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Introduction
Conflicting Views in Semi-supervised Learning
The Cluster Assumption

Conflicting Views in Semi-supervised Learning

e Given n iid labeled sample {(x;, yi)}i=1,....n and m iid unlabeled
sample {x/}i=1... m, can we do better than supervised learning from
merely n labeled points {(x;, yi)}i=1,....n-

@ Not always better: Only when there exists a link between the
marginal data distribution P(x) and the target function to be
learned y = f(x).

@ Links: cluster assumption and manifold assumption.

@ Does unlabeled data help in error convergence rate under different
assumptions?

H SSL helps SSL does not help

Castelli and Cover[1, 2] Rigollet[5]
Lafferey and Wasserman[3]  Niyogi[4]

Cluster assumption
Manifold assumption
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Conflicting Views in Semi-supervised Learning
The Clus mption

Conflicting Views in Semi-supervised Learning

@ This work focuses on learning under the cluster assumption and
provides finite sample bounds to identify situations in which
unlabeled data will help to improve learning.

@ (b)

Figure 1: (a) Two separated high density sets with different labels that (b) cannot be discerned if the
sample size is too small, but (c) can be estimated if sample density is high enough.
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Conflicting Semi-supervised Learning
The Cluster Assumption

The Cluster Assumption: Marginal Distributions

@ The marginal distribution p(x) = Zle akpk(x) is the mixture of a
finite, but unknown, number of component densities {px}K_;.
@ Restrictions on py:

@ p« is supported on a compact connected set Cx € X with Lipschitz
boundaries. Specifically:

CG={ x=0a,x,...,xq) € X:
g%, xa-1) < xa < g0 (xu, %y -y xa-1)}

(1)

@ p« is bounded from above and below, 0 < b < px < B.
© p« is Holder-a smooth on Ci with Holder constant Kj.
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Conflicting Semi-supervised Learning
The Cluster Assumption

The Cluster Assumption: Dicision Sets

@ Let D denote the collection of all non-empty sets obtained as
intersections of {Cy }K_,.

o Cluster assumption: the target function y = f(x) to be learnt
is smooth on each set D € D.
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The Cluster Assumption: Margin ~

@ The margin  of a distribution is defined to be the minimal width of
a decision set.

@ The margin 7 is assigned a positive sign if there is no overlap
between components,otherwise it is assigned a negative sign.

djk = IIliIlp qe{1,2} H(jjp) - g]E(I)HOO ) 7£ k:
i = 191" = 7 e
where || - || denotes the sup-norm, and

otherwme

07{ 1 ifC;NCr=0Vj#k, wherej, ke {l,..., K}
B 1

Then the margin is defined as

y=0c- min dj.
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Finite Sample Analysis of Semi-supervised Learning

Summary

@ Under cluster assumption, we are trying to figure out for what
(n, m,~)(and possibly other constraints) SSL surpasses SL for all

general learners.

SSL > SL
fr
SSL Learner = Clairvoyant Learner > General SL Learner
1} (definition)
Supervised learners with perfect knowledge of the decision
sets D
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Learning the Decision Sets:
SSL Learner ~ Clairvoyant Learner

@ Decision sets are learnable using unlabeled data: marginal density p
is smooth within each decision set but exhibits jumps at the decision
set boundaries.

@ Main learning procedure:

@ Marginal Density Estimation: From unlabeled sample {x;}i=1,...,m to

density estimator p(x)
@ Decision Set Estimation: From p(x) to decision set estimator D
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Learning the Decision Sets: Marginal Density Estimation

@ Sup-norm kernel density estimator[6]: Consider a uniform grid over
the feature space X = [0, 1]¢ with spacing 2h,,, where
hm = ko((log m)?/m)*/4.

o Make a histogram-style density estimation on the grid using kernel
density estimation:

PO = o D G(Hy (X — %) (2)

Where X is the closest point to x on the grid, G is the kernel and
Hn = hpl

90
80

70
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Summary

Finite Sample Analysis of Semi-supervised Learning

Locating the jumps in p(x): p-connectivity of data points.

Two point x1,x; € X are said to be connected, if there exists a
sequence of points x; = z1,2»,...,2 = X2 such that

22,..,21-1 € U,HZJ — Zj+1 < zﬂhmH

Two point x1,x; € X are said to be p-connected, if in addition to
being connected, we have |p(z) — p(z)| < (log m)~*/3 for all z;, z
satisfying ||zj — zj|| < hm log m.

All points that are pairwise p-connected specify an empirical
decision set D and we derived D.
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SSL Performan

Learning the Decision Sets: Guarantee

Lemma 1. Denote the set of boundary points as
B:={z:2g= g,E,P)(zl....,:d,l),k e{l,...,K},pe{1,2}}

and define the boundary set as

Rp = {x: ing |z —z|| < 2\/{2}1,,,,}.

z€
If |y > Co(m/(logm)2)~Y4 where C, = 6\/drq, then for all p € Px, all pairs of points
21,22 € supp(p) \ R and all D € D, with probability > 1 — 1/m,
21 S ay ifand only if — x1,20 € D,

for large enoughm > mo = mo(Pmin, K, 1, d, a1, B, G, kg).!

@ Exclude decision boundaries, p-connectivity is equivalent to decision
set with high probability.

@ Margin ~ plays an important role: theorem works only when |v| is in
the order of the spacing hy,.
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Learning the Decision Sets: Proof

© Uniform bound for density estimation: Given certain assumptions on
Kernels, we have with probability at least 1 — %:

~ min(1l, |O m
sup  |p(x) — p(x)| < |Apin@en) 4 OB (3)
x€supp(p)\R s Mm

@ Conectivity: For all x € supp(p)\Rp, with probability 1 — X, there
exsits an unlabeled sample X; that || X; — x|| < Vdhp,

@ Bound |p(x) — p(x’)| using nearby unlabeled points z, z":
B(x) = p(2)].|p(2) = B(')], [B(2) — p(2)| and |p(2) — p(2')|
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SSL Performance Analysis

SSL Performance Analysis

o Let R(f) denote the risk of interest for a given target function f and
excess risk £(f) = R(f) — R*, where R* is the infimum risk over all
possible learners.

@ SSL learner clairvoyant learner:

Corollary 1. Assume that the excess risk £ is bounded. Suppose there exists a clairvoyant super-

vised learner fAD,n, with perfect knowledge of the decision sets D, for which the following finite
sample upper bound holds

sup IE[E(/’ADV,L)] < €e(n).
Pxv(7)

Then there exists a semi-supervised learner ]?,,,,V,L such that if |y| > C,(m/(log m)z)’l/“,

-~ 1 m ~i/d
sup E[E(fmn)] < e(n)+0 <; +n <ﬁ> ) .

Py (7) logm
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SSL Performance Analysis

Finite Sample Analysis of Semi-supervised Learning

SSL Performance Analysis: Proof and Remarks

@ To prove the theorem, one only need to use the fact that Dis very
close to D in a probability sense. Using condition probability,
E E(frm.n) is close to EE(fp ).
e Conditions to make SSL Learner be close to clairvoyant learner are:
@ The margin v is large enough: |y| > Co(m/(log m)?)~*/¢
@ The error term is smaller than ex(n): (n/e2(n))? = O(m/(log m)?)

o If the clairvoyant learner outperforms general SL learners:

infsupE[E(f,)] > e1(n) > e2(n) (4)

n Pxy

We have that there exists a SSL Learner that outperforms general
SL learners.
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© Density-adaptive Regression
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Density-adaptive Regression

Optimal Decision Rule: Definition

Y continuous and bounded random variable

(]
o *(x) =E[Y|X = X], under the squared error loss
o Let E, denote expectation with respect to px(Y|X = x) and define
fi(x) = E4[Y|X = x] then
S ap(x)
% k Pk
)= < —f(x) (5)

k=1 24j=1 ajpj(x)

@ Assumptions:

@ i is uniformly bounded, |fi| < M
@ £ is Holder-a smooth on Ci
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Optimal Decision Rule
SSL Algorithm

Density-adaptive Regression Error Bounds

SSL Algorithm

@ Since f* is smooth on each D € D, perform local polynomial fits
within each empirical decision set, using labeled training data that
are p-connected

@ Use spatially adaptive estimator, optimal for piecewise-smooth
functions

@ Guarantee SSL still achieves an error bound that is no worse than
lower bound for SL when components are indiscernible even with
unlabeled data.
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Density-adaptive Regression EVS’&”

SSL Algorithm

@ Semi-supervised learner:
n

Fon(-) = argmin » (Vi = £/(X))’1_» , +pen(f))  (6)
S - ’

?m n(X) = ?m,n,x(')

)

@ I: collection of piecewise polynomials, defined over a recursive
dyadic partitioning of the domain X = [0, 1]¢

o pen(f’) oc log(3°7 41 o, ) #f', where #f' is the number cells
over which ' is defined
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Density-adaptive Regression

Error Bounds: Overview

@ For piecewise Holder-oe smooth functions, finite sample error bound
of max(n=2¢/Ratd) p=1/d)
o Assume m > n*? so that supp, . E[E(Fn.n)] scales as e5(n)

o Assume d > 2a/(2a — 1), since when d < 2a/(2a — 1) learning
decision sets does not simplify supervised learning task

Margin range SSL upper bound  SL lower bound  SSL helps
v ex(n) e1(n)
7> n—2a/(20+d) n—20/(20+d) No
5 > con~ 14 n—20/(2a+d) n—2a/(2a+d) No
Eo’ll_l/d >y > Co(m)—l/d n—2e/(20+d) n—1/d Yes
Colggs) ™4 > 7 > —Col gs) 1/ n-1/d n-1/d No
—Col )™ >y n~2e/(Qa+d) n~1/d Yes
—yo > n—2a/(2a+d) n—1/d Yes
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Density-adaptive Regression

Error Bounds: Overview

Margin range SSL upper bound  SL lower bound ~ SSL helps
ol e2(n) e1(n)
7> % n—2e/(2a+d) n—2e/(2a+d) No
¥ > Con—l/d n—2a/(20¢+d) n—Za/(2a+cl) No
Con—l/d >y > CD((logmm)'z)_l/d n—2a/(0+d) n—1/d Yes
CO(W)_IM >y 2 _Co((lagmm)z‘)_l/d n=1/d n~1/d No
_C"(m)_l/d > n—2e/(2a+d) n-1/d Yes
—v0 > n—20/(2a+d) n-1/d Yes

@ 1 fixed constant, corresponds to considering a fixed collection of
distributions whose complexity does not change with the amount of
data

e Constants Cy and ¢y characterize margin and only depend on fixed
parameters of the class Pxy (%)
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SSL Alg
Error Bounds

Density-adaptive Regression

Error Bounds: Proof

@ Based on theorem from Castro 2005. Let np = %27:1 1.

B (0~ Fon(X)1xenlno) < 0 (22) T

@ Decompose the error of the estimator in to three different cases
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Concluding Remarks

Under the cluster assumption, there exist general situations which
SSL can be significantly better than SL in terms of achieving smaller
finite sample error bounds than any SL

Likely that similar conclusion may be drawn under the manifold
assumption where the curvature of the manifold will play a similar
role to the margin under the cluster assumption

Showed SSL simplifies learning when there is a link between the
marginal and conditional distributions holds

Interested in SSL whose performance does not deteriorate when the
link or margin is not discernible using unlabeled data or does not hold

Ensure SSL performance is no worse than what SL would achieve
such as in Density-adaptive Regression
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