Mehryar Mohri Advanced Machine Learning 2024 Courant Institute of Mathematical Sciences Homework assignment 1 February 20, 2024 Due: March 05, 2024

1 Short proof of Hoeffding's lemma

Let X be a random variable with $\mathbb{E}[X] = 0$ and $|X| \leq 1$. Show that for any t > 0, $\mathbb{E}[e^{tX}] \leq e^{t^2/2}$. *Hint*: use the convexity of exponential to derive $\mathbb{E}[e^{tX}] \leq \cosh(t)$.

2 Small loss bound

In lecture 3, we used the bound on the regret of Randomized Weighted Majority (RWM): $R_T \leq O(\sqrt{L_T^{\min} \log N})$, assuming $L_T^{\min} \neq 0$. Here, you are asked to give a proof. Using the proof given in Lecture 1 for the regret of RWM and the inequality $\mathcal{L}_T \leq \frac{\log N}{1-\beta} + (2-\beta)\mathcal{L}_T^{\min}$, show that for a suitable choice of β , we have $R_T \leq 4\sqrt{\mathcal{L}_T^{\min} \log N}$.

3 Weighted online-to-batch

Let ℓ be a loss function convex with respect to its first argument and bounded by one. Let h_1, \ldots, h_T be the hypotheses returned by an on-line learning algorithm \mathcal{A} with regret R_T when sequentially processing $(x_t, y_t)_{t=1}^T$, drawn i.i.d. according to some distribution \mathcal{D} .

1. Fix some arbitrary non-negative weights q_1, \ldots, q_T summing to one. Then, show that with probability at least $1-\delta$, the hypothesis $h = \sum_{t=1}^{T} q_t h_t$ satisfies each of the following inequalities:

$$\mathbb{E}_{\substack{(x,y)\sim\mathcal{D}\\(x,y)\sim\mathcal{D}}} [\ell(h(x),y)] \leq \sum_{t=1}^{T} q_t \ell(h_t(x_t),y_t) + \|q\|_2 \sqrt{2\log(1/\delta)} \\
\mathbb{E}_{\substack{(x,y)\sim\mathcal{D}\\(x,y)\sim\mathcal{D}}} [\ell(h(x),y)] \leq \inf_{h\in\mathcal{H}} \mathbb{E}_{\substack{(x,y)\sim\mathcal{D}\\(x,y)\sim\mathcal{D}}} [\ell(h(x),y)] + \frac{R_T}{T} \\
+ \|q - u\|_1 + 2\|q\|_2 \sqrt{2\log(1/\delta)},$$

where q is the vector with components q_t and u the uniform vector with all components equal to 1/T.

2. Here, we seek to prove a bound that holds uniformly for all weight vectors q in some set. To do so, we consider a weight vector p that serves as a *reference*. A natural reference in this context could be for example the uniform distribution. Show that, for any $\delta > 0$, the following holds with probability at least $1 - \delta$ for all $q \in \{q: ||q - p||_1 < 1\}$:

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(h(x),y)] \leq \sum_{t=1}^{T} q_t \ell(h_t(x_t),y_t) + 2\|q-p\|_1 + (\|q\|_2 + 2\|q-p\|_1) \left[2\sqrt{\log\log_2\frac{2}{1-\|q-p\|_1}} + \sqrt{2\log\frac{2}{\delta}}\right].$$

Hint: consider the first inequality proven above for a fixed weight vector q^k and approximation error ϵ_k , for any $k \ge 0$. Show that the inequality can be extended to hold uniformly for all $k \ge 0$ if you choose $\epsilon_k = \epsilon + \sqrt{2 \log(k+1)}$.

4 Coarse correlated equilibrium

Consider a finite normal form game with $p < +\infty$ players and finite action sets \mathcal{A}_k , $k \in [1, p]$. Show that if each player plays an external regret minimization strategy that has regret at most ϵ , then the empirical average of the players (product) distributions: $\mathbf{p} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{p}^t$, where $\mathbf{p}^t = \prod_{k=1}^{p} \mathbf{p}_k^t$, is an ϵ -approximate coarse correlated equilibrium, that is, for all $k \in [1, p]$, for all $a_k \in \mathcal{A}_k$ and all $a'_k \in \mathcal{A}_k$,

$$\mathop{\mathbb{E}}_{\mathbf{a}\sim\mathbf{p}}\left[u_k(a'_k,a_{-k})\right] \leq \mathop{\mathbb{E}}_{\mathbf{a}\sim\mathbf{p}}\left[u_k(a_k,a_{-k})\right] + \epsilon.$$