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ABSTP ACT. A I I  eficicnt algorilbin for lbe All-Uidircc- 
iio11a1-1L igcs Problwn is presented. ?‘lie All-Ridircctional- 
Edges Problem is I O  find a i l  edge-labelling of an undirected 
network, G = ( V , E ) ,  with a ,source and  a sink, such that 
an edge [u,v] e E‘ is labelled (u ,v )  or (v,u) (or both) 
depending OII tlie existence of a (siinple) path from the 
source to sink that visits the vertices U and v, in the order 
u,v or u p ,  respectively. The algorithin presented works by 
partitioning the graph into a set of bridges and analyzisg 
them recursively. The time complexity of the algorithm 
is shown to be O((E:(  . IVl). 

The problem arises naturally in tbe context of the sim- 
ulation of an MOS transistor network, in whicil a tran- 
sistor may oyrate  as a unilateral or a bilateral device, 
depen.ding on the voltages a t  i ts  source and drain nodes. 
For efficient siinulation, i t  is required to detect tlie set of 
transistors that may operate as bilateral devices. Also, 
this algorithm can be used in order to detect all the sneak 
paths in a network of pass transistor. 

Introductioin 

Let G = (V,E) be a finite undirected graph with two 
distinguished vertices, the source, s, and the sink,  t .  We 
call an edge e = (U, U] of G ‘bidirectional’, if there are two 
siniple paths connecting s and t and traversing e in either 
order - U ,  v and v, U. Similarly, we call an edge e = [U,  w]  
of G ‘unidirectional’, if every simple path connecting s and 
t and containing e, traverses e only in one order, say U ,  

v; additionally, e is labelled (U, U). The All-Bidirectional- 
Edges problem is to  find all the  ‘bidirectional’ and ‘unidi- 
rectional’ edges of G, together with the labellings of the 
‘unidirectional’ edgcs. 

From an alternative formulation of the problem it is 
easy to see that  we can label each edge [ U ,  U] E E by ask- 
ing two questions: (i) Are there two disjoint paths s -2 U 

and v A t ? (ia) Are there two diijoint paths s -L v and 
U A t ? There am: O(lEl * /VI) time algorithms to find 
two vertex disjaint paths in <an undirected graph, indepen- 
dently discovered by Ohtsuki(1980)[7], Seynlour(l980)19] 
and Shiloach(l980) [lo]. The na’ive way of solving the 
All-Bidirectional-Edges problem is to invoke an algorithm 
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j’igurr 1: ( a ) )  A circuit, for -, ( ( A  A D )  V (B A C A D) V (c 
A E)) .  ( b ) )  Tlic rc~ilt ing subgraph after comnon subcircuit 
c~l~~riination. However, bccaiisc of the sneak path througll D, it 
is, in fact, a circuit for 7 ( ( A  A 13) V (I3 A C A D )  V (C A E )  
V ( A  A D A E ) ) .  ( e ) )  The corrcspondilig graph in which D is 
‘bidircctional’ and all othcr rdgcs are ‘unidirectional.’ 

for Two-Disjoint-Path twice per each edge. This takes 
0(1rl2 . [VI).  On the other hand, existence of an dgo- 
rithm for All-Bidirectional-Edges problem, with a time- 
complexity lower than O(lEl . IVl), readily, results in a 
similarly efficient algorithm for Two-Disjoint-Paths prob- 
lem, which is unlikely. 

O(lE1 . IVl) time algo- 
rithm for All-Uidirectional-Edges problem, using a coin- 
pletely new approach. The algorithm makes a novel use 
of brzdges of a circuit in a general graph. 

The problem of finding all ‘bidirectional’ edges arises 
naturally in the context of the simulation of an MOS tran- 
sistor network, in which a transistor niay operate as a uni- 
lateral or a bilateral device, depending on the voltages at 
its source and drain nodes. (Cf. Brand (1983)[2], Frank 
(1984)(5].) Foi efficient simulation, it is important to find 
the set of transistors that  may operate as bilateral devices. 
Also, sometimes it is desired that infornlation propagates 
in one direction only, and propagation in the wrong direc- 
tion (resulting in a sneak path) can cause functiocal error. 
(See Figure 1) Cur algorithm can be used to  detect all the 
sneak paths. 

In this paper, we describe 

1. Preliminaries 
This section introduces some useful graph theoretic 

terms. The term ‘bridge’ is taken from Tutte(l977)[13]. 
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Figure 2: Bridges Of J .  Bridges B1, B ,  B3 and B~ ar\o proper 
and B4 and 135 are degenerate bridges. TIle bridges B, 

and BZ interlace. 
Def in i t ion  1.1: A vertex of atiachment of a subgrapli €1 
of G is a vertex of E l  that  is incident in G with some edge 
not belonging to H .  Let J be any circuit of G. We define 
a bridge of J in G as any subgraph B tha t  satisfies the 
following three conditions: 

1. Each vertex of attachment of B is a vertex of J .  
2. B is not a subgraph of J .  
3. No proper subgraph of B satisfies the above condi- 

Def in i t ion  1.2: (Cf. Figure 2.) An edge e = [u,o] of G 
not belonging to J but having both ends in J is referred to  
as a degenerate bridge. Let G be the graph derived from 
G by deleting the vertices of J and all their incident edges. 
Let C be  any component of G- Let B be the  subgraph 
of G obtained from C by adjoining to i t  each edge of G 
ha-qing one end in C and one in J ,  and adjoining also the  
ends in J of all such edges. The subgraph B satisEes the 
conditions to  be a bridge. Such a bridge is called proper. 
The component C of G- is the nucleus of B. 

Defin i t ion  1.3: Let the vertices of attachment of a bridge 
B of J be W(G,  B )  = {vo; q, . . ., v k - l } ,  where W O ,  vi ,  . . ., 
vk-l is their enu~neration in the cyclic order on J .  The 
vertices of attachment dissect J into k subpaths Lo, L1, 
. . ., Lk-1 such tha t  L, = J [ v , ;  v,+l (mod q]. Thcse sub- 
paths are called the reszdual paths of B in J .  w(G, B )  will 
stand for IW(G,B)I. 0 

Defin i t ion  1.4: Let BI and Bz be two distinct bridges of 
a circuit J of G. 
e We say B1 avoids B2 if and only if one of t he  following 
two conditions is satisfied: 

tions. U 

0 

1. w ( G , B l )  5 1 or w(G,Bz) 5 1. 
2. A11 the vertices o f  attachment of B1 are  contained 

e If B1 and Bz do not avoid one another we say tha t  they 
overlap. 
e If there exist two vertices of attachment 2 1  and 22 of B1 
and two vertices of attachment y1 and yz of Bz, all four 
distinct, such tha t  2 1  and x2 separate y1 and yz in the  
circuit J ,  then we say tha t  they interlace. 
e If B1 and Bz have exactly the  same set of vertices of 
attachment we say that they are equzvalent. 

in a single residual path L of Bz. 

Cl 

Figure 3: BPQ-, BP- and BQ-bridges of P and Q .  Bridges 
B1, Bz and Bz are BPQ-bridges; B4 is a BP-bridge and B5, a 
@-bridge. 
Def in i t ion  1.5: Let J be  a circuit of the graph G. A 
path N in C avoiding J but having its two ends x and y 
in J is cdlcd a cross-cut of J from x to y. 

Def in i t ion  1.6: (Cf. Figure 3.) Let J be a circuit of the 
graph, G such that s <an13 t lie on J .  Let the subpath 
Jus;  t ]  be P and its complcinentary subpath in J be  Q. 
The bridges of J are classified as follows: 

The set of bridges with at least one ver- 
tex of attachment on P]s;t ( j  and at  least one vertex of 
attachment on Qls; L[. 
e B P -  BRIDGES: The set of bridges with at  least one vertex 
of attacliinent on PIS; t[L and no vertex of attachment on 

~ ~ Q - B R I D G E S :  The set of bridges with no vertex of nt- 
bchment on P ] s ; t [  and a t  least one vertex of attachment 
on Q ] s ; t [ .  U 

Def in i t ion  1.7: Let J ,  P and Q be as in the previous 
definition. Then J is called an ambitus if every R"- or 
@-bridge avoids every B"*-bridge. 0 

Defin i t ion  1.8: .Let J ,  P and Q be as before and B = 
B1,. . . , Bk be the Bf-bridges with respect to P.  A non- 
enipty subset of bridges B, C B is called a block of BP- 
bridges if it satisfies the following two conditions: 

1. If B, E B,* and B, and B, overlap, then B, E B,. 
2. No non-empty proper subset of B, satisfies the pre- 

Cl 
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ceding condition. 0 

Defin i t ion  1.9: Let G = (V ,E)  be a graph. The tree 
T = (V' ,E')  of the graph an undirected graph such 
that: The set of vertices 1'' correspond with the non- 
separable components (green)  and the separation vertices 
(b lue) ;  and the  edges of T connect green vertices to blue 
vertices if and only zf the nonseparable component con- 
tains the separation vertex. 0 

Defin i t ion  1.10: A graph G = (V, E )  with distinguished 
vertices s and t, (G; s,  t )  is said to be a chain graph, if the 
tree of the graph G is a pa th  P from C, to  C, consisting of 
alternating green and  blue vertices, where C, and Ct itre 
the nonseparable components of G containing the vertices 
s and t ,  respectively. 0 

We present the following propositions that will be  used 
quite often later on. 
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Propos i t i on  1.11: (Even[3]) Let x, y and z be three dis- 
t inct  vertices of attachment of a bridge B of J in G. 
Then  there i s  a w r t e z  w belonging t o  the nucleus of B 
for which there are three internally vertex disjoint paths 
in 13: Y,iz; w], I'l[y; w] and YS[zjv]. 

Following Tuttc[l4],  we define a Y-graph as the union 
Y of tlirce paths Y ' ,  Y2 and Y3 which have one end v in 
coiiinion but are olherwise niutually disjoint. We call v 
the center and the paths Y ,  the arms of Y .  
Propos i t i on  1.12: Let x, y and z be three distinct ver- 
tices of  attachment of  bridge B of J in G and let e be an 
edge of B such t h d  there is a cross-cut of J between x 
and y containing e .  Then  at least one of the two follow- 
ing conditions i s  satisfied: (1) there as a cross-cut of J 
between x and z co.ntaining e (2) there i s  a cross-cut of J 
between y and z containing e.  

PROOF. 
aiid hcmrc, oiiiitt,cd. 0 
Propos i t i on  1.13:: (Tutte[lS]) Let BI and Bz be distinct 
overlapping bridges of a circuit J of G.  T h e n  either B1 

and Bz interlace or they are equivalent 9-bridges. 

U 

TIIC proof is shnilar to that of the proposition 1.11 

0 

2, Overview 

For the ease of exposition, the algorithm is presented 
in two parts: The first part is siinple but provides an 
algorithin of time-co~nplexity of O ( l E  . IVI') (to be ini- 
proved later); it also identifies a gr;iph of suitable struc- 
ture (called a TYPI:.IV graph) such tha t  an efficient al- 
gorithm for such graph yields an efficient algorithm for 
general graphs. The second part ,  on t h e  other hand, is 
more complicated but provides an O(1El . IVl) time algo- 
rithm for a 'I'YPE.'[V graph, which, in turn,  iniplies an 
O(lEl . IVI) time algorithm for the general graphs. 

In the first part (Section 3), we introduce four dif- 
ferent classes of gr#xphs: TypE.1 ,  TYPE.II, TYrE.111 
and TYPE. I V  graphs, of successively simpler structure 
m d  show that we can label the graphs of a particular 
type eficiently, on the assumption of existence of efficient 
algorithms for the subsequent types. In the process we 
give a set of four mirtuaZlyt recursive algorithms such that 
these, together with, an algorithm for TYPE.IV Zraph of 
tin.e complexity O(Z'(lE1, IVI)) 2 O ( / E / .  /VI) ,  will result 
in an O(T(IE1 , IVl)) algorithin for general graphs. The 
first part concludes with an O(1El . IVI') algorithm for 
TYPE.IV graphs. 

In the second part (Section 4) we sketch an O(IEI.IVI) 
time algorithm for TYP@.IV graph. This is a Divide- 
and-Conquer algorithm and relies on an important con- 
cept, called a U-Fragment. Intuitively, a U-Fragment can 
be thought of as a super node which can be entered or 
exited through its end vertices (s' and t ' )  or its upper 
and lower external attachments. The task is to find suit- 

t. Analysis of a TYPE.111 graph may result in a call 

- - 

t o  the main algorithm. 

able vertex disjoint paths in this super node, connecting 
end Trertices <and external attachments. These paths can 
be extended to  appropriate vertex-disjoint paths in the 
outer U-Fragment (recursively) or in a TYPE.I'J graph. 
Such paths are guaranteed to  exist if and only i f  the U- 
Fragment is feasible (Definition 4.2) and has certain dis- 
joint pairs of Cross-Cuts. The main idea of the algorithms 
is t o  find such paths and to use them to  label the edges. 

3. A Simple Algorithm 
3.1. Assumptions and Classification 

A s s u m p t i o n  3.1: The graph, G, is a finite connected 
undirected strict graph. U 

A s s u m p t i o n  3.2: The graph, G, is a chain graph. 

Justificution for  the Assumpt ion  3.2. Let P be a path in 
the tree of G, T ( G )  from C, to Ct consisting of alternating 
green and blue vertices. Let C, = CI,Cz,. . . , C, = C, be  
the nonseparable coinponents (green) and a i ,  az, . . . ~ arn..l 
the separation vertices (blue ) on P. Let SI = s, t ,  = t 
and s, = a i - l ( l  < i 5 7n) and ti = a;(l 5 i < m). Let 
El C E be t>he edges of the Ci's and E2 = E \ El. 

Theorem 3.3: Let G = ( V ,  E )  be an  undirected network 
with a source s and sink t and let El and E2 be the pur- 
t i l ion of the edges, E as described. For each edge e E E ,  
e E E2 iff there is  no simple path f rom s to  t containing 
e. 0 

In a pre-processing step, we find and delete the  edges, E2 

to obtain the graph G', and jnesent each non-kcparable 
component (Ct; s i ,  t.) of G' as input to the main algorithm. 
The preprocessing step takes O(lEl + IVl) time. 

Def in i t ion  3.4: We introduce a classification of graphs 
as follows: ( i ) R  ncnseparable graph is said to  be of type 
I, if it has a circuit J containing the vertices s and t and 
all its bridges are BP- ,  Bo- or BPQ-bridges; (zi) type 11, 
if i t  is of TYPE.1 and all its bridges are of BPI*'-bridges; 
(iii) type 111, if i t  is of TYPE.11 and has only n single 
BP*-bridge; and ( i v )  type I V ,  if i t  is of TYPE.III  and 
the subgraph, derived by deleting the vertices s and t 
together with their incident edges, is nonseparable. n 

0 

3.2. Labelling a Chain Graph 

Assume that we have an algorithm, called LABEL- 
TYPE-I to label the edges of a  TYPE.^ graph. 

A lgor i thm LABEL-GRAPH. (Cf. Figure 4.) 

oSTEP1. Find the nonseparable components of the graph. 
Let C,, Cz, . . . , C, be the chain of nonseparable compo- 
nents and let s, and t ,  be the vertices associated with 
C, (Cf. Assumption 3.2). For each (C,; s,, t t ) ,  where 
1s i 5 m, do the following steps. 

mSTEP2. Find a circuit J containing the vertices s, and 
t, zn C,. Since C, is nonseparable such a circuit exists 
and can be found in O(IEl) time, using depth-first search 
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Figurc 4: Stcps of the Algoritilrn LAJ~DEL- GRAPH. 

technique. We call the subpath J [ s , ; t , ] ,  P ;  and its coin- 
plcnicntary residual path in J ,  &. 
~ T E P ~ .  Find all the bridges of C, with respect to the 
circuit J .  Let 5 = {G2, G3,. . ., Gk} be the set of bridges 
with only attachments s; and t;; and le i  B be the set  of l3'- 
, Bo-  and BP'~-bridges of J .  Let GI be the graph derived 
f r o m  C; by deleting the bridges of $. Since GI is a TypE.1  
graph, by assumption we can label the edges of G1 using the 
algorithrn LABEL-'TYPE-I. Moreover, since G, E 5 is a 
chain graph, the labelling for G; can be done by recursiveiy 
cajling the m a i n  algorithm. We can find the bridges in 
O(  IEI) time AS in the planarity testing algorithm. 

T h e o r e m  3.5: Assume that LABEL-TYPE- I correctly la- 
bels the edges of a TYpE.1 graph. T h e n  the algorithm 
LABEL- GRAPI-I correctly labels the edges of a nonsepara- 
ble graph. 0 

0 

3.3. Labelling a Type. I Graph 

TYPE-11, to label the edges of a TYPE.11 graph. 
A l g o r i t h m  LABEL-TYPE-I . (Cf .  Figure 5.) 
8STEP1. Modify J to obtain a circuit J' such that J' 
is  a n  ambitus. Let  B1, B2, . . ., B, be its blocks of B P -  
and BQ-bridges;  and s, and t,, the left- and the right-most 

Assume that  we have an algorithm, called LABEL- 

8. 

Figure 5: Stcps of thc Algorithm LABEL-TYPE.~.  

vertices of attachments of the bridges of Bi, respectively. 
Let G" be the graph derived from G by f irs t  deleting all 
the blocks B, and then  replacing P(js i ;  t ;]  or &us;; ti] (de- 
pending on whether B; is  a block of BP-  or BQ-bridges, 
respectively) by a single link [s ; , t ; ] .  we refer to  [s;,ti] as 
a pseudo-edge(I) of the block B;. This step can be done 
in time O(lEl -t !VI). A linear time algorithm for finding 
the anbit.us can be found in the full paper. 

*STEP2. Since graph G" is a TY?E.II graph, by assump- 
tion, we can label the edges of G" using the algorithm 

*STEPS. For each block B;, where 1 5 i 5 n, do the 
following: If tile pseudo-edge of Bi is  labeled 'bidirectional' 
by the Step. 2, then  all edges of B; are 'bidirectional: 
otherwise, label the edges of Bi by calling LABEL- GRAPH 
with the argument (Bi; s;,t;). 

Let G be a  TYPE.^ graph with circuit J = P U Q. 
Let B; be a block of BP-bridges of G and let its left- and 
right-most vertices of attachment be s; and t i .  

L e m m a  3.6: Let G' be the graph derived by f irs t  deleting 
B, f r o m  G an,d then  replacing the subpath P%s;;t;B by a 
single link [si,t;], called the pseudo-edge of B;. (i) If in a 

l e g d  labelling of G', [si, ti] is labelled 'bidirectional' then  a11 
edges ojB, are 'bidirectional'. (ii) If i n  a lcgal labelling of 
G', [s i ,  t i ]  i s  labelled (s i , t i )  then  the labelling of the edges 
of Bi are determined by that of (B;; s;, t i ) .  

L e m m a  3.7: Let  GI' be the graph derived f r o m  G by re- 
placing every block Bj of Br- and BQ-bridges by the cor- 
responding pseudo-edge [si, t j ] .  T h e n  l ( [ s i ,  ti]) in G' = 
!([silt;]) in G". 0 

T h e o r e m  3.8: Suppose LABEL- TYPE-I1 correctly labels 
th.e edges of a 'I'YPE.II graph. T h e n  the algorilhm LABEL- 
TYPE- I correctly labels the edges of a TYPE. I graph. 

PROOF. h l l o w  from the prwious two Lcrnnins. 0 

LABEL- TYPE- 11. 

0 

0 

3.4. ' Labelling a Type.11 Graph 

We assume that  we have an algorithm, called LABEL- 
TYPE-I11 to label the edges of a TYPE. I11 graph. 
A l g o r i t h m  LABEL-TYPE-11.  (Cf. Figure 6.) 

oSTEP1. Let  B1, Bz,.. .., B, be B""-bridges of J in G. 
W e  modify each bridge fragment  G; = B; U J as follows: 
Let  sp and t p  be the left- and right-most vertices of at- 
tachment  of Bi o n  P; and, similarly, SQ and tQ,  o n  &. 
Let  Lo, L1, . . ., Lk be its residual paths not  containing s 

P [ s ; s P ] ,  Q [ s ; s Q ] ,  p [ t p ; t ] ,  QUtg; t j ,  LO, L1, ..., Le t o  
single links, called a pseudo-edge(II) of the subpath. J' is 
the circ,uit in G: derived f r o m  J by the contraction. Since, 
each such GI is a TYPE.III graph, by assumption, we can  
label the edges of G: using the algorithm TYPE.III. 
mSTEP2. For each edge e of J ,  let {e; ,  el,, ..., e ; }  be 
the set of edges of G: such that e: is  ths  contraction of a 
subpath containing e .  T h e n  -if any  e: i s  'bidirectional' mark 
e 'bidirectional'. This step can Le done in time O(lEl), 

o r  t .  Gi deviued fvom G. by eontraching the subpaths  
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Figure G: Steps of the Algorithm LABEL-TYPE-11. 

since, as it will be  shown in Leniina 3.14 there are at 
most 4 .  JEJ pseudo-edges(I1). 
eSTEP3. Let B; a m !  Bj be two interlacing BPQ-bridges of 
J in G and s p  and tip (respectively, SQ and  tQ),  their left- 
and right-most vertices of attachment on P (respectively, 
Q) ,  distinct f rom s and t .  Label the edges of the subpaths 
P [ s p ;  t p ]  and  Q [ s Q ;  t ~ ]  ‘bidirectional’. This step can b e  
done in time O(jE() .  0 

Lemma 3.9: Let  ,El be a BPQ-bridge of J = P U Q in 
TYPE.II graph G cmd e = [u,v],  a n  edge of B.  Let G’ 
be a subgraph of G derived f rom G by deleting all bridges 
except B and contracting the residual subpaths as in the 
Algorithm LABEL-TYPE-II. T h e n  there i s  a path f r o m  s 
t o  t an G traversing e in the order U ,  v if and only i f  there 
i s  a path f r o m  s to t in C’ traversing e in the same order. 

PROOF.  (e) Trivially tmc, since G’ is a minor of G .  (=+) If 
nus; t j  traverso e in tlrc ordw U and 7) t.hcii we c m  writc nus; t ]  
as nu.5: nux; y]+ I?,[?/; t j  S U C ~  that, R [ X :  !I] is ;L c r 0 s s - d  of J ,  
1)clonging to LI and trwcrsing e in tlw ordcr U ,  U. If z E Pis; t ]  
and y E Q [ s ; t ]  then the! path P(s;zI/* R [ z ; ~ ] *  Q[y;  t ]  in G’ 
travtwes e in tlic sanir order. Bence, ;tssunie that x, y E PI.?; tu. 
Sincr LI is BPQ-bridgc, it Iias a vcrtcx of ;~t,tacIiiricnt z E 01s; tu. 
IJshg proposition 1.12, we can find siniplr paths from s to  t such 
that they t,ravcrsc e i i i  either dircdon. 

Lemma 3.10: Let B, and B, be two interlacing BPQ- 
bridges of J = P U Q. Let s p  and t p  be the left- and  
right-most vertices of attachment of l?; and Bj ori P dis- 
t inct  f r o m  s and t ;  and similarly SQ and tQ on Q. T h e n  
the edges of the residual paths Pusp; t p ]  and Q l [ s ~ ;  tal are 
‘bidirectional ’. 
PROOF. (Cf. Figure 7 . )  Since D, and Oj interlace, t,lirre exist 
two vcrticrs of attachrpent ui axid bi of Bi and two vprtices of 
attaclirnent a j  and bj  of Bj, all four distinct, such that a, and 
bi separate a j  and b j  in t,hc circuit .7. Let N,  be a cross-cut of J 

U 

C ~ S E  m C A S E  w 
Figure 7: Four Cascs of the Lemma.3.10 

iii G botwo.cn a; aii.lld. 6, belonging to 13;; and N j  betwcen aj and 
b j  bcloiiging to Bj. The foiir reaitluitl pat,hs Jus;; a j ] ,  J [ a j ;  b;],  
JEG,; b 3 ]  and J [ b j ;  a,] will bo referred to as quadrants I, 11, I11 
and IV, respectively. The distinguished vertices s and t lie on 
J .  Observe that, if two BPo-bridges 13; and Bj interlace then i t  
is always possible to choose. four distinct vertices a;, b j ,  aj and 
b j  such tliat s and t do not lie in the same quadrant. 

Hence there are four cases to consider: 

.CASE. 1 s is an internal vertex of quadrant I and t is an in- 
ternal vertex OJ quadrant IIZ. Let, Jus; t ]  in quadrants I, I1 and 
111 he Pu.s;t] and Q [ s ; t ]  its complement in J .  Let a;,  b;, aj 
and bj bc modified such that .a, and a j  are the left-most ver- 
tices of attachment of Oi and Bj, distinct from s, on Q and P 
respcctivcly; and sinlilarly, b; and bj, distinct from t. Accord- 
ingly, N; and are modified. Observe that sp (respectively, 
SQ) is distinct from a3 (respectively, d,) if and only 4 sp is the 
left-most vertex of attachment B; on P (respectively, S Q ,  the 
left-most vertex of attachincnt LIj on Q), distinct from s. A 
similar observation can be made about t p  and t q .  

Every edge of the residual paths Pl[aj; b;] and Qua;; bj] is ‘bidi- 
rectional’. The paths Pis;  t ]  and Q[s;  ai]  * Ni[a , ;  b;J * Pub;; aj] * 
N j [ a j ;  b j ]  * & [ b j ;  t ]  traverse the edges of P [ n j ;  b;] in either di- 
rection. Similarly, for &[a;; bj].  

If s p  and a3 are distinct then every edge of the path Pusp; ail 
is ‘bidirectional’. Since s p  is a vertex of attachment of B;, 
there is a cross-cut between sp and bi, say N:. then the paths 
Pus; t ]  and 01s; bjl* N l b j ;  a j ] *  Pia?; sp]* Ninsp; bi]* Pub;; t ]  
t,rnversc the cdgm of P[.u,,; a j ]  in cithcr directions. Siinilarly, 
for Pub;; t p ] ,  Q[[sQ; ai] and C)[bj;  t u ] .  

eCASE.2  s is an internal vertex oJ quadrant I and t :  of quad- 
rant IZ. Lot J [ s ;  t l  in cp;idrants I arid I1 be Pus; t ]  and Q[s;tB 
it,s cornplcnicnt in J .  Wv ]nay iissnnic thiit a j  = s p  = t p .  Since, 
ot,lic:rwise, we can rcducc tliis case to an instance of the casc(1). 

Siiice B, is a DPQ-bridge, a i  is also an at,tachment of B;; and 
thcre are cross-cuts bct.wcen aj and a; ( N : )  and betwcen a j  

21 1 

http://botwo.cn


aut1 6, (Nil) .  Let, ai a i d  6, be niodificd to be the loft,- and 
riglit-most, vc,rtic:cxs of att.acliincnt of U ,  OII Q, tlist,inct from s 
anel t ,  rcspc,ctivcdy. Arcorclingly N, is niotlifictl. Obwrvc that 
SQ is distinct from a, iJ und only iJ SQ is t l i v  Irft-most vertex 
or ;~ttaclinit~rit  of Bj on Q distinct from s .  A similar rclation 
Iiolds twtwccn i q  and 6,. 

Evwy d g c  of t.hc rcsithial path Q[at; bln and Q[6J; b;] is ‘bidi- 
rectioiial’. Tlic paths Q ~ s :  t ]  and r[l.q; a j ] *  N 3 [ a j ;  h,]* Qljbj; ai]* 
N;Ijai; b,] ,  Q [ b i ;  t ]  t,ravcrse edges of QUui; O j ]  in eitlicr direc- 
tions. Siinihrly, for Qubj; b;]. 

If SQ and ui are distinct, thcn every edge of Q ~ s Q ;  a,] is ‘bidirec- 
tional‘. Since S Q  is a vertex of attachrriciit of Bj! tlic,rc is a cross- 
cut between SQ ant1 bj ,  say Nj. The patli:; Qus; t ]  and Pfs; ajl* 
N;[u j ;  a;]* Q[u; s&]* N ; . ~ ~ s Q ;  b j ]  4 Q [ b j ;  t ]  t,raversc the cdges of 
Q ~ s Q ;  uz ]  in either directions. Tlic siibpath Q[b;; t ~ ]  is treated 
in a similar inanner. 

oCASE.3  s = a; and t i s  an internal vertex of the quad7an.t 
II. Let JUS; t ]  in quadrants I and I1 be P [ s ;  t ]  and &Us; t ]  hp its 
coniplcnierit in J .  We inay assume that s p  = a j  and SQ = bj. 
Since, otherwise, we can reduce this case to an instance of the 
case(1) or case(2). 

Since I3i is a BPQ-bridge, it has a vert.cx of attachment b: on 
Pisp ;  t p ] .  Let b, and b: be modified t,o be t,he right-most ver- 
tices of ittt,aclimcnt of B, on P and Q, clist,inct from t .  Accord- 
ingly N,  is modified. Moreover, thcre are cross-cut,s between a; 
and b: (say, N l )  and l)c%wccn bc and bi (say, N:) .  Observe that 
t~ is distinct frcm 6; if and only ;f tQ is t,he right-most vertex 

hmcnt of’Bj distinct from t .  A similar relation holds 
between t p  and b:. 

Every edge of t.he residual path Ql[b,; b,] is ‘bidirectional’. The 
paths QU.7; t ]  and N;[[s; bin* Qlb;; bin* Nj[jbj; ai]* Quaj;  t ]  tra- 
verse the edges of &Ubi: b;]  in cithcr directions. If a j  and b: are 
distinct then, similarly, every edge of P [ a j ;  bin is ‘bidirectional’. 

If t p  and b: are distinct thcn every edge of P[b:; tp]  is ‘bidi- 
rectional’. Since t p  is a vertex of attachnicnt of Bj, there is 
a cross-cut between a j  and t p  (say, N i ) .  The paths P i s ; t ]  
and P i s ;  ai]* Ni[n j ;  tp]*  P[[tp; bin* N,“[b:; b ; ] t  QIb;; t ]  traverse 
edges of Pl[61; t p ]  in either directions. Similarly, for gib;;  tQ]. 

oCASE.4 s = a, and t = bi. We may assume that sp = t p  = 
a j  and SQ = tQ = bj. Since, otherwise, we can reduce this case 
to a11 inst,imcc of tlic casc(3). Since thr p t , h  arc cn~pty, the 
thcoreni is trividiy triw in this case. 

Theorem 3.11: Assume  LABEL-TYPE-111 correctly la- 
bels the edges of a TYPE.I I I  graph. T h e n  the algorithm 
LABEL- TYPE-II correctly labels a TypE.11 graph. 
Plt00F. Let e bc ail arbitrary cdgc of thr. T Y r E . 1 1 1  graph G .  
Without loss of genctiLlit,y we may assulnc that e is an edge of 
tho path P ,  anti tli:xt thcrc arc? no two intrrliicing bridgm such 
t.liat e t Pus,; t p ] ,  as in t.he previous Icrnnia. Otherwise the 
proof is iinincdiatc from t,hc previous t,wo lemmas. 

We par ti ti or^ tho set of DPQ-bridges, 8 of J ixit,o following three 
disjoint subsc?t,s: €31 = the set, DpQ-bridges whose vertices of 
attachnicrit on P are to t,llo left of e; 02  = t’lle set B”?-britlges 
whose vertices of attachment on P are to the 1-ight of e; 83  = 
B\{ S,u&}. Noticc that, no britlgcx of & iiitcr1ac:c:s with a bridge 
of 8,, (where i, j = 1, 2, 3 and i # j ) ;  and 83 docs not contain 
a pair of interlacing bridges. If 83 is empty or if 8 3  contains 
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Figure 8: Steps of the Algorithm LABEL-TYPE-111. 

two or niow eqiiivalcnt RPO 3-bridges (Cf. Proposit,ion 1.13) 
then it can be shown that [ ( e )  = (v,; U), if U is to t,lie left of v 
on P.  On tlic oLilt:r liarid, if 83 = { B,} is a singleton then the 
labclling of e is completcly determincd by tlic hritlgc fragnieiit 
*7 U B3. 0 

3.5. Labelling a Type.111 Graph 
w e  assume tha t  there is an algorithm calleci LABEL- 

TYPE-IV, t.o label the  edges of a TYPE.IV graph. 
Algorithm LABEL-TYPE-111. (Cf. Figure 8.) 
eSTEP1. Let  SF and t p  be the left-  and right-most vertices 
of a t tachment  of B o n  P ;  a.nd similarly, SQ and tQ, on 
Q. Let  G’ be thz  subgraph derived f r o m  G by delcting the 
vertices s and  t together wi th  t!ie edges inc ident  o n  s and t 
and the subpaths Pis; s p ] ,  Q [ s ;  sQj, Pi tp ;  t ]  and  &[itQ; t i .  
T h e  vertices s p ,  sQ and the vertices of G‘ adjacent t o  s in 
G are labelled a ;  and the vertices t p ,  tQ and the vertices 
of G‘ adjacent to t in G are lnbelled r .  
eSTEP2. Find the nonseparable components of G’ and la- 
bel each separation vertex v of each nonseparable compo- 
nent C as follows: v is labelled IJ (respectively, r), if there 
is  a path f r o m  v t o  a vertex U ,  already labelled a (respec- 
tively, r) ,  in the trze T(G’) of G‘ and the path avoids C .  
This step can be done in time O ( s i z e ( T ( G ’ ) ) )  = O(lE1) 
using a depth first search. 
eSTEP3. For each nonseparable component C ,  introduce 
t w o  n e w  vertices s c  and tc; and j o i n  sc (respectively, tc) 
t o  all the vertices of C labelled a (respectively, r ) .  W e  
call the graph derived f r o m  the nonseparable componen)t 
C ,  Gc; and the new  edges, pseu.do-edges (III). If G’ i s  



nonscparable then  the graph deriued f r o m  the nons~parable  
component G', ca lkd  G", is a  TYPIC.^^ g m p h  and by 
assumption, we can lube1 G" us iny  the algorithm I,iiUI<:L- 
TYPE- I V.  Otherwise, lrrbil the edyes of the components 
by recursively calling the m u i n  algorithm wi th  (G(;; sc, t c ) .  

eSTEP4. Edge e = [U, 7 ~ ]  o n  Pus; s p j  , Qus; s(J , Putp; t i  
and &utcz; t l  i s  labelled t ( e )  = ( u , v ) ,  i ju  is  to  the left o j w  
on  P or Q.  Edge [ s , ~ ]  incident  o n  s i s  labelled t ( [ s , u ] )  = 
( s , u )  and edge [ U , ! ]  incident  o n  t is  hbelled ! ( [ u , t ] )  = 

Lemma 3.12: Let C be a nonseparable component o j G '  
whose separalion vertices are labelled U or r (or both), and 
lel e be a n  arbitrary edge o j C .  T h e n  there i s  a simple path 
R f r o m  s t o  t in G traversing e in the order U ,  if and 
only if there are t w o  distinct separation vertices a and b 
in C such that  ( i )  Label o f a  is  a ;  and label of b i: r .  (ii) 
There is a simple path R' joining il and b in C; and R' 
traverses e in the sume order. 

PROOF.  (+) By !abdling of thr separation vertices in the tree 
T(Ci') of G', thcrr arr' aimplr path ivlus; u] ;uid Nz[i5; t ]  in G' 
such that N I  and N z  arc vertex disjoint and do not belong to C. 
Thc path RES; t ]  = N l [ s :  (z]* R'l[u; b]* iVzj[b: t ]  in G,  is simple 
aid t.ravcrses in tlic smi (~  order a s  R'. (:+) Lct R[s;  t ]  traverse 
P in thr order U arid I I  m t l  let e belong to the nonsrparable 
component C. Then ,Y[z: t] l  can bc writtcw as R [ s ; a ] *  R[[a;b]l* 
I@; t ] ,  whew a a~id  b arr two distinct wparation vertices of C. 
Let R' in C be the siibpath .[a; b] .  R' traverses tlie edge e in 
the same order as R Ln G. Moreover, t,lic path R[s;  a] induces 
a path in tlie tree T(G')  such that, it joins a to some vertex 
lahclled c and the path avoids C. Hcncr the separat,ion vertex 
is labelled CT. Similarly the separation vertex b is labelled 7. 

( u , t ) .  0 

0 

Theorem 3.13: A,ssume that  LABEL- T Y P E - I V  correctly 
labels the edges of a TYPE.IV g -aph. ' Then the algorithm 
LABEL-TYPE-III correctly labels the edges of a TYPE.II 
graph. 

PROOF.  'By induction on the size of the graph and the Lemma 
3.12. 0 

3.6. Labelling a Type.IV Graph 

Theorern 3.14: Suppose we have a n  Alyor i thm LABEL- 
' ~ Y P E - I V  that  correcily labels the edges of a T Y P E . I V  
graph in t ime  O(T[JEI, \VI)) 2 O(IE'/ . IVI), where T 
is a monotonic nondecreasing Junction in [El and 1VI. 
T h e n  the set of mtltually recursive algorithms, LABEL-  
GRAPH, L A B E L - T Y P E - 1 ,  1 , A U E L - T Y P E - I I  and LABEL-  
T Y P E - 1 1 1 ,  correctl%l labels the edges q j  a n  ?Lndirected con- 
nected strict graph zn t ime  O(T(IE1, IV() + IEI . \Vi)  
PROOF. (I) Follows iinmcciiatc:ly from tllc Tllcorenls 3.5, 3.8, 
3.11 and 3.13. 

( 2 )  Tht- srt of ~iiiitiially Irciirsivc. ;dgorithnls works AS a Divide- 
iu i t l - (~onc~uc~r  ;dgoritll i n :  antl r ~ l l  tlivitlc stcap and c011 yicr step 
takes O(lEl + IpC;), wlwre IpEl = the niinit)cr of pscildo-cdgcs 
iutrotliicrd ;it c ; ~ ~ l i  stag(.. Since wc11 'tlivitlo' st,rp rctluccs t,he 
iiiunbcr of vrrt,ic-s of the su1)griq)h. by at least one, thcre can 

I)c at niost O(l l ' ( )  stages of 'divide' stages bcforc t,hc graph is 
divitlrcl into a set of TYPE.IV graplls. 

Clai.m. The total nuinbrr of psciitlo-edges in all the subgraphs 
t,hat arc' produccd at the end of cach stage, lpEl = O(lE1). 

Prooj o j  the Claim. Ldt G' be a subgraph p r o d ~ ~ c e d  at some 
stage. We t l c E x  tlircc functions j1 ,  jz and j 3  such that fz  
imps at most foiir distinct ~~s~~ii~lo-rdgc~s(I1)  of G' t,o exactly one 
graph-rdgr, f3 maps at most four distinct pswdo-cdges(II1) to 
exactly one graph-(dge, and f l  is an injective fiinction mapping 
a psrudo-rdgr(I) t,o a graph-edge or a psc~uclo-ccl~r(III). Since 
t,lir graph-edges of t t i r  subgraphs arc disjoint, thr claim follows. 
IF e' is a pscudo-edge, irlridcnt on a vertex v of G' then there 
must be BPQ-bricigc of G' with a vertex of attachmeI!t at U. Let 
e be the edge of the 4P'd-bridzc, incident at v .  Dcfilic fz (e ' )  = e. 
Since fz maps a t  *.lost four distinct pseido-edgcs(I1) of G' to one 
graph-rdge of G', 2nd since thc graph-edges of thc subgraphs are 
disjoint, the total number of pseutlo-cclgcs(II), (pE"1 5 4 . ]El .  
If e' is a pseudo-rdge(IiI), incident at  a vertex v of G', then 
since v is one of s p ,  t p ,  S Q ,  t Q ,  a vertex adjacent to s or t ,  or 
a separation vertex of a cornponmt t,hrn tliere must be graph- 
edge e that is also incident on U. Define f3(e') = e. Since f3 
maps at most. jou? pseudo-edges(II1) of G' to exactly m e  graph- 
edge, the total nuniber of pseudo-edgcs(III), lpE*"I i 4 . ] E l .  
We define a injective function fl that maps a psoudo-edge(1) 
to a graph-edge or a pseudo-edge(II1). Let B; be a block with 
the associated vertices s; and ti and Ji! the anhitus of B;, 
containing both si and ti .  Let e' = [s;, ti] be the pseudo-cdge(1) 
and let e be an cdge of J; incident, on t ;  but not belonging to 
J .  Define f i (e ' j  = e. It is easy to show that fi is one-one 
and hence, the total number of pseudo-edges(I), IpE'/ 5 5-IEI .  

Summing the number of pseudo-edges, we obtain lpE'l+lpEUI+ 

1pE"'l 5 1 3 .  IE! .  (End of the Claim.) 

1 I ( ~ i c c ~ .  t,lic ;~lgorit.lin~s sp('ii(1 ( I (  IEl . IVl) t,irnr to rcciiicc t,he 
g r 4 1  G iuto sc,t of TwF;.IV slI1)grq)lis. S I ~ W  ( ~ l i  TYPE.IV 
subgriipli lias lrss t,Ii;ui IV 1 vcrticcs, ;uid since the total nwll)c.r 
of cdgcs is O(jEl), tlir t.lic~~~re111 f0hJWS. 

Theorem 3.15: Let G' be a T Y p E . I V  graph and G', the 
subgraph derived f r o m  G by deleting R und t together with 
their incident  edges. Let U be the B'"2-bridge o j G .  Then, 
every edge e of B n o t  incident  on s or t is 'bidirectionul.' 

PROOF. Ohscwc. that, t,hcrr rxist vcrtiws of attachlilcnt of 
13: x 011 I+; t i  a11d 71 011 Qls; t i  ~ ~ 1 1  t,ll;tt thcw is a cross-cttt 
N l~rtwc~ci~ z antl y coiit~aining e. (This is a consrqnencc of 
proposit,ion 1.12 a i i t l  tlw iioiiscr);lr;~~)ility prop('rty of GI.) The 

P I X :  t]tr;ivrrse (1 in citllrr dirrctions. 

Every edge [ s ,  U ]  incident on s is labelled (s, U )  and ev- 
ery edge [ U ,  t ]  incident on 1, labelled ( U ,  t ) .  All other edges 
of the B'Q-bridge are labelled 'bidirectional.' Hence, we 
can label all but the edges on P and Q of a TyPE.IV 
graph in O(lEl) time. But, each edge of P[sp; tpD and 
& [ s u ; t o ]  can be  labelled in O(lEl . IVI) time, tising an 
algorithm for Two-Disjoint-P.ath problem. Since there 
w e  at most (I/( such cdges, this step can be dune in 
O(IEl. IVI') time, thus, yielding an O(1El. iV12) labelling 
algorithm for the general graph. 

0 

two I)ittils PU.~:  ~ 1 : ~ ;  ?,j* c j j l / ;  ti  ilItti cjnS; Qj*  NU:^; :yp 
0 
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4, An Efficient Algorithm. 

We sketch an algorithm to label the edges of the sub- 
path P i s p ; t p ]  and Q[so;tQ] of a TYPE.IV graph, G, 
in O(lEl . IVl) time. Recall that  this will provide an 
O(lEl .  IVl) time algorithni for a general graph. (Cf. Thc- 
orems 3.14.) The algorithm niakes use of many special 
properties of a bridge and its proofs of correctness are 
rather complicated. These will be supplied in the author’s 
thesis. 

4.1. U-Fragment 

Before we describe the main algorithm, we introduce 
the notion of a U-Fragment and sketch an algorithm to 
find certain pairs of disjoint cross-cuts in it. 

Defini t ion 4.1: A U-Fragment and .!?-Fragmer,t are de- 
fined inductively on the structure of a TYPE.11 graph ;t9 

follows: 

*A TYPE.II  graph is called a U-Fragment, with 82 = its 
set of BPQ-bridges. Its upper and lower external vertices 
of attachment are empty sets. 

.Let U be a U-Fragment consisting of the circuit J = 
P U  Q and let B be a BPQ-bridge of U .  Let the left-most 
and the right-most vertices of attachment of B on Q [ s ;  t ]  
be the distinct vertices s’ and t‘. Let R be a path in B, 
connecting s’ and t‘ and decomposing B into following sets 
of bridges with respect to  { P }  U { Q }  U { R } :  81 ==the set 
of bridges with vertices of attachment on Pis; t [  and on 
R ] s ’ ; t ’ [ ;  Bz = the set of bridges with vertices of attach- 
ment on R ] s ’ ;  t’u and Q]s’; t’[; and the set of bridges with 
vertices of attachment solely on R and avoiding 81 and 
82. 
The subgraph U’ = {Rus’; t ‘ ] }  U {Sus’; t i ] }  U 8, of U ,  is 
called a U-Fragment of U o n  Q. The vertices of attach- 
ment of €31 on Rls ’ ;  t’[ are called its upper external vertices 
of attachment,  UA and the lower external vertices of at- 
tachment of U lying on &Is‘; t‘[, its lower external vertices 
of attachment,  LA. 

The subgraph = {Rus‘; t i ] }  U { P [ s ; t ] }  U-& of U ,  is 
called a complementary U-Fragment (simply U-Fragment) 
of U on Q. The external vertices of attachment of U 
lying on P]s ; t [  are called its upper external vertices of 
attachment,  UA,  and the vertices of attachment of Bz on 
R]ls’; t’[i together with the vertex s‘ (if s‘ is distinct from s) 
and the vertex t’ (if t‘ is distinct from t ) ,  its lower external 
vertices of attachment,  LA. 
The U- and U-Fragments of an U-Fraqment are defined in 
an identical manner. 0 
NOTATION: Let U be a TJ- or a U-Fragment. Let the left- and 
riglit-most upper attnchnicnts on P (respectively, 9) be su and 
trJ (rcspectlvdy, SL arid t~ ) Let B be a BP‘2-bridgc~ of U and let 
the Icft- aiid right-most vertices of attnchnicnt of B on Pis; t ]  
be s;. t:, and tliosc on 91s: t ]  be .<: and t;. Sipilarly, let the 
left- and right-most verticc>s of attachment of B on P]ls;t[ be 

sp and t p ;  and those on 01,s; ti[ be SQ anti tg.  We considcr t.he 
bridgr L3 aiigrnrnt,cd with the patlis as follows: Let the modified 
bridge be II U P[.sg; t g ]  U @Os;: t ; ] .  If s; = s z  = s then label 
the vcrtex with ‘s’, aiid if t$ = 1: = t t.hcri label the vertex 
wit,h ‘t.’ By an ;ibuse of notation, wv also refer to the modified 
bridge as t,lie bridge,  B.  

Defiriition 4.2: A U-Fragment, U‘, of U (a U- or a 8- 
Fragment) on Q is said to be a Feasible U-Fragment,  if it 
satisfies at least one of the following two conditions: 

0 

1. /LA1 > 0 and lUAl > 0. 
2. ( i )  lLA1 = 0; (ii) not  all the vertices of attach- 

m e n t  of & o n  P’ belong to P‘js’; su] or t o  P’utu; t’[; 
and (iii) there exist two vertex disjoint paths in 81, 
R,[ja’; a ]  and Rb[b’; b ] ,  where R, (Rb) meets P]s;  t [  
only in a ( b )  and meets P’]s‘;t‘[ only in U’ (b‘). 0 

Defini t ion 4.3: A U-Fragment, b, of U (a U- or a 0- 
Fragment) on Q is said t o  be a Feasible U-Fragment, if 
]LA\ > 0 or 1UAl > 0. 

Henceforth, i t  will be implicitly assumed that  U-Frag- 
ment and U-Fragment are found using the following con- 
ventions: 

Conven t ion  4.4: Let U’ be a U- or U-Fragment with the  
BPQ-bridge B. 
*s$ = tg and s; = t z .  Then B niay be discarded. 

os: = t: and s$ and t$ are distinct. If there is a lower 
vertex of attachment b E Q‘]s$;  t $ [  then the U- and 0- 
Fragment in B are on Q. Otherwise, B is discarded. 

os; and t: as well as s$ and t z  are distinct. ( a )  (U’ is 
a U-Fragment satisfying I. of definit ion 4.2 . )  If B has no 
lower attachment on Q ‘ ] s ~ ;  $1, but has an upper attach- 
ment on P‘]sF;t;[ then the U- and U-Fragment in B axe 
on Q. Similarly, with P and Q interchanged. ( b )  (U’ is 
a U-.Fragment of U o n  Q satisfying 2. of definit ion 4.2.) 
The U- and a-Fragment in B are  on Q. ( c )  (U‘ is a 0- 
Fragment of U o n  9.) The U- and U-Fragment in B axe 
on Q. Otherwise, the U- and U-Fragment are on P or Q ,  
the choice being arbitrary. 

Defini t ion 4.5: (Cf. Figure 9.) Let U be a U-Fra.gment. 

.Two vertex-disjoint cross-cuts NI Qxp; xQ]  and N21yp; yQ] 
are said to be a PQ-Cross-Cut  Pair,  if ( I )  xp, yp E 
P j s ; t i [  and x p  is to the left of yp; ( 2 )  xQ,  YQ f- Q ] s ; t [ j  
and XQ is to  the right of YQ and (3) if ILAl = 0 or if 
x Q ,  yQ E Q ] s ; s L ]  then /UAI > 0 and not both z p  and 
yp belong to Pis;  sui;  and similarly, if lLAl = 0 or if xQ,  
yQ E Qi[ t t ; t [  then lUhl > 0 m d  not both z p  and y p  
belong to  Pit,; tu. (Or, with UA and LA interchanged.) 

*Two vertex-disjoint cross-cuts N l [ s ;  t ]  and N z [ z p ;  xQ] 
are said to be an ST-Cross-Cut  Pair,  if  (I) xp E PIS; tu 
and XQ E Q ] s ; t [ ;  ( 2 )  there are an upper attachment on 
PIS; tu and a lower attachment on Q ] s ;  tu. 
*Two vertex-disjoint cross-cuts N I  [&; x‘;] and Nz iyp; ys] 
are said to  be a P-Cross-Cut  Pair,  if: (I) x>, x’; E P[[s;t] 
and at  least one of them is distinct from s and t ;  ( 2 )  

U 
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Figure 9 PQ-, ST-, P- and &-Cross-Cut Pairs. 

y p  E P]&;z>I and y~ E & ] s ; t l ;  and (3) there is an 
upper attachment c‘ E PI&; x>[. 

A Q-Cross-Cut-Pair.is defined similarly. 0 
The Cross-Cut Pairs of U-Fragments and bridges are 

defined similarly. Now, we present an algorithm to find a 
P-, Q- ,  P Q -  or ST-Cross-Cut Pair in a U-Fragment. 
A lgor i thm A N A L Y Z E - U - F R A G M E N T .  
oSTEP1. First, check the, anterlacing bridges of B2 to  de- 
termine i f  the required cross-cut pairs exist. If so, return 
‘YES’. I n  the nezt  slep, analyze each bridge of 82 f o r  the 
cross-cut pairs. I f  the answer is  ‘YES’ f o r  any  B2 bridge, 
return ‘YES’; otherwise, return ‘NO’. 

oSTEP2. Let B E 8 2 .  I f  the vertices of attachment of B on 
P belong to  Pis; su] and those o n  Q belong t o  &is ;  sL] (or 
symmetrically, if those on  P belong t o  Pu tu ;  t [  and those 
on Q belong to  Q ( [ t L ;  t [ )  t hen  B can not have the requirrd 
cross-cut pairs and ius discarded. Otherwise, anulyze each 
single bridge using the algorathm ANALYZE- BRIDGE. 
n 

Algorithm ANALYZE-BRIDGE(B) : 
begin 
D I V I D E .  Find a path R in B following the convention 4.4. 
Modify R such that the bridges with vertices of attachment 
solely on R avoid other bridges. Let B1 and 82 be as in the 
definition 4.1 and let 83 be the set of bridges with vertices 
attachment on Pus:!; tF1, R]s:;t:[ and Qls:; t$ 
if TPEST-AND-MODIFY(B) returns ‘YES’ then 

else goto UBAR; 
if la3! # 0 then  return ‘YES’ else goto RECUR; 

RECUR :Let U be the U-Fragment formed by the paths P, 
R and the bridges 82. 
if U is marked feasible then  

if ANALYZE-U-FRAGMENT(U) returns ‘YES’ then  
returu ‘YES’; 

UBAR :[Analyse the set of &-bridges:] 
Analyze bridges B1 to determine if it has the required 
Cross-Clit pairs. If so, return ‘YES’. 
[Analyse each bridge B’ E &:I 
Let the left- and right-most lower attachments of the 0- 
Fragment on R be si and ti. 
If the vertices of attachment of B’ on P belong to 4 s ;  SUI 
and those on R belong to RDs; si] (or symmetrically, 
if those on P belong to Pntu; t i  and those on R belong to 
R[t i ;  t ! )  then discard €3‘; 
if ANALYZE-BRIDGE(L3’)returns ‘YES’ then return ‘YES’; 

return ‘NO’; 
end. 0 

A l g o r i t h m  TEST-AND-MODIFY. 
*STEP1. Check if B has a lower vertez of attachment o n  
Q]s t ; tQ”[ .  Then,  i fJB31 # 0 then return ‘YES’. I f J B s J  = 0 
then mark U ‘feasible’ and return ‘YES’. Otherwise, go t o  
the next  step. 
*STEP2. Let  the left- and right-most vertices of attach- 
men t  of  B1 and & bridges on  R be sk and t i  (and if 
1831 = 0 t hen  those o n  Qns:; tt[ be sb and t b . )  Let GB be 
the subgraph of B obtained by deleting the followings: (i) 
the bridges 8 2 ,  (zi) the vertices s$ and t t  together with 
the edges incident  o n  them,  (iii) the subpaths R ~ s ~ ; s Z ~  
and I?[&; t ;] ,  (iv) the subpath Q[[s;J”: tu”], if /BSI ;= 0 (0. 

the subpaths Q[s:;sbi and Q[ tb ; t : l ,  if /&I  # 0.) The 
vertices 01 Go adjacent to  s c  are labelled a; those adja- 
cent to  t:, r ;  the vertices SIR and t k ,  p; and the vertices 
sb and tb, x. 
*STEPS. Find the nonseparable components of Cn and let 
the component containing the path Pl[s:; tf!] be called C,. 
Let each separation vertex of C, be labelled as follows: the 
separation vertez v is labelled a (respectively, T ,  p or X )  
if there i s  a path f rom v to  a vertex U, already labelled U 

(respectively, r ,  p or x) in the tree T (GB)  of GB and the 
path avoids C,. 
*STEP4 If (831 # 0 and C, has two distinct vertices one 
labelled p and the other labelled x t hen  return ‘YES’. If 

* 0 and C, has two distinct vertices labelled p then 
check ;f U satisfies &(id) of definition 4.2. I f  so, mark U 
‘feasible ’ and return ‘YES ’ . 

Otherwise, modify the bridge B t o  f o r m  a U-Fragment 
as follows: Delete all the edges of the bridge ezcept the 
ones in C,; Adjoin the separation vertez of  C,, labelled p ,  
t o  s z  and t t  with new edges; And  adjoin the separation 
vertices of C,, labelled a (respectively, r )  t o  s z  (respec- 
tively, t:). Let  the path from si to t:, touching the vertez 

attachm_ent only on P and R. Return the modified graph 
as the U-Fragment. Cl 

labelled p, be R and &’, the set  of bridges with vertices of 
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4.2. Labelling the Path 
We present an algorithm to  label the pa th  P of a 

TYPE.IV graph, G, in O(lE1 . /VI) time. By using the 
algorithm twice (once for P and once for Q ) ,  i t  is possible 
to label the paths of G in O(lEl. IVI) time. In this section, 
we only sketch the algorithm €or the case when the bridge 
B of G has its vertices of attachment s z  and t$ distinct 
from each other and from s m d  t .  The other cases are 
similar, but slightly more complicated; and will appear in 
the full paper. 

Algorithm LADEL-PATH(P, I?) . 
begin 
DIVIDE 
and B3 as in thc, dgor~tliiri ANALYZE-BRIDGE. 
if TCST-AND-MODIFY(B) returns ‘YES’ then  

Find <i p d h  I? 11: B jonnng s$ m d  t z ,  with &, 82 

if (831 # 0 then label the edges of Pusp,  tp]l 

else goto RECUR; 
‘bidirectional’ and return ‘YES’; 

else goto UBAR; 

RECIJR Let IT be the U-Fri.,tgInciit as in ANALYZE-DXIDGE 
if l J  IS inarkcd fensl1)lr then  

if ANALYZE-U-FRRGMENT(U) rrturns ‘YES’ t hen  
labcl the c d g ~ s  of P f s p ,  t p ]  ‘bidirectional’ and 
return ‘YES’, 

UBAR [Andyze the set of &-bridges:] 
Analyze the blocks of interlxing bridges of 81 to labcl the 
edges of the path P [ $ p ,  t p l ,  as in LABEL-TYPE-11; 
Also, deterinme if they have the rrquired Cross-Cut pairs. 
If so, labcl the edges bf P l s p ,  t p ]  ‘bidirectional’ and 
return ‘YES’; 
[Analyze each bridge B’ E ai:] 
- - P[s$‘, t;‘] (recursively), as well as to find if it has the 
- - required cross-cut pairs, using LABEL-PATH; 
if LABEL-PATTN(P, 5”) returns ‘YES’ then  

- We analym ex11 bridge Ll‘ to label the subpaths 

label the edges of P [ s p ,  t p ]  ‘bidirectional’ and 
return ‘YES’; 

return ‘NO’; 
e n d .  U 

Notice tha t  the algorithm uses Divide-and-Conquer 
paradigm: Each ‘divide’ step involvcs finding a pa th  in 
a bridge, where the path has additional properties that  
the bridges with vertices of attachment solely on the pa th  
avoid 81, 82 and B 3 .  This can be done in O( IEI+IpEI) time 
by combining DFS technique with the ambitus-findind 
algorithm. (p& = tlie pseudo-edges introduced in the 
step 4 of TEST-AND-MODIFY.) Each ‘conquer’ step in- 
volves analyzing intcrlacing bridges for appropriate cross- 
cut pairs, which can be done in linear time, and analys- 
ing each individual bridge (recursively). However, each 
‘divide’ step reduces the number of vertices of the sub- 
graph by at  least one, and hence the algorithm takes 
O((1El i- IpEI) . \VI) time. But,  again, it can be shown 
tha t  the number of pseudo-edges introduced is O(lEl), 
thus, giving an O ( ( E ( .  IV() time algorithm. 

The proof of correctness involves two parts: 13 part  _1, 
we show, by induction on tlie structure of the U- and U- 
Fragments, tha t  when the algorithm claims the existence 
of certain disjoint paths, such paths, in fact, exist; In part 
2, we show by nsing’U-Fragments as gadgets, tha t  when 
the algorithm fails to  muster enough evidence for the ex- 
istence of certain disjoint paths, i t  is only when no such 
paths exist. 

REFERENCES 

A. V . i\ 110, J . E .  IIor(:I?OFT AND J . D .  U LLMAN, The 
Dcsip iuid Ari~Jysis of C O I J ~ ~ I J  tm. Algorithns, Addison- 
Wesley, Rending, MA, 1074. 

D ,  BR.AND, “Detrcting Sncnk Paths in Transistor Net- 
works”, IBM Thoinits J .  Watson R.escarch Ccnt,er, York- 
town Heights, N. Y., 1983. 
S .EVEN,  Graph Algorithms, Computer Science Press, 
Maryland 1979. 
S, EVEN AND R .  E .  TARJAN. “Nct,work Flow and Test- 
ing Graph Connectivity”, SIAM .Jonrn;~l of Computing, 
Vol. 4, No. 4. December 1975. 

E.FR.ANK, A Data Driveii Multiprocessor for Switch 
Level Sinidation of VLSI Circuits., P11. D. Thesis (in 
preparat,ion), 1984. 
J . HOPCROFT AND R. TARJAN, “Efficient Planarity 
Testing”, Journal of the Association for Computing Ma- 
chinery, Vol. 21, No. 4, October 1978. 
T.OHTSUKI, “The Two Disjoint Path Problem and 
Wire Routing Design”, in Graph Theory and Algo- 
rithms (Eds. N.Saito, T.Nishizeki), Springer 108, Oc- 
tober 1980. 
Y .  PERL AND Y .SHILOACH, “Finding Two Disjoint 
Paths Between Two Pairs of Vertices in a Graph”, Jour- 
nal of tlie Association for Computing Machinery, Vol. 
25, No. 1, January 1978. 
P .D .  SEYMOUR, “Disjoint Paths in Graphs”, Discrete 
Mathematics, Vol. 29, No. 3, March 1980. 
Y . SHILOACH, “A Polynomial Solution to the Undi- 
rected Two Paths Problem”, Journal of the Association 
for Computing Machinery, Vol. 27, No. 3, July 1980. 
R .  TARJAN, “Depth-First Search and Linear Graph Al- 
gorithms”, SIAM Journal of Computing, Vol. l, No. 2, 
June 1972. 
R.E.TARJAN, Data Structures and Network Algori- 
thms, Society for Industrial and Applied Mathematics, 
Philadelphia, Pa., 1983. 
W.  T .  TUTTE, “Bridges and Hamiltonian circuits in 
planar graphs”, Aequationes Mathematicae, 15, 1977. 

W .  T . TUTTE, Graph Tlieory, Addison- Wesley Pub- 
lishing Company, Menlo Park, California, 1984. 

216 


