the closest point to x on the grid, G is the kernel and
Hm = hmI
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Learning the Decision Sets: Decision Set Estimation

Locating the jumps in p̂(x): p-connectivity of data points.

Two point x1, x2 ∈ X are said to be connected, if there exists a
sequence of points x1 = z1, z2, . . . , zl = x2 such that
z2, ..., zl−1 ∈ U,‖zj − zj+1 ≤ 2

√
dhm‖.

Two point x1, x2 ∈ X are said to be p-connected, if in addition to
being connected, we have |p̂(zi )− p̂(zj )| ≤ (logm)−1/3 for all zi , zj

satisfying ‖zi − zj‖ ≤ hm logm.

All points that are pairwise p-connected specify an empirical
decision set D̂ and we derived D̂.
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Learning the Decision Sets: Guarantee

Exclude decision boundaries, p-connectivity is equivalent to decision
set with high probability.

Margin γ plays an important role: theorem works only when |γ| is in
the order of the spacing hm.
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Learning the Decision Sets: Proof

1 Uniform bound for density estimation: Given certain assumptions on
Kernels, we have with probability at least 1− 1

m :

sup
x∈supp(p)\RB

|p(x)− p̂(x)| <
∣∣∣∣hmin(1,α1)

m +

√
logm

md
m

∣∣∣∣ (3)

2 Conectivity: For all x ∈ supp(p)\RB, with probability 1− 1
m , there

exsits an unlabeled sample Xi that ‖Xi − x‖ <
√
dhm

3 Bound |p̂(x)− p̂(x ′)| using nearby unlabeled points z , z ′:
|p̂(x)− p̂(z)|,|p̂(z)− p̂(z ′)|, |p̂(z)− p(z)| and |p(z)− p(z ′)|
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SSL Performance Analysis

Let R(f ) denote the risk of interest for a given target function f and
excess risk E(f ) = R(f )−R∗, where R∗ is the infimum risk over all
possible learners.

SSL learner≈ clairvoyant learner:
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SSL Performance Analysis: Proof and Remarks

To prove the theorem, one only need to use the fact that D̂ is very
close to D in a probability sense. Using condition probability,
E E(f̂m,n) is close to E E(f̂D,n).

Conditions to make SSL Learner be close to clairvoyant learner are:
1 The margin γ is large enough: |γ| > C0(m/(logm)2)−1/d

2 The error term is smaller than ε2(n): (n/ε2(n))d = O(m/(logm)2)

If the clairvoyant learner outperforms general SL learners:

inf
fn

sup
PXY

E[E(fn)] ≥ ε1(n) > ε2(n) (4)

We have that there exists a SSL Learner that outperforms general
SL learners.
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Optimal Decision Rule: Definition

Y continuous and bounded random variable

f ∗(x) = E[Y |X = X ], under the squared error loss

Let Ek denote expectation with respect to pk (Y |X = x) and define
fk (x) = Ek [Y |X = x ] then

f ∗(x) =
K∑

k=1

akpk (x)∑K
j=1 ajpj (x)

fk (x) (5)

Assumptions:
1 fk is uniformly bounded, |fk | ≤ M
2 fk is Holder-α smooth on Ck

Mark Andrew Ward and Max Kuang Unlabeled Data: Now It Helps, Now It Doesn’t



institution-logo-filenameO

Introduction
Finite Sample Analysis of Semi-supervised Learning

Density-adaptive Regression
Concluding Remarks

Optimal Decision Rule
SSL Algorithm
Error Bounds

SSL Algorithm

Since f ∗ is smooth on each D ∈ D, perform local polynomial fits
within each empirical decision set, using labeled training data that
are p-connected

Use spatially adaptive estimator, optimal for piecewise-smooth
functions

Guarantee SSL still achieves an error bound that is no worse than
lower bound for SL when components are indiscernible even with
unlabeled data.
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SSL Algorithm

Semi-supervised learner:

f̂m,n,x (·) = arg min
f ′∈Γ

n∑
i=1

(Yi − f ′(Xi ))21
x

p←→Xi
+ pen(f ′) (6)

f̂m,n(x) ≡ f̂m,n,x (·)

Γ: collection of piecewise polynomials, defined over a recursive
dyadic partitioning of the domain X = [0, 1]d

pen(f ′) ∝ log(
∑n

i=1 1
x

p←→Xi
) ·#f ′, where #f ′ is the number cells

over which f ′ is defined
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Error Bounds: Overview

For piecewise Holder-α smooth functions, finite sample error bound
of max(n−2α/(2α+d), n−1/d )

Assume m� n2d so that supPXY
E[E(f̂m,n)] scales as ε2(n)

Assume d ≥ 2α/(2α− 1), since when d < 2α/(2α− 1) learning
decision sets does not simplify supervised learning task
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Error Bounds: Overview

γ0 fixed constant, corresponds to considering a fixed collection of
distributions whose complexity does not change with the amount of
data

Constants C0 and c0 characterize margin and only depend on fixed
parameters of the class PXY (γ)
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Error Bounds: Proof

Based on theorem from Castro 2005. Let nD = 1
n

∑n
i=1 1x∈D

Decompose the error of the estimator in to three different cases
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Under the cluster assumption, there exist general situations which
SSL can be significantly better than SL in terms of achieving smaller
finite sample error bounds than any SL

Likely that similar conclusion may be drawn under the manifold
assumption where the curvature of the manifold will play a similar
role to the margin under the cluster assumption

Showed SSL simplifies learning when there is a link between the
marginal and conditional distributions holds

Interested in SSL whose performance does not deteriorate when the
link or margin is not discernible using unlabeled data or does not hold

Ensure SSL performance is no worse than what SL would achieve
such as in Density-adaptive Regression
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