An Efficient algrithm to find
All ‘Bidirectional’ Edges of an Undirected Graph.

B. Mishra,

Department of Computer Science, Carnegie-Mellon University
Pittsburgh, PA 15218

ABSTRACT. An efficient algorithm for the All-Bidirec-
tional-Idges Problem is presented. The All-Bidirectional-
Edges Problem is io find an edge-labelling of an undirected
network, G = (V, E'), with a source and a sink, such that
an edge [u,v] € E is labelled (u,v) or (v,u) (or both)
depending on the existence of a (simple) path from the
source to sink that visits the vertices u and v, in the order
u,v 0r v,u, respectively. The algorithm presented works by
partitioning the graph into a set of bridges and analyzing
them recursively. The time complexity of the algorithm
is shown to be O(| 15| - [V|).

The problem arises naturally in the context of the sim-
ulation of an MOS transistor network, in which a tran-
sistor may opsrate as a unilateral or a bilateral device,
depending on the voltages at its source and drain nodes.
For efficient simulation, it is required to detect the set of
transistors that may operate as bilateral devices. Also,
this algorithm can be used in order to detect all the sneak
paths in a network of pass transistor.

Introduction

Let G = (V,E) be a finite undirected graph with two
distinguished vertices, the source, s, and the sink, t. We
call an edge e = [u, v] of G ‘bidirectional’, if there are two
simple paths connecting s and ¢ and traversing e in either
order — u, v and v, u. Similarly, we call an edge ¢ = [u, v]
of G ‘unidirectional’, if every simple path connecting s and
t and containing e, traverses e only in one order, say u,
v; additionally, e is labelled (u,v). The All-Bidirectional-
Edges problem is to find all the ‘bidirectional’ and ‘unidi-
rectional’ edges of (7, together with the labellings of the
‘unidirectional’ edges.

From an alternative formulation of the problem it is
easy to see that we can label each edge [u,v] € E by ask-
ing two questions: () Are there two disjoint paths s —» u
and v — ¢ ? (4i) Are there two disjoint paths s — v and
u — t ? There are O(|E| - |V|) time algorithms to find
two vertex disjoint paths in an undirected graph, indepen-
dently discovered by Ohtsuki(1980)[7], Seymour(1980)[9]
and Shiloach(1980) [10]. The naive way of solving the
All-Bidirectional-Edges problem is to invoke an algorithm

This work was supported in part by NSF grant MCS-8216706.

0272-5428/84/0000/0207$01.00 © 1984 IEEE

207

Loap LoaD

B I__E;B_‘ P

I

Figure 1: (a)} A circuit for = ((AAB)V(BACAD)V (C
A E)). (b)) The resulting subgraph after common subcircuft
climination. However, because of the sneak path through D, it
is, in fact, a circuit for = ((A A B) vV (BAC A D)V (C A E)
V (A A D A E)). (¢)) The corresponding graph in which I is
‘bidirectional’ and all other edges are ‘unidirectional.’

for Two-Disjoint-Path twice per each edge. This takes
O(|F|2 -[V|]). On the other hand, existence of an algo-
rithm for All-Bidirectional-Edges problem, with a time-
complexity lower than O(|E| - |V|), readily, results in a
similarly efficient algorithm for Two-Disjeint-Paths prob-
lem, which is unlikely.

In this paper, we describe an O(JE| - [V|) time algo-
rithm for All-Bidirectional-Edges problem, using a com-
pletely new approach. The algorithm makes a novel use
of bridges of a circuit in a general graph.

The problem of finding all ‘bidirectional’ edges arises
naturally in the context of the simulation of an MOS tran-
sistor network, in which a transistor may operate as a uni-
lateral or a bilateral device, depending on the voltages at
its source and drain nodes. (Cf. Brand (1983)(2], Frank
(1984)[5].) For efficient simulation, it is important to find
the set of transistors that may operate as bilateral devices.
Also, sometimes it is desired that information propagates
in one direction only, and propagation in the wrong direc-
tion (resulting in a sneak path) can cause functiosal error.
(See Figure 1) Gur algorithm can be used to detect all the
sneak paths.

1. Preliminaries

This section introduces some useful graph theoretic
terms. The term ‘bridge’ is taken from Tutte(1977)[13].

i‘ ;%;g:bza nE(iirgges Céf BJ . Bridges Bl‘, By, Bs and By arc proper
)] 4 and By are degenerate bridges. The bridges By
and By interlace.
Definition 1.1: A vertex of attachment of a subgraph H
of G is a vertex of H that is incident in G with some edge
not belonging to H. Let J be any circuit of G. We define
a bridge of J in G as any subgraph B that satisfies the
following three conditions:

1. Each vertex of attachment of B is a vertex of J.
2. B is not a subgraph of J.

3. No proper subgraph of B satisfies the above condi-
tions. [

Definition 1.2: (Cf. Figure 2.) An edge ¢ = [u,v] of G
not belonging to J but having both ends in J is refexred to
as a degenerate bridge. Let G be the graph derived from
G by deleting the vertices of J and all their incident edges.
Let C be any component of G~ Let B be the subgraph
of G obtained from C by adjoining to it each edge of G
having one end in C and one in J, and adjoining also the
ends in J of all such edges. The subgraph B satisfies the
conditions to be a bridge. Such a bridge is called proper.
The component C of G~ is the nucleus of B. U

Definition 1.3: Let the vertices of attachment of a bridge
B of J be W(G, B) = {vo, 1, - -, Vk-1}, where vg, V1, . - .,
vg_; is their enumeration in the cyclic order on J. The
vertices of attachment dissect J into &k subpaths Lo, Ly,
v.y Ly q such that L; = J[vj;v541 (moa k). These sub-
paths are called the residual paths of B in J. w(G, B) will
stand for [W(G,B)|. O

Definition 1.4: Let By and B; be two distinct bridges of
a circuit J of G.
» We say Bj avoids B, if and only if one of the following
two conditions is satisfied:

1. w(G, By) <1 or w(G,By) < 1.

2. All the vertices of attachment of B, are contained

in a single residual path L of B,.

e If B, and B, do not avoid one another we say that they
overlap.
o If there exist two vertices of attachment z, and z, of By
and two vertices of attachment y; and y; of Bs, all four
distinct, such that z; and z, separate y; and y; in the
circuit J, then we say that they interlace.
e If B, and B, have exactly the same set of vertices of
attachment we say that they are equtvalent. [

208

Figure 3: BPQ-, BP- and B@-bridges of P and Q. Bridges
B,, By and Bs are BPQbridges; By is a BP-bridge and Bs, a
B9-bridge.

Definition 1.5: Let J be a circuit of the graph G. A
path N in @ avoiding J but having its two ends = and y
in J is called a cross-cut of J from z toy. O3

Definition 1.6: (Cf. Tigure 3.) Let J be a circuit of the
graph, G such that s and ¢t lie on J. Let the subpath
J[s;t] be P and its complementary subpath in J be Q.
The bridges of J are classified as follows: .

«BPY.BRIDGES: The set of bridges with at least one ver-
tex of attachment on P]s;t] and at least one vertex of
attachment on QJs; ¢[. :

BT -BRIDGES: The set of bridges with at least one vertex
of attachment on P]s;t[and no vertex of attachment on
Qls; .

+BY-BRIDGES: The set of bridges with no vertex of at-
tachment on P]s;t[and at least one vertex of attachment

on Q)s;¢]. O

Definition 1.7: Let J, P and Q be as in the previous
definition. Then J is called an ambitus if every BF- or
B9-bridge avoids every BY?-bridge. O

Definition 1.8: Let J, P and @ be as before and B =
B,,...,B; be the BP-bridges with respect to P. A non-
empty subset of bridges B, C B is called a block of BF-
bridges if it satisfies the following two conditions:

1. If B; € B, and B; and B; overlap, then B; € B,,.

2. No non-empty proper subset of B, satisfies the pre-
ceding condition. - O

Definition 1.9: Let G = (V,E) be a graph. The tree
T = (V!, E') of-the graph-G is.an undirected graph such
that: The set of vertices V' correspond with the non-
separable components (green) and the separation vertices
(blue); and the edges of T' connect green vertices to blue
vertices if and only if the nonseparable component con-
tains the separation vertex. 3

Definition 1.10: A graph G = (V, E) with distinguished
vertices s and ¢, (G;s,t) is said to be a chain graph, if the
tree of the graph G is a path P from C, to C, consisting of
alternating green and blue vertices, where C, and C; are
the nonseparable components of G containing the vertices
s and t, respectively. [

We present the following propositions that will be used
quite often later on.

Proposition 1.11: (Even[3]) Let z, y and 2z be three dis-
tinct vertices of attachment of a bridge B of J in G.
Then there is a vertez v belonging to the nucleus of B

for which there are three internally vertex disjoint paths
in B: Yi[z;v], Yaly;v] and V3fz50]. O

Following Tutte[14], we define a Y-graph as the union
Y of three paths Y, ¥, and Y3 which have one end v in
common but are otherwise mutually disjoint. We call v
the center and the paths Y; the arms of Y.

Proposition 1.12: Let z, y and z be three distinct ver-
tices of attachment of bridge B of J in G and let e be an
edge of B such that there 1s a cross-cut of J between x
and y containing e. Then at least one of the two follow-
ing conditions is satisfied: (1) there is a cross-cut of J
between z and z containing e (2) there is a cross-cut of J
between y and z containing e.

PROOT'. The proof is similar to that of the proposition 1.11
and henee, omitted. 0

Proposition 1.13: (Tutte[13]) Let B, and B, be distinct
overlapping bridges of a circuit J of G. Then either B,
and By interlace or they are equivalent 8-bridges. (I

2. Overview

For the ease of exposition, the algorithm is presented
in two parts: The first part is simple but provides an
algorithm of time-complexity of O(|E| - IV[%) (to be im-
proved later); it also identifies a graph of suitable struc-
ture (called a TYPE.IV graph) such that an efficient al-
gorithm for such graph yields an efficient algorithm for
general graphs. The second part, on the other hand, is
more complicated but provides an O(|E|-{V]) time algo-
rithm for a TYPE.IV graph, which, in turn, implies an
O(|E| - |V]) time algorithm for the general graphs.

In the first part (Section 3), we introduce four dif-
ferent classes of graphs: TYPE.I, TYPE.II, TYPE.III
and TYPE.IV graphs, of successively simpler structure
and show that we can label the graphs of a particular
type efficiently, on the assumption of existence of efficient
algorithms for the subsequent types. In the process we
give a set of four mutually' recursive algorithms such that
these, together with an algorithm for TYPE.I'V graph of
time complexity O(T(|E|,|[V|)) = O(E|- V), will result
in an O(T(|E|,|V|)) algorithm for general graphs. The
first part concludes with an O(|E| - |V|*) algorithm for
TYPE.IV graphs.

In the second part (Section 4) we sketch an O(|E|-|V])
time algorithm for TYPE.IV graph. This is a Divide-
and-Conquer algorithm and relies on an important con-
cept, called a U-Fragment. Intuitively, a U-Fragment can
be thought of as a super node which can be entered or
exited through its end vertices (s' and t') or its upper
and lower external attachments. The task is to find suit-

+. Analysis of a TYPE.III graph may result in a call
to the main algorithm.

209

able vertex disjoint paths in this super node, connecting.
end vertices and external attachments. These paths can
be extended to appropriate vertex-disjoint paths in the
outer U-Fragment (recursively) or in a TYPE.IV graph.
Such paths are guaranteed to exist if and only if the U-
Fragment is feasible (Definition 4.2) and has certain dis-
joint pairs of Cross-Cuts. The main idea of the algorithms
is to find such paths and to use them to label the edges.

3. A Simple Algorithm
3.1. Assumptions and Classification

Assumption 3.1: The graph, G, is a finite connected
undirected strict graph. [

|

Justification for the Assumption 9.2. Let P be a path in
the tree of G, T(QG) from C, to C; consisting of alternating
green and blue vertices. Let C, = C(,C,,...,C,, = C; be
the nonseparable components (green) and a;,az,...,am-1
the separation vertices (blue) on P. Let s; = s, t,, = t
and s; = a; (1 <7 <m)and t; = q;(1 <7 < m). Let
E, C E be the edges of the C;’s and Fy = E'\ Ey.

Theorem 3.3: Let G = (V, E) be an undirected network
with a source s and sink t and let E; and E, be the par-
tition of the edges, E as described. For each edge e € E,
e € By iff there is no simple path from s to t containing
e. I

Assumption 3.2: The graph, G, is a chain graph.

In a pre-processing step, we find and delete the edges, Fs
to obtain the graph G’, and present each non-separable
corponent (C;; s;,t;) of G’ as input to the main algorithm.
The preprocessing step takes O(|E| + [V|) time.

Definition 3.4: We introduce a classification of graphs
as follows: (¢)A nonseparable graph is said to be of type
I if it has a circuit J containing the vertices s and ¢ and
all its bridges are BY-, B9- or BP?-bridges; (1) type I,
if it is of TYPE.I and all its bridges are of BP%-bridges;
(#11) type I, if it is of TYPE.II and has only a single
BPQ-bridge; and () type IV, if it is of TYPE.III and
the subgraph, derived by deleting the vertices s and ¢
together with their incident edges, is nonseparable. [

3.2. Labelling a Chain Graph

Assume that we have an algorithm, called I,ABEL-
TYPE-I to label the edges of a TYPE.I graph.

Algorithm LABEL-GRAPH. (Cf. Figure 4.)

oSTEP1. Find the nonseparable components of the graph.
Let Cy,Cs,...,C,, be the chain of nonseparable compo-
nents and let s; and t; be the vertices associated with
C; (Cf. Assumption 3.2). For each (Ci; s;, t;), where
1 < ¢ < m, do the following steps.

oSTEP2. Find a circuit J containing the vertices s; and
t; n C;. Since C; is nonseparable such a circuit exists
and can be found in O(|E|) time, using depth-first search

Figure 4: Steps of the Algorithm LABEL- GRAPH.

technique. We call the subpath J[s;;¢:], P; and its com-
plemientary residual path in J, Q.

STEPS. Find all the bridges of C; with respect to the
cireuit J. Let § = {Gy, Gs,..., Gi} be the set of bridges
with only attachments s; and t;; and let B be the set of BY-
, B9 and BP@-bridges of J. Let G, be the graph derived
from C; by deleting the bridges of §. Since Gy 1s a TYPE.I
graph, by assumption we can label the edges of G using the
algorithm LABEL- TYPE-1. Moreover, since G; € § is a
chain graph, the labelling for G; can be done by recursively
calling the main algorithm. We can find the bridges in
O(|E|) time as in the planarity testing algorithm. O

Theorem 3.5: Assume that LABEL-TYPE-I correctly la-
bels the edges of a TYPE.I graph. Then the algorithm
LABEL- GRAPH correctly labels the edges of a nonsepara-
ble graph. [

3.3. Labelling a Type. I Graph

Assume that we have an algorithm, called LABEL-
TYPE-11, to label the edges of a TYPE.II graph.
Algorithm LABEL-TYPE-I.(Cf. Figure 5.)

oSTEP1. Modify J to obtain a circuit J' such that J'
is an ambitus. Let By, By, ...," B, be its blocks of BF-
and B@-bridges; and s; and t;, the left- and the right-most

SR

5

Figure 5: Steps of the Algorithm LABEL-TYPE-I.

210

vertices of attachments of the bridges of B;, respectively.
Let G" be the graph derived from G by first deleting all
the blocks B; and then replacing P[s;t;] or Q[si;t:] (de-
pending on whether B; is a block of BP- or B9-bridges,
respectively) by a single link [s;,1;]. we refer to [s;,t] as
a pseudo-edge(I) of the block B;. This step can be done
in time O(|E| -+ |V|). A linear time algorithm for finding
the ambitus can be found in the full paper.

oSTEP2. Since graph G" is a TY?E.II graph, by assump-
tion, we can label the edges of G" using the algorithm
LABEL-TYPE-II.

oSTEP3. For each block B;, where 1 < z < n, do the
following: If the pseudo-edge of B; 1s labeled ‘bidirectional’
by the Step. 2, then all edges of B; are ‘bidirectional’;
otherwise, label the edges of B; by calling LABEL- GRAPH
with the argument (By;s;,8). O

Let G be a TYPE.I graph with circuit J = PUQ.
Let B; be a block of B”-bridges of G and let its left- and

right-most vertices of attachment be s; and ¢,.

Lemma 3.6: Let G' be the graph dertved by first deleting
B; from G and then replacing the subpath Pls;;t;] by a
single link [s;,4;], called the pseudo-edge of B,. (i) If in a

legal labelling of G, [s:,1;] 1s labelled ‘bidirectional’ then all
edges of B; are ‘bidirectional’. () If in a legal labelling of
G, lsi,t;] is labelled (s;,t;) then the labelling of the edges
of B, are determined by that of (B s ;). O

Lemma 3.7: Let G" be the graph derived from G by re-
placing cvery block B; of BT~ and B?-bridges by the cor-
responding pseudo-edge [s;,t;]. Then £([s;,t;]) in G' =
[s:;,t:]) im G". O

Theorem 3.8: Suppose LABEL- TYPE-II correctly labels
the edges of a TYPE.II graph. Then the algorithm LABEL-
TYPE-1 correctly labels the edges of a TYPE.I graph.

O

PROOF. Tollows from the previous two Lemmas.

3.4. Labelling a Type.Il Graph

We assume that we have an algorithm, called LABEL-
TYPE-I1II to label the edges of a TYPE.III graph.

Algorithm LABEL-TYPE-IL (Cf. Figure 6.)

eSTEP1. Let By, Bs,...., B, be B"?-bridges of J in G.
We modify each bridge fragment G; = B; U J as follows:
Let sp and tp be the left- and right-most vertices of at-
tachment of B; on P; and, similarly, sq and tg, on Q.
Let Ly, Ly, ..., Ly be its residual paths not containing s
or t. G 1s derived from G, by contracting the subpaths
P[IS;SP]I, QHS;SQ]], Pﬂtp;tﬂ, Q[[tg;tﬂ, Ly, Ly, ..., Ly to
single links, called a pseudo-edge(Il) of the subpath. J' is
the circuit in G} derived from J by the contraction. Since,
each such G} is a TYPE.III graph, by assumption, we can
label the edges of G! using the algorithm TYPE.IIL.

oSTEP2. For cach edge ¢ of J, let {e, €, ..., e} be
the set of edges of G such that €; is the contraction of a
subpath containing e. Then if any €} 4s ‘bidirectional’ mark
e ‘bidirectional’. This step can be done in time O(|EY),

Tigure 6: Steps of the Algorithm LABEL-TYPE-[I.

since, as it will be shown in Lemma 3.14 there are at
most 4 - |E| pseudo-edges(II).

oSTEP3. Let B; and B; be two interlacing BY?-bridges of
J in G and sp and tp (respectively, sq and iq), their left-
and right-most vertices of attachment on P (respectively,
Q), distinct from s and t. Label the edges of the subpaths
Plsp;te] and Q[sq;tq] ‘bidirectional’. This step can be
done in time O(|E|). DO

Lemma 3.9: Let B be a BP9-bridge of J = PUQ in
TYPE.II graph G and ¢ = [u,v], an edge of B. Let G'
be a subgraph of G derived from G by deleting all bridges
except B and contracling the residual subpaths as in the
Algorithm LABEL-TYPE-11. Then there is a path from s
tot in G traversing e in the order u, v if and only if there
is a path from s tot in G' traversing e in the same order.

PROOF. (<=) Trivially true, since G' is a minor of G. (=) If
R[[s;t] traverse ¢ in the order w and v then we can write R[s; ¢]
as Rfs:z]* R[z;y]* R[y;t] such that R[x;y] is a cross-cut of J,
belonging to B and traversing ¢ in the order w, v. If z € Pls; ¢}
and y € Q[s;t] then the path Ps;z]* R[z;y]* Qly; t] in G
traverses ¢ in the same order. Hence, assume that z,y € PJs; ¢[.
Since B is BP2-bridge it has a vertex of attachment z € Q]s; tf.
Using proposition 1.12, we can find simple paths from s to ¢ such
that they traverse e in either direction. O

Lemma 3.10: Let B; and B; be two interlacing BFQ.
bridges of J = P U Q. Let sp and tp be the lefi- and
right-most vertices of attachment of B; and B; on P dis-
tinct from s and t; and similarly s and tg on Q. Then
the edges of the residual paths Plsp;tp] and Q[sq;tg] are
‘bidirectional’.

PROOF. (Cf. Figure 7.) Since B; and B; interlace, there exist
two vertices of attachment a; and b; of B; and two vertices of
attachment a; and b; of Bj, all four distinct, such that a; and
b; separate a; and bj in the circuit J. Let N; be a cross-cut of J

211

g

o+

CASE T ?

case m cAsE Iy

Figure 7: Four Cases of the Lemma.3.10

in G between a; and b; belonging to B;; and N; between a; and
b; belonging to B;. The four residual paths Ja;; a;], J[az;bi,
Jfb;; ;] and J[by; a;} will be referred to as quadrants I, II, TIT
and IV, respectively. The distinguished vertices s and ¢ lie on
J. Observe that if two B?-bridges B; and B; interlace then it
is always possible to choose four distinct vertices a;, b;, a; and
b; such that s and ¢ do not lie in the same quadrant.

Hence there are four cases to consider:

eCASE.1 s 3 an internal vertex of quadrant I and t i3 an in-
ternal verter of quadrant III. Let J[s;t] in quadrants I, II and
I be P[s;t] and Q]s;t] its complement in J. Let ay, b;, ay
and b; be wodified such that g; and a; are the left-most ver-
tices of attachment of B; and By, distinct from s, on @ and P
respectively; and similarly, b; and b;, distinct from ¢. Accord-
ingly, N; and N; are modified. Observe that sp (respectively,
sq) is distinct from a; (respectively, d;) if and only if sp is the
left-most vertex of attachment B; on P (respectively, sq, the
left-most vertex of attachment B; on @), distinct from s. A
similar observation can be made about ¢{p and tq.

Every edge of the residual paths Pla;; b;] and Q[au; b;] is ‘bidi-
rectional’. The paths P[s;t] and Q[s: a;] « N;[as; &;] * P[bi; as] +
N;las;b5] * Q[bj; t] traverse the edges of Play;b] in either di-
rection. Similarly, for Q[as; by}

If sp and a; are distinct then every edge of the path Plsp;a;]
is ‘bidirectional’. Since sp is a vertex of attachment of Bj,
there is a cross-cut between sp and b;, say N]. then the paths
P{s;t] and Q[s;b;]* N{bj;a;]* Plas;spl+ Ni[sp;bil+ Plbs;¢]
traverse the edges of Plsy;as] in cither directions. Similarly,
for P[b;;tp], Qsq; a:l and Q[bs; tg].

oCASE.2 s is an internal vertex of quadrant I and t, of quad-
rant IL. Let J{s;t] in quadrants T and II be P(s;t] and Q[s;t]
its complement in J. We may assume that a; = sp = tp. Since,
otherwise, we can reduce this case to an instance of the case(1).

Since B; is a BP9-bridge, a; is also an attachment of Bj; and
there are cross-cuts between a; and q; (N]) and between a;

http://botwo.cn

and b; (N)'). Let a; and b; be modified to be the left- and
right-most vertices of attachment of B; on @, distinct from s
and ¢, respectively. Accordingly N; is modified. Obsecrve that
s is distinct from a; if and only if s¢ is the left-most vertex
of attachment of B; on @ distinct from s. A similar relation
holds between 14y and b;.

Every -edge of the residual path Qfa;;b;] and Q[bj; b;] is ‘bidi-
rectional’. The'paths Qfs; t] and Pls;]+ Nj[a,;b]* Qbys; a]*
Nilai; b+ Q[bi;t] traverse edges of Qfa;;b,] in either direc-
tions. Similarly, for Qb;; b;].

If s and a; are distinct, then every edge of Qsq; a,] is ‘bidirec-
tional’. Since sq is a vertex of attachinent of Bj, there is a cross-
cut between sg and by, say N}, The paths Q[s; (] and Pls; a;]+
Nlaz; ;)= Qfa, s+ Ni[sq;bs] * Qby;t] traverse the cdges of
Q[sg; ;] in cither directions. The subpath Q[b;;¢g] is treated
in a similar manner.

eCASE.3 s = a; and t is an internal vertex of the quadrant
II. Let J{s;t] in quadrants I and Il be P[s;t] and Q[s;¢] be its
complement in J. We may assume that sp = a; and sg = b;.
Since, otherwise, we can reduce this casc to an instance of the
case(1) or case(2).

Since B; is a BP@-bridge, it has a vertex of attachment b} on
Plsp;tp]. Let b; and b} be modified to be the right-most ver-
tices of attachment of B; on P and @, distinct from ¢. Accord-
ingly N; is modified. Moreover, there are cross-cuts between a;
and b, (say, N!) and between b; and b (say, N]'). Observe that
tg is distinct frem by if and only if tg is the right-most vertex
of attdachment of Bj; distinct from ¢. A similar relation holds
between tp and b,

Every edge of the residual path @[bj;b;] is ‘bidirectional’. The
paths Q[s;¢] and Ny[s;5;]% Q[bs; b]* Ny[bs; a;]x Qay;t] tra-
verse the edges of Qb;;b;] in cither directions. If a; and b} are
distinct then, similarly, every edge of P[ay; b}] is ‘bidirectional’.
If tp and b} are distinct then every edge of P[bl;¢p] is ‘bidi-
rectional’. Since tp is a vertex of attachment of By, there is
a cross-cut between a; and tp (say, Nj). The paths P{s;t]
and P[s;a]* Nilag; tp]+ Pltp; U]+ NY'[bL; b« Qbi; 1] traverse
edges of P[b};tp] in either directions. Similarly, for Q[b;; ¢g].

oCASE.4 s =a; and t = b;. We may assume that sp = tp =
a; and sg = o = bj,. Since, otherwise, we can reduce this case
to an instance of the case(3). Since the paths are cmpty, the
theorem is trivially true in this case. O

Theorem 3.11: Assume LABEL-TYPE-III correctly la-
bels the edges of a TYPE.III graph. Then the algorithm
LABEL- TYPE-11 correctly labels o TYPE.I1 graph.
PROOF. Let e be an arbitrary edge of the TYPE.IIT graph G.
Without loss of generality we may assumne that e is an edge of
the path P, and that there are no two interlacing bridges such
that e € P[sp;tp], as in the previous lemma. Otherwise the
proof is immediate from the previous two lemmas.

We partition the set of BP?-bridges, B of J into following three
disjoint subsets: By = the sct BPQ-bridges whose vertices of
attachment on P are to the left of e; By = the set B ?-bridges
whose vertices of attachment on P are to the right of ¢; B3 =
B\{B1UBy}. Notice that no bridge of B; interlaces with a bridge
of B;, (where 1,7 = 1,2,3 and 7 # 7); and Bz docs not contain
a pair of interlacing bridges. If Bs is empty or if By contains

212

Figure 8: Steps of the Algorithm LABEL-TYPE-IIIL.

two or more equivalent BP? 8-bridges (Cf. Proposition 1.13)
then it can be shown that £(e) = (u,v), if u is to the left of v
on P. On the other hand, if B3 = {Bs} is a singleton then the
labelling of e is completely determined by the bridge fragment
J U Bs. [}

3.5. Labelling a Type.IIl Graph

We assumme that there is an algorithm called L ABEL-
TYPE-1V, to label the edges of a TYPE.IV graph.

Algorithm LABEL-TYPE-IIL (Cf. Figure 8.)

oSTEP1. Let sp and tp be the left- and right-most vertices
of attachment of B on P; and similarly, sq and tg, on
Q. Let G' be the subgraph derived from G by delcting the
vertices s and t together with the edges incident on s and t
and the subpaths P[s;sp], Q[s; sql, Pltp;t] and Qltg;t].
The vertices sp, sg and the vertices of G' adjacent to s in
G are labelled o; and the vertices tp, tg and the vertices
of G' adjacent to t in G are lubelled 7.

oSTEP2. Find the nonseparable components of G' and la-
bel each separation vertex v of each nonseparable compo-
nent C as follows: v is labelled o (respectively, 1), if there
is a path from v to a verter u, already labelled o (respec-
tively, 7), in the tree T(G') of G' and the path avoids C.
This step can be done in time O(size(T(G"))) = O(|E|)
using a depth first search.

e3TEP3. For each nonseparable component C; introduce
two new vertices s¢ and tc; and join sg (respectively, tc)
to all the vertices of C labelled o (respectively,). We
call-the graph derived from the monseparable component
C, G¢; and the new edges, pseudo-edges (III). If G' s

nonscparable then the graph derived from the nonseparable
component G', called G", 1s ¢ TYPE.IV graph and by
assumplion, we can label G" using the algorithm LABEL-
TYPE-1V. Otherwise, label the edges of the components
by recursively calling the main algorithm with (Ge; sc, to).

oSTEP4. Edge e = [u,v] on P[s;sp], Q[s;sol, Pltr:t]
and Qtg;t] is labelled £(e) = (u,v), if u 1s to the left of v
on P or Q. Edge [s,u] incident on s is labelled £([s,u]) =
(s,u) and edge [u,1] incident on t is labelled £([u,t]) =
(u,ty. 0O

Lemma 3.12: Let C be a nonseparable component of G
whose separalion vertices are labelled o or 7 (or both), and
let e be an arbitrary edge of C. Then there ts a simple path
R from s tot in G traversing ¢ in the order u, v if and
only if there are two distinct separation verlices a and b
in C such that (i) Label of a is o; and label of b is 7. (it)
There is a simple path R' joining a and b in C; and R'
traverses e in the same order.

PROOF. (<=) By labelling of the separation vertices in the tree
T(G') of G', there are simple path Ni[s; a] and Na[b¢] in G
such that Ny and N are vertex disjoint and do not belong to C.
The path R[s;t] = Ni[s:a]* R'[a; 0]+ Na[b;t] in G, is simple
and traverses in the same order as R'. {=) Let R[s;t] traverse
e in the order w and » and let e belong to the nonseparable
component C. Then Rfs:t] can be written as R[s; a]* R[a;b]*
R[b; t], where a and b are two distinet separation vertices of C.
Let ' in C be the subpath R[a;b]. R' traverses the edge e in
the same order as R in G. Moreover, the path R[s;a] induces
a path in the tree T(G') such that it joins a to some vertex
labelled o and the path avoids C. Hence the separation vertex
is labelled ¢. Similarly the separation vertex b is labclled r.

]

Theorem 3.13: Assume that LABEL- TYPE-IV correctly
labels the edges of a TYPE.IV g-aph. Then the algorithm
LABEL-TYPE-1IT correctly labels the edges of a TYPE.I1
graph.

PROOF. By induction on the size of the graph and the Lemma
3.12.]}

3.6. Labelling a Type.IV Graph

Theorem 3.14: Suppose we have an Algorithm LABEL-
TYPE-1V that correcily labels the edges of a TYPE.IV
graph in time O(T(|E|,|V])) > O(|E| - |V]), where T
is @ monotonic nondecreasing function in |E| and |V].
Then the set of mutually recursive algorithms, LABEL-
(RAPH, LABEL-TYPE-1, LABEL- TYPE-II and LABEL-
TYPE-1I1, correctly labels the edges of an undirected con-
nected strict graph wn time O(T(|E|, V) + |E| - {V])
PROOF. (1) Follows immediately from the Theorems 3.5, 3.8,
3.11 and 3.13.

(2) The set of mutually recursive algorithms works as a Divide-
and-Conquer algorithin; and cach divide step and conquer step
takes O(|E| + |pE}), where [pE| = the number of pseudo-cdges
introduced at cach stage. Since cach ‘divide’ step reduces the
number of verticas of the subgraph by at least one, there can

213

be at most O(|V]) stages of ‘divide’ stages before the graph is
divided into a set of TYPE.IV graphs.

Clatm. The total number of pscudo-edges in all the subgraphs
that are produced at the end of cach stage, |pE| = O(|E|).

Proof of the Claim. Let G' be a subgraph produced at some
stage. We define three functions fi, f» and f3 such that fp
maps at most four distinct pseudo-edges(II) of G’ to exactly one
graph-edge, f3 maps at most four distinct pseudo-edges(IIT) to
exactly one graph-edge, and fi is an injective function mapping
a pseudo-edge(I) to a graph-cdge or a pseudo-cdge(III). Since
the graph-edges of the subgraphs are disjoint, the claim follows.
If ¢ is a pscudo-cdge, incident on a vertex v of G' then there
must be BP9-bridge of G' with a vertex of attachment at v. Let
e be the edge of the BP%-bridge, incident at v. Define f2(e') = e.
Since fo maps at vost four distinct pseudo-edges(I) of G’ to one
graph-edge of G, and since the graph-edges of the subgraphs are
disjoint, the total number of pseudo-edges(II), IpEHi <4-|EB.
If ¢ is a pscudo-edge(IIl), incident at a vertex v of G', then
since v is one of sp, tp, 5@, tg, a vertex adjacent to s or ¢, or
a separation vertex of a component then there must be graph-
edge e that is also incident on v. Define f3(¢') = e. Since f3
maps at most four pseudo-edges(III) of G' to exactly one graph-
edge, the total number of pseudo-edges(IIT), ipEml < 4.E|.
We define a injective function f; that maps a pseudo-edge(I)
to a graph-edge or a pseudo-edge(Ill). Let B; be a block with
the associated vertices s; and ¢; and J;, the ambitus of By,
containing both s; and t;. Let ¢/ = [s;,%;] be the pseudo-edge(T)
and let e be an edge of J; incident on £; but not belonging to
J. Define fi(e') = e. It is easy to show that f; is one-one

and hence, the total number of pscudo-edges(I), pEI\ <5-|E|.
Sumiing the number of pseudo-edges, we obtain }pEI‘Jr‘pEnl*l-
|pE™| < 13- |Bl. (End of the Claim.)

Hence, the algorithms spend O(|E| - [V]) time to rednce the
graph G into set of TYPE.IV subgraphs. Since cach TYPE. IV
subgraph has less than |V| vertices, and since the total number

of edges is O(JE|), the theorem follows. [

Theorem 3.15: Let G be a TYPE.IV graph and G', the
subgraph derived from G by deleting s and ¢ together with
their incident edges. Let B be the B9-bridge of G. Then
every edge e of B not incident on s or ¢ is ‘bidirectional.’

PROOF. Obscrve that there cxist vertices of attachment of
B, w on P[s;t] and y on Q]s;t[such that there is a cross-cut
N between z and y containing e. (This is a consequence of
proposition 1.12 and the nonseparability property of G'.) The
two paths Pls; s N[yl Qyit] and Q[s;ylx (N[w;y]) R+
Pl t]traverse ¢ in cither directions. O

Every edge [s, 4] incident on s is labelled (s,u) and ev-
ery edge [u, ¢] incident on ¢, labelled (u,t). All other edges
of the BY?-bridge are labelled ‘bidirectional.’ Hence, we
can label all but the edges on P and Q of a TYPE.IV
graph in O(|E|) time. But, each edge of P[sp;tp] and
QRlsqitq] can be labelled in O(|E] - [V]) time, using an
algorithm for Two-Disjoint-Path problem. Since there
are at most |V| such cdges, this step can be donc in
O(JE|- [V|*) time, thus, yielding an O(|E| - [V|*} labelling
algorithm for the general graph. .

4. An Efficient Algorithm.

We sketch an algorithm to label the edges of the sub-
path P[sp;tp] and Q[so;tq] of a TYPE.IV graph, G,
in O(JE| - |V]) time. Recall that this will provide an

O(|E|-|V|) time algorithm for a general graph. (Cf. The-
orems 3.14.) The algorithm makes use of many special
properties of a.bridge and its proofs of correctness are
rather complicated. These will be supplied in the author’s
thesis.

4.1. U-Fragment

Before we describe the main algorithm, we introduce
the notion of a U-Fragment and sketch an algorithm to
find certain pairs of disjoint cross-cuts in it.

Definition 4.1: A U-Fragment and U-Fragment are de-
fined inductively on the structure of a TYPE.II graph as
follows:

oA TYPE.II graph is called a U-Fragment, with B, = its
set of BP?.-bridges. Its upper and lower external vertices

of attachment are empty sets.

eLet U be a U-Fragment consisting of the circuit J =
PUQ and let B be a BF%-bridge of U. Let the left-most
and the right-most vertices of attachment of B on Q[s;t]
be the distinct vertices's' and t'. Let R be a path in B,
connecting s’ and t' and decomposing B into following sets
of bridges with respect to {P} U {Q} U {R}: By =the set
of bridges with vertices of attachment on P]s;t[and on
R]s';t'[; B = the set of bridges with vertices of attach-
ment on R]s';¢'] and Q]s';¢'[; and the set of bridges with
vertices of attachment solely on R and avoiding B; and
Bs.

The subgraph U' = {R[¢';¢']} U {Q[s";#]} U By of U, is
called a U-Fragment of U on Q. The vertices of attach-
ment of By on R]s'; t'[are called its upper ezternal vertices
of attachment, UA and the lower external vertices of at-
tachment of U lying on Q]s'; ¢'[, its lower external vertices
of attachment, LA.

The subgraph U = {R[s'; #]} U {P[s;t]} U By of U, is
called a complementary U-Fragment (simply U-Fragment)
of U on Q. The external vertices of attachment of U
lying on P]s; [are called its upper exzternal vertices of
attachment, UA, and the vertices of attachment of B; on
R]s'; '] together with the vertex s’ (if s’ is distinct from s)
and the vertex ¢ (if ¢ is distinct from t), its lower external
vertices of attackment, LA.

The U- and U-Fragments of an U-Fragment are defined in
an identical manner. [

NOTATION: Let U be a U- or a U-Fragment. Let the left- and
right-most upper attachments on P (respectively, @) be sy and
ty (respectively, sz and t;.) Let Bbea BPQ bridge of U and let
the lcft~ aud right-most vertices of attachment of B on P[s;]
be s2, t2, and those on Q[s; t] be QQ and tQ Similarly, let the
Teft- and nght most vertices of attachment of B on PJs;t[be

214

sp and ¢p, and those on Q]s; t] be sg and ¢tg. We consider the
bridge B angmented with the paths as follows: Let the modified
bridge be B U P[s5; 8] UQl[t8]- If sp = s = s then label
the vertex with ‘s’, and if ¢t = tS = t then label the vertex
with ‘t. By an abuse of notation, we also refer to the modified
bridge as the bridge, B. [}

Definition 4.2: A U-Fragment, U’, of U (a U- or a U-
Fragment) on @ is said to be a Feasible U-Fragment, if it
satisfies at least one of the following two conditions:

1. |LA| > 0 and [UA| > 0.

2. (¢) [LA| = 0; (é) not all the vertices of attach-
ment of By on P' belong to P'[s'; sy or to P'[[ty;t'[[;
and (111) there exist two vertex disjoint paths in By,
R.[o';a] and Ry[b'; b], where R, (Rb) meets PJs; t[[
only tn a (b) and meets P']s';t'[only in o' (b').

Definition 4.3: A U-Fragment, U , of U (a U- or a U-
Fragment) on @ is said to be a Feasible U-Fragment, if
LA| >00r |UA|>0. O

Henceforth, it will be implicitly assumed that U-Frag-
ment and U-Fragment are found using the following con-
ventions:

Convention 4.4: Let U’ be a U- or U-Fragment with the
BP%-bridge B.

osp = t3 and s§ =t5. Then B may be discarded.

os8 = t& and sg and t§ are distinct. If there is a lower
vertex of attachment b € Q']sZ;t5] then the U- and U-
Fragment in B are on Q. Otherwise, B is discarded.

esP and 17 as well as s§ and t8 are distinct. (a) (U' is
a U-Fragment satisfying 1. of definition 4.2.) If B has no
lower attachment on Q]]sQ, tQH but has an upper attach-
ment on P']sE;¢E] then the U- and U-Fragment in B are
on Q. Slmllarly, with P and Q interchanged. (b) (U 4s
a U-Fragment of U on Q satisfying 2. of definition 4.2.)
The U- and U-Fragment in B are on Q. (¢) (U' is a U-
Fragment of U on Q.) The U- and U-Fragment in B are
on Q. Otherwise, the U- and U-Fragment are on P or @,
the choice being arbitrary. [

Definition 4.5: (Cf. Figure 9.) Let U be a U-Fragment.

eTwo vertex-disjoint cross-cuts N[z p; zg] and No[yp; yo)
are said to be a PQ-Cross-Cut Pair, if: (1) zp, yp &
P]s;t] and zp is to the left of yp; (2) zq, yo € Qls; ¢
and zg is to the right of yg and (8) if [LA| = 0 or if
zg, Yo € Q]s;sz] then [UA| > 0 and not both zp and
yp belong to P]s;sy]; and similarly, if [LA| = 0 or if zq,
Ye € Q[tr;t] then |[UA| > 0 and not both zp and yp
belong to P[ty;t[. (Or, with UA and LA interchanged.)

oTwo vertex-disjoint cross-cuts Ni[s;t] and Nofzp;zg]
are said to be an ST-Cross-Cut Patr, if: (1) zp € P]s;t|
and zg € QJs;t[; (2) there are an upper attachment on
P]s;t] and a lower attachment on QJs; ¢[.

o Two vertex-disjoint crogs-cuts IV, [z; z'5] and N2 ivr;val
are said to be a P-Cross-Cut Pair, if: (1) z}p, =% € P[s;]
and at least one of them is distinct from s and t; (2)

Figure 9: PQ-, ST-, P- and Q-Cross-Cut Pairs.

yp € Plzp;zh] and yo € Q]s;t[; and (9) there is an
upper attachment ¢' € P]zp; 2%5[:

A Q-Cross-Cut-Pair is defined similarly. O

The Cross-Cut Pairs of U-Fragments and bridges are
defined similarly. Now, we présent an algorithm to find a
P-, Q-, PQ- or ST-Cross-Cut Pair in a U-Fragment.
Algorithm ANALYZE-U-FRAGMENT.

oSTEP1. First, check the interlacing bridges of By to de-
termine if the required cross-cut pairs ezist. If so, return
‘YES’. In the next step, analyze each bridge of By for the
cross-cut patrs. If the answer is ‘YES’ for any B, bridge,
return ‘YES’; otherwise, return ‘NO’.

oSTEP2. Let B € B,. If the vertices of attachment of B on
P belong to P]s; sy] and those on Q belong to Q]s; s.] (or.
symmetrically, if those on P belong to Plty;t] and those
on Q belong to Q[tr;t]) then B can not have the required
cross-cut pairs and ts discarded. Otherwise, analyze each
single bridge using the algorithm ANALYZE- BRIDGE.

0

Algorithm ANALYZE-BRIDGE(B) :
begin
DivIDE : Find a path R in B following the convention 4.4.
Modify R such that the bridges with vertices of attachment
solely on R avoid other bridges. Let B; and B; be as in the
definition 4.1 and let B3 be the set of bridges with vertices
attachment on P[sE; t2], R]s8;¢8[and Q]sg; 3l
if TEST-AND-MODIFY(B) réturns ‘YES’ then

if |B3| # 0 then return ‘YES’ else goto RECUR;
else goto UBAR;

215

RECUR :Let U be the U-Fragment formed by the paths P,
R and the bridges B,.
if U is marked feasible then
if ANALYZE-U-FRAGMENT(U) returns ‘YES’ then
retury ‘YES’;

UBAR :|Analyze the set of By-bridges:]

Analyze bridges B; to determine if it has the required
Cross-Cut pairs. If so, return ‘YES’.

[Analyze each bridge B' € By

Let the left- and right-most lower attachments of the U-
Fragment on R be s} and t}.

If the vertices of attachment of B' on P belong to P]s; sy}
and those on R belong to R]s; s}] (or symmetrically,

if those on P belong to P[ty;¢[and those on R belong to
R[t};t[) then discard B';

if ANALYZE- BRIDGE(B')returns ‘YES’ then return ‘YES’;

return ‘NO’;
end. [

Algorithm TEST-AND-MODIFY.

oSTEP1. Check if B has a lower vertez of attachment on
Qls8;t3[. Then, if |Bs| # O then return “YES’. If |Bs| = 0
then mark U ‘feasible’ and return ‘YES’. Otherwise, go to
the next step.

oSTEP2. Let the left- and right-most vertices of attach-
ment of By and By bridges on R be sy and t}, (and if
Bs| = O then those on Q]s8;t3[be sy and t;,.) Let Gp be
the subgraph of B obtained by deleting the followings: (1)
the bridges By, (1i) the vertices s and 8 together with
the edges incident on them, (¢25) the subpaths R[sg; %]
and R[t5;t8], (iv) the subpath Q[s5:¢5], if |Bs} = 0 (or
the subpaths Q[sg;spy] and Qltn;t8l, o 18s] # 0.) The
vertices of Gp adjacent to 38 are labelled o; those adja-
cent to t5, 7, the vertices sy and ty, p; and the vertices
s and ty, X-

oSTEP3. Find the nonseparable components of Gp and let
the component containing the path P[sB;tE] be called C.
Let each separation vertex of C, be labelled as follows: the
separation vertez v is labelled o (respectively, v, p or x)
if there is a path from v to a verter u, already labelled o
(respectively, T, p or x) in the tree T(Gp) of Gp and the
path avoids C,.

oSTEP4 If |Bs| # 0 and Cr has two distinct vertices one
labelled p and the other labelled x then return ‘YES’. If
|Bs| = 0 and C; has two distinct vertices labelled p then
check if U satisfies 2(ii) of definition 4.2. If so, mark U
feastble’ and return ‘YES’.

Otherwise, modify the bridge B to form a U-Fragment
as follows: Delete all the edges of the bridge except the
ones in C,; Adjoin the separation vertez of Cr, labelled p,
to 5§ and t§ with new edges; And adjoin the separation
vertices of C, lubelled o (respectively, 1) to sg {respec-
tively, t8). Let the path from s§ to t3, touching the vertez
labelled p, be R and Bll, the set of bridges with vertices of
attachment only on P and R. Reiurn the modified graph
as the U-Fragment. [

4.2. Labelling the Path

We present an algorithm to label the path P of a
TYPE.IV graph, G, in O(|E| - {V]) time. By using the
algorithm twice (once for P and once for @), it is possible
to label the paths of G in O(|E]-|V|) time. In this section,
we only sketch the algorithm for the case when the bridge
B of G has its vertices of attachment s3 and ¢§ distinct
from each other and from s and t. The other cases are
similar, but slightly more complicated; and will appear in
the full paper.

Algorithm LABEL-PATH(P, B) :
begin
DIVIDE : Find a path R in B joining sg and tg, with By, B2
and By as in the algorithmn ANALYZE-BRIDGE.
if TEST-AND- MODIFY(B) returns ‘YES’ then
if |Bs| # 0 then label the edges of Pfsp;tp]
‘bidirectional’ and return ‘YES’;
else goto RECUR;
else goto UBAR;

RECUR :Let U be the U-Fragment asin ANALYZE- BRIDGE
if I is marked feasible then
if ANALYZE-U-FRAGMENT(U) returns ‘YES’ then
label the edges of P[sp;tp] ‘bidirectional” and
return ‘YES’;

UBAR :[Analyze the set of B;-bridges:])
Analyze the blocks of interlacing bridges of By to label the
edges of the path P[sp;tp], as in LABEL- TYPE-IT;
Also, determine if they have the required Cross-Cut pairs.
If 50, label the edges of P[sp;tp] ‘bidirectional’ and
return ‘YES’;
[Analyze each bridge B' € By:]
-~ We analyze cach bridge B’ to label the subpaths
- - PsB';tB"] (recursively), as well as to find if it has the
- — required cross-cut pairs, using LLABEL-PATH;
if LABEL-PATH(P, B') returns ‘YES’ then

label the edges of P[sp;tp] ‘bidirectional’ and

return ‘YES’;

return ‘NO’;
end. O

Notice that the algorithm uses Divide-and-Conquer
paradigm: Each ‘divide’ step involves finding a path in
a bridge, where the path has additional properties that
the bridges with vertices of attachment solely on the path
avoid By, B, and B;. This can be done in O(|E|+|pE]|) time
by combining DFS technique with the ambitus-finding
algorithm. (pE = the pseudo-edges introduced in the
step 4 of TEST-AND-MODIFY.] Each ‘conquer’ step in-
volves analyzing interlacing bridges for appropriate cross-
cut pairs, which can be done in linear. time, and analyz-
ing each individual bridge (recursively). However, each
‘divide’ step reduces the number of vertices of the sub-
graph by at least one, and hence the algorithm takes
O((|E| + |pE|) - V) time. But, again, it can be shown
that the number of pseudo-edges introduced is O(|E|),
thus, giving an O(|E| - [V[) time algorithm.

216

The proof of correctness involves two parts: In part 1,
we show, by induction on the structure of the U- and U-
Fragments, that when the algorithm claims the existence
of certain disjoint paths, such paths, in fact, exist; In part
2, we show by using U-Fragments as gadgets, that when
the algorithm fails to muster enough evidence for the ex-
istence of certain disjoint paths, it is only when no such
paths exist.

REFERENCES

[1] A.V.AHO, J.E.HOPCROFT AND J.D.ULLMAN, The
Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974,

(2] D.BRAND, “Detecting Sncak Paths in Transistor Net-
works”, IBM Thomas J. Watson Research Center, York-
town Heights, N. Y., 1983.

[8] S.EVEN, Graph Algorithms, Computer Science Press,
Maryland 1979.

4] S.EVEN AND R.E.TARJAN, “Network Flow and Test-
ing Graph Connectivity”, STAM Journal of Computing,
Vol. 4, No. 4, Dccember 1975.

[5] E.FRANK, A Data Driven Multiprocessor for Switch
Level Simulation of VLSI Circuits., Ph. D. Thesis (in
preparation), 1984. .

(6] J.HOPCROFT AND R.TARJAN, “Efficient Planarity
Testing”, Journal of the Association for Computing Ma-
chinery, Vol. 21, No. 4, October 1978.

[7] T.OHTSUKI, “The Two Disjoint Path Problem and
Wire Routing Design”, in Graph Theory and Algo-
rithms (Eds. N.Saito, T.Nishizeki), Springer 108, Oc-
tober 1980.

8] Y. PERL AND Y.SHILOACH, “Finding Two Disjoint
Paths Between Two Pairs of Vertices in a Graph”, Jour-

nal of the Association for Computing Machinery, Vol.
25, No. 1, January 1978.

[9] P.D.SEYMOUR, “Disjoint Paths in Graphs”, Discrete
Mathematics, Vol. 29, No. 3, March 1980.

Y .SHILOACH, “A Polynomial Solution to the Undi-
rected Two Paths Problem”, Journal of the Association
for Computing Machinery, Vol. 27, No. 3, July 1980.
R.TARJAN, “Depth-First Search and Linear Graph Al-
gorithms”, SIAM Journal of Computing, Vol. 1, No. 2,
June 1972.

R.E.TARJAN, Data Structures and Network Algori-
thms, Society for Industrial and Applied Mathematics,
Philadclphia, Pa., 1983.

W.T.TUTTE, “Bridges and Hamiltonian circuits in
planar graphs”, Aequationes Mathematicae, 15, 1977.

W.T.TUTTE, Graph Theory, Addison-Wesley Pub-
lishing Company, Menlo Park, California, 1984.

(10]

[11]

[12]

[13]

[14]

