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1 Short proof of Hoeffding’s lemma

Let X be a random variable with E[X] = 0 and |X| ≤ 1. Show that for
any t > 0, E[etX ] ≤ et

2/2. Hint : use the convexity of exponential to derive
E[etX ] ≤ cosh(t).

Solution: By convexity of the exponential function, for any t > 0,

etX ≤ 1−X
2

e−t +
1 +X

2
et,

thus, using (2n)! = (2n)(2n− 1) · · · ≥ (2n)(2(n− 1)) · · · = 2nn!, we have

E[etX ] ≤ 1

2
(e−t + et) = cosh(t) =

+∞∑
n=0

t2n

(2n)!
≤

+∞∑
n=0

t2n

2nn!
= et

2/2.

2 Small loss bound

In lecture 3, we used the bound on the regret of Randomized Weighted

Majority (RWM): RT ≤ O(
√
Lmin
T logN), assuming Lmin

T 6= 0. Here, you

are asked to give a proof. Using the proof given in Lecture 1 for the regret of
RWM and the inequality LT ≤ logN

1−β + (2− β)Lmin
T , show that for a suitable

choice of β, we have RT ≤ 4
√
Lmin
T logN .

Solution: In view of the inequality, we can write

RT ≤
logN

1− β
+ (1− β)Lmin

T ,

for β ∈ [1/2, 1), that is (1 − β) ∈ (0, 1/2]. The right-hand side is a convex

function of (1 − β). Assuming Lmin
T 6= 0, the minimizer over R+ is

√
logN
Lmin
T

,
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thus the minimizer over (0, 1/2] is achieved for 1 − β = min
{

1
2 ,
√

logN
Lmin
T

}
.

Plugging in this value gives: RT ≤ 4
√
Lmin
T logN .

3 Weighted online-to-batch

Let ` be a loss function convex with respect to its first argument and bounded
by one. Let h1, . . . , hT be the hypotheses returned by an on-line learning
algorithm A with regret RT when sequentially processing (xt, yt)

T
t=1, drawn

i.i.d. according to some distribution D.
1. Fix some arbitrary non-negative weights q1, . . . , qT summing to one.

Then, show that with probability at least 1−δ, the hypothesis h =
∑T

t=1 qtht
satisfies each of the following inequalities:

E
(x,y)∼D

[`(h(x), y)] ≤
T∑
t=1

qt`(ht(xt), yt) + ‖q‖2
√

2 log(1/δ)

E
(x,y)∼D

[`(h(x), y)] ≤ inf
h∈H

E
(x,y)∼D

[`(h(x), y)] +
RT
T

+ ‖q − u‖1 + 2‖q‖2
√

2 log(1/δ),

where q is the vector with components qt and u the uniform vector with all
components equal to 1/T .

Solution: Let R(ht) = E(x,y)∼D[`(ht(x), y)]. Let Zt be the random variable
defined by Zt = qt`(ht(xt), yt) − qtR(ht) and let Ft denote the filtration
associated to the sample process. We have |Zt| ≤ qt and E[Zt | Ft−1] =
E[qt`(ht(xt), yt) | ht]− qtR(ht) = qtR(ht)− qtR(ht) = 0. Thus, by Azuma’s
inequality, for any δ > 0, with probability at least 1− δ, the following holds:

T∑
t=1

qtR(ht) ≤
T∑
t=1

qt`(ht(xt), yt) + ‖q‖2
√

2 log(1/δ) (1)

T∑
t=1

qt`(ht(xt), yt) ≤
T∑
t=1

qtR(ht) + ‖q‖2
√

2 log(1/δ) (2)

Since ` is convex with respect to its first argument, by Jensen’s inequality,
we have E(x,y)∼D[`(h(x), y)] = E(x,y)∼D[`(

∑T
t=1 qtht(x), y)] ≤

∑T
t=1 qtR(ht).

Thus, by (1), for any δ > 0, the following holds with probability at least
1− δ,

E
(x,y)∼D

[`(h(x), y)] ≤
T∑
t=1

qt`(ht(xt), yt) + ‖q‖2
√

2 log(1/δ). (3)
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This proves the first statement. To prove the second claim, we will bound
the empirical error in terms of the regret. For any h∗ ∈ H, we can write
using infh∈H

1
T

∑T
t=1 `(h(xt), yt) ≤ 1

T

∑T
t=1 `(h

∗(xt), yt):

T∑
t=1

qt`(ht(xt), yt)−
T∑
t=1

qt`(h
∗(xt), yt)

=
T∑
t=1

(
qt −

1

T

)
[`(ht(xt), yt)− `(h∗(xt), yt)] +

1

T

T∑
t=1

[`(ht(xt), yt)− `(h∗(xt), yt)]

≤ ‖q − u‖1 +
1

T

T∑
t=1

`(ht(xt), yt)− inf
h∈H

1

T

T∑
t=1

`(h(xt), yt)

≤ ‖q − u‖1 +
RT
T

Now, by definition of the infimum, for any ε > 0, there exists h∗ ∈ H such
that E(x,y)∼D[`(h∗(x), y)] ≤ infh∈H E(x,y)∼D[`(h(x), y)] + ε. For that choice
of h∗, in view of (3), with probability at least 1− δ/2, the following holds:

E
(x,y)∼D

[`(h(x), y)] ≤
T∑
t=1

qt`(h
∗(xt), yt) + ‖q − u‖1 +

RT
T

+ ‖q‖2
√

2 log(1/δ).

By (2), for any δ > 0, with probability at least 1− δ/2,

T∑
t=1

qt`(h
∗(xt), yt) ≤ E

(x,y)∼D
[`(h∗(x), y)] + ‖q‖2

√
2 log(1/δ).

Combining these last two inequalities, by the union bound, with probability
at least 1− δ, the following holds:

E
(x,y)∼D

[`(h(x), y)] ≤ inf
h∈H

E
(x,y)∼D

[`(h(x), y)] + ε+
RT
T

+ ‖q − u‖1 + 2‖q‖2
√

2 log(1/δ).

Since this inequality holds for all ε > 0, it implies the second statement.
2. Here, we seek to prove a bound that holds uniformly for all weight

vectors q in some set. To do so, we consider a weight vector p that serves
as a reference. A natural reference in this context could be for example the
uniform distribution. Show that, for any δ > 0, the following holds with
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probability at least 1− δ for all q ∈ {q : ‖q − p‖1 < 1}:

E
(x,y)∼D

[`(h(x), y)] ≤
T∑
t=1

qt`(ht(xt), yt) + 2‖q − p‖1

+ (‖q‖2 + 2‖q − p‖1)

[
2

√
log log2

2

1− ‖q − p‖1
+

√
2 log

2

δ

]
.

Hint : consider the first inequality proven above for a fixed weight vector qk

and approximation error εk, for any k ≥ 0. Show that the inequality can be
extended to hold uniformly for all k ≥ 0 if you choose εk = ε+

√
2 log(k + 1).

Solution: Consider two sequences (εk)k≥0 and (qk)k≥0. By the first part, for
any fixed k ≥ 0, we have

P

[
E

(x,y)∼D
[`(h(x), y)] >

T∑
t=1

qkt `(ht(xt), yt) + ‖qk‖2
√

2εk

]
≤ e−ε2k .

Choose εk = ε+
√

2 log(k + 1). Then, by the union bound, we can write:

P

[
∃k ≥ 1: E

(x,y)∼D
[`(h(x), y)] >

T∑
t=1

qkt `(ht(xt), yt) + ‖qk‖2
√

2εk

]

≤
+∞∑
k=0

e−ε
2
k ≤

+∞∑
k=0

e−ε
2−log((k+1)2) = e−ε

2
+∞∑
k=1

1

k2
=
π2

6
e−ε

2 ≤ 2e−ε
2
.

(4)

We can choose qk such that
∥∥qk − p∥∥

1
= 1− 1

2k
. Then, for any q ∈ {q : ‖q−

p‖1 < 1}, there exists k ≥ 0 such that
∥∥qk − p∥∥

1
≤ ‖q − p‖1 <

∥∥qk+1 − p
∥∥
1

and thus such that

√
2 log(k + 1) =

√
2 log log2

1

1− ‖qk+1 − p‖1
=

√
2 log log2

2

1− ‖qk − p‖1

≤

√
2 log log2

2

1− ‖q − p‖1
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Furthermore, for that k, the following inequalities hold:∥∥∥qk∥∥∥
2
≤ ‖q‖2 +

∥∥∥qk − q∥∥∥
2

≤ ‖q‖2 +
∥∥∥qk − q∥∥∥

1

≤ ‖q‖2 +
∥∥∥qk − p∥∥∥

1
+ ‖q − p‖1

≤ ‖q‖2 + ‖q − p‖1 + ‖q − p‖1
≤ ‖q‖2 + 2‖q − p‖1.

and

T∑
t=1

qkt `(ht(xt), yt) ≤
T∑
t=1

qt`(ht(xt), yt) +
∥∥∥qk − q∥∥∥

1

≤
T∑
t=1

qt`(ht(xt), yt) + 2‖q − p‖1.

Plugging in these inequalities in (4) concludes the proof.

4 Coarse correlated equilibrium

Consider a finite normal form game with p < +∞ players and finite action
sets Ak, k ∈ [1, p]. Show that if each player plays an external regret mini-
mization strategy that has regret at most ε, then the empirical average of
the players (product) distributions: p = 1

T

∑T
t=1 p

t, where pt =
∏p
k=1 p

t
k, is

an ε-approximate coarse correlated equilibrium, that is, for all k ∈ [1, p], for
all ak ∈ Ak and all a′k ∈ Ak,

E
a∼p

[
uk(a

′
k, a−k)

]
≤ E

a∼p
[uk(ak, a−k)] + ε.

Solution: By definition, for each player k ∈ [1, p], the following holds:

E
a∼p

[uk(ak, a−k)] =
1

T

T∑
t=1

E
a∼pt

[uk(ak, a−k)]

E
a∼p

[
uk(a

′
k, a−k)

]
=

1

T

T∑
t=1

E
a∼pt

[
uk(a

′
k, a−k)

]
.
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Since each player has regret at most ε, for all k ∈ [1, p],

sup
a′k∈Ak

E
a∼pt

[
uk(a

′
k, a−k)

]
≤ E

a∼pt
[uk(ak, a−k)] + ε

This implies the ε-approximate coarse correlated equilibrium condition.
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