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ABSTRACT
We present a fast, versatile, and adaptive-multiscale algorithm

for analyzing a wide variety of DNA microarray data. Its primary
application is in normalization of array data as well as subsequent
identification of “enriched targets”, e.g. differentially expressed genes
in expression profiling arrays and enriched sites in ChIP-on-chip
experimental data.

We show how to accommodate the unique characteristics of ChIP-
on-chip data, where the set of “enriched targets” is large, asymmetric
and whose proportion to the whole data varies locally.

Our software as well as our raw DNA microarray data with PCR
validations are freely available at
http://www.math.umn.edu/∼lerman/supp/bioinfo06.
Contact: lerman@umn.edu

1 INTRODUCTION
Microarray analysis is a high-throughput method to measure abun-
dance of multiple species of target DNA by simultaneous hybri-
dization to an array of DNA probes. When the target DNA is
cDNA corresponding to gene expression, it measures the trans-
criptomic state of a cell under an experimental condition. When
the target DNA is sampled from genomic DNA, it measures copy-
number variations within a genome as population polymorphisms
or as chromosomal aberrations in a tumor genome (Pollacket al.,
1999). Finally, when the target is genomic DNA selected by immu-
noprecipitation (IP) with a protein, it identifies those regions of
genome that interact with proteins, such as transcriptional factors,
thus elucidating regulatory genetic controls (Renet al., 2000).

All these applications use comparative methods. In a “two-color”
scheme, simultaneous array hybridization detects target DNAs of
two different experiments, which are labeled with different fluore-
scent dyes. Target DNAs that have differential behavior from one
experiment to the other are called “enriched,” the objects sought
after in these high-throughput experiments. Enriched targets are
found in two steps: First, the measurements are transformed through
a “normalization” step in order to assign similar local means (or
medians) to “presumed unenriched” targets. The purpose of this
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step is to compensate for experimental sources of variation, like dye-
specific effects and hybridization unevenness in DNA arrays (Smyth
et al., 2003; Bucket al., 2004). Next, the normalized data is used
as a basis for statistical identification of enriched targets that truly
differ between the two analyzed DNA samples.

In practice, the targets are measured optically in terms of a raw
intensity value, and analyzed after being transformed by a loga-
rithmic function. With just two samples involved, the following
transformed data representation is standard: for every target, the
logarithms of intensities (according to the two samples) are averaged
to create anA value (log of their geometric mean) and subtracted to
create anM value (log of their ratio), and then plotted in anM vs.A
plot. The majority of targets will belong to a stable unenriched set
of targets, and after correct normalization theirM values will be
close to zero. The normalizedM values of the enriched targets will
lie either significantly above or below zero, but not necessarily with
any known distributions, or even symmetry.

This paper describes a fast and general multiscale method for nor-
malization of microarray data and identification of enriched targets
without assuming any prior distribution. Its utility is greatest when
the data are difficult to model statistically, for instance, when they
contain unavoidable distortion and asymmetry. Such problems are
most acute for ChIP-on-chip experimental data.

ChIP-on-chip experiments combine microarrays (“chips”) with
Chromatin immunoprecipitation (ChIP) assays to identify the geno-
mic loci bound by any given transcription factor (Renet al., 2000;
Blais and Dynlacht, 2005; van Steenselet al., 2005). The immu-
noprecipitated sample represents gene fragments attached to the
transcription factor, and is compared with a sample not subjec-
ted to immunoprecipitation and thus representing all genes equally
(“input” sample). The two samples are labeled with different fluore-
scent dyes and are co-hybridized onto a DNA microarray represen-
ting all gene promoters of the particular species examined. Those
spots that show a significant increase in fluorescence in IP sample
relative to the input sample are termed enriched spots, and are consi-
dered to represent the target genes bound by the transcription factor
in the cell nucleus.

There are currently well-established methods for normaliza-
tion and identification that work well for many cDNA array data
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sets (Quackenbush, 2002; Smythet al., 2003). However, in ChIP-
on-chip experiments, enriched target DNA segments deviate in only
one direction. That is, theM values (log ratio of input to IP signals)
of enriched sites are mostly negative. In this case, the statistical
distribution of the correspondingM values is asymmetric, hard to
model and thus difficult to estimate. Moreover, in such data the
whole M values are frequently skewed, their observed distribu-
tion varies locally, and the dependence of their local means on the
A values is nonlinear. Consequently, common probabilistic techni-
ques have been difficult to adapt to data arising from ChIP-on-chip
experiments (Bucket al., 2004).

Occasionally, one also encounters cDNA array data with asym-
metric distribution of expression values. For example, the sex-
biased genes ofD. melanogasterconstitute a subpopulation whose
expression values deviate asymmetrically from the bulk of expres-
sion values (Parisiet al., 2003).

Three algorithms for ChIP-on-chip experimental data have been
developed very recently. Two of them: ChIPOTle (Bucket al.,
2005) and Mpeak (Zhenget al., 2005) take into account the ”neigh-
bor effect”, observed in experiments using locus tiling arrays, to
improve the identification of targets. However, those methods can-
not be used with microarrays, where genes are represented by only
one spot. Another method Chipper (Gibbonset al., 2005) applies
to microarrays. We show here better performance of our algorithm
over the latter method for a specific data set.

We model the microarray data as arising from a mixture of two
distributions. The first one (the “stable” part) represents unenri-
ched targets. In theM vs. A plots introduced earlier, this part
is concentrated along a graph of an unknown functionf map-
ping A (mean log-intensity) toM (difference in log-intensities):
M = f(A) + noise. In the ideal case of perfect correlation bet-
ween the two intensities, the functionf is zero, and the noise is
symmetric and homoscedastic (its local variance is independent of
A). In reality, the graph is frequently curved due to the systema-
tic sources of variation discussed above, and the local variances
around the normalizing curve are not necessarily constant (namely,
the data is heteroscedastic). The second component of the mixture
distribution represents outliers (enriched targets). The goal of our
algorithm is to estimate the conditional mean and variance of the
“stable” distribution, ignoring the presence of outliers.

We refer to our algorithm as Multiscale Strip Construction
(MSC), as it constructs a normalizing curve (the estimated con-
ditional mean) with an enveloping strip around it (the estimated
conditional variance) in a multiscale fashion. The algorithm zooms
in adaptively on the “stable” part of the data by constructing par-
allelograms of decreasing sizes, centered and oriented along the
underlying curve. Higher dimensional generalizations of the algo-
rithm for different kinds of data appear elsewhere (Lermanet al.,
2006).

Our MSC algorithm performs well on various ChIP-on-chip and
cDNA array data, even in problematic cases of significant outliers
and strong asymmetries, skewness and curvature of main curve.

2 ALGORITHM AND METHODS
We provide a simplified description of the algorithm and leave
its more detailed elaborations and analyses to a mathematical
paper (Lermanet al., 2006).

The main input to our algorithm is a planar data setE of N points.
The algorithm identifies a “stable” set within that data and estimates
its local mean and standard deviations. It also uses those estimates
in order to assess “outliers” coming from a different model.

In order to simplify the technical description, we assume that the
data is normalized along thex-axis so that theM values of the
data remain constant at0. We also assume that the “unenriched”
(“stable”) part of the data is distributed symmetrically around thex-
axis. In this case, the algorithm only estimates the local standard
deviations of the “stable” set. We refer to this ideal case as the
linear-symmetric case, or LS-Case, and explain its generalization
later.

In some cases (e.g. the artificial data exemplifying the algorithm
in the supplementary material) the task of the algorithm is well-
studied. Indeed, it can be addressed by robust estimation of local
means (robust regression) and local standard deviations (Rousseeuw
et al., 1987). However, in many cases, in particular, ChIP-on-chip
data, the local percentages of outliers are significantly high, in par-
ticular larger than50% in some regions, and their distribution is
asymmetric and hard to model. In order to overcome this obstacle,
we suggest a stopping procedure which separates significant “out-
liers” in a multiscale fashion and forms local regions that cover the
“stable” set (excluding those “outliers”). In each local region stan-
dard techniques could then be applied to estimate local statistics and
then use it to reassess the significance of outliers coming from a
different distribution.

The algorithm depends on the following parameters:l0, c0, n0,
nsh and α0. We explain later how to choose their values and
elaborate further in Lermanet al., 2006.

We sketch our algorithm below (Algorithm 1) for the linear-
symmetric case withnsh = 1. Later subsections contain the details
of the different steps of this scheme and its generalization to other
instances. Lermanet al., 2006, Figure 2 illustrates its various steps
when applied to an artificial data set.

Dyadic Intervals and Rectangles
We fix an intervalQ0 of nearly minimal length containing the pro-
jection of the data set onto thex-axis. A dyadic interval with respect
to Q0 is an interval that occurs when dividing recursivelyQ0 to
halves. It is of levell, if it has been obtained byl consecutive
partitions. We denote all dyadic intervals with respect toQ0 by
D(Q0). If Q is a dyadic interval, we denote its length by`(Q).
If Q ∈ D(Q0) \ {Q0}, then denote byPQ the dyadic parent ofQ
according to the gridD(Q0) and also definePQ0 := Q0.

In order to describe the stopping constructions more formally,
we will need to define properties of several regions, which extend
dyadic intervals to the plane. Figure S1 (supplemental material) illu-
strates those regions. For an intervalQ ∈ D(Q0), its extension
Str(Q) to an infinite strip is

Str(Q) = Q× R.

Its extensionRec(Q) to a rectangle (centered aroundQ) is

Rec(Q) = Q× [−c0 · `(Q), c0 · `(Q)].

The “outer” or “putative-enriched” part ofRec(Q) is defined, by
removing a subrectangle of appropriate height, as follows:

Out(Q) = Rec(Q) \
�
Q×

h
− c0

2
· `(Q),

c0

2
· `(Q)

i�
.
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Algorithm 1 MSC Algorithm (LS-Case)
• TransformE, so thatx-axis = best approximating line
• SetQ0 := interval⊇ projection ofE onx-axis
• Set` = 0, Stop Int = ∅, Good Int = {Q0}, Nstop = 0
while l ≤ l0 andNstop < N do
• For each intervalQ in Good Int form a fixed-ratio rectangle
Rec(Q) symmetric aroundQ
• ComputefQ which describes a local fraction of putative
“outliers” insideRec(Q)
• ComputeFQ which combinesfP ’s for intervalsP ’s from
current and previous levels containingQ
• ComputeσQ: standard deviation inRec(Q)
• New Stop := all intervals inGood Int satisfying:
FQ > α0 or |Rec(Q) ∩ E| < n0

• Stop Int := Stop Int ∪ New Stop
• Good int := dyadic children of intervals inGood int
• Good int := Good int \ Stop int
• Nstop := number of points in stopping intervals
• l := l + 1

end while
• Record local standard deviations for stopping rectangles
• Obtain the scoreR via local standard deviations
• Identify outliers according toR

The Stopping Criterion
We describe the formal steps of the stopping construction and then
explain their motivation. Figures S2 and S3 illustrate the stopping
construction for an artificial data set. More properties implied by the
stopping construction are formulated and proved in Lermanet al.,
2006.

The algorithm proceeds in a top-down procedure and computes
fQ andFQ at any dyadic intervalQ it visits. The fractionfQ has
the form

fQ =
|Out(Q) ∩ E|
|Str(Q) ∩ E| .

The cumulative sum of fractions,FQ, is computed as follows: First,
the algorithm initializesFPQ0

= 0, then it applies the reduction
formula (from coarse levels to fine levels):

FQ = FPQ + fQ.

While proceeding from top to bottom levels, the algorithm stops
at an intervalQ ∈ D(Q0) (together with all of its descendants in
D(Q0)) if any one of the following two conditions is satisfied:

1. FQ > α0. (1)

2. |Rec(Q) ∩ E| < n0.

The main stopping criterion (equation (1)) implies a global esti-
mate on the percentages of initially detected outliers (points outside
the rectangular regions) as a function of the parameterα0 (Ler-
man et al., 2006, Proposition 5.1). The second stopping criterion
is necessary for having valid local estimates in each interval.

The stopping construction results in local rectangles which aim
to cover most of the “stable” set and to separate away “significant”
outliers. The heuristic justification for the success of this separation
can be given as follows. The local quantityfQ measures the local

fraction of “putative outliers” inRec(Q). High values offQ, occur-
ring in combination with sufficiently farther local distance from the
core of the “stable” distribution, imply presence of locally signi-
ficant outliers. In order to identify outliers that are also globally
significant, we follow several strategies commonly used in harmonic
analysis, which combine local quantities at different scales to iden-
tify global structure. We use an additive functionFQ, whose analogs
have appeared in similar formulations (Jones, 1990; Lerman, 2003).

The Output Functions
The main output functioñS for the LS-Case estimates the local
“standard deviations” of the stable distribution. That is,

S̃(x) =

(
σQ(x), if |Q| ≥ n0;

σPQ(x), otherwise.

We create a smoother version of the above function by genera-
ting nsh instances of the corresponding piecewise constant function
according to different grids and averaging those piecewise constant
functions (Lermanet al., 2006, Section 4.6).

The functionS̃ estimates “standard deviations” in the rectangles
associated with stopping intervals, and requires a small correction to
extend it to the region outside those rectangles. We thus alter it by
assuming that for each stopping intervalQ, the points inRec(Q)
were sampled from the restriction of a Gaussian random variable
to that region. The function̂S estimates the standard deviations of
the underlying local Gaussian distributions (Lermanet al., 2006,
Section 4.5). Note that except in this last stage, the algorithm need
not make any assumptions about the exact nature of the statistical
distributions of data.

Generalization of the Algorithm
Our approach permits two generalizations of the LS-Case algorithm
that are necessary for our applications. The first generalization con-
structs the normalizing curve (which we denote byC) instead of
assuming an underlying line. The generalized algorithm approxi-
mates the data by lines at different scales and shear the regions
{Rec(Q)}Q∈D(Q0) around those lines. That is, it uses appropriately
chosen parallelograms at different scales and locations instead of the
rectangles used in the LS-Case. Once the sheared regionsRec(Q)
and Out(Q) are defined appropriately for anyQ ∈ D(Q0), the
algorithm then proceeds mutatis mutandis. The curveC is obtai-
ned as the union of line segments. The averaging process described
above results in a smooth curve. Figures S4-S7 illustrate this pro-
cess. We initialize the process by shifting and rotating the data on
its principal axis (Lermanet al., 2006).

The second generalization allows the algorithm to adapt to asym-
metric data, in particular ChIP-on-chip experimental data. It uses
asymmetric regions{Rec(Q)}Q∈D(Q0) (illustrated by Figures S8
and S9). Details of both generalizations appear in Lermanet al.,
2006.

We also modify slightly the functionFQ following Lermanet al.,
2006, Section 4.9.1.

Ranking and Identification of Outliers
In order to rank and identify enriched targets, we define a scoring
functionR for a point (A,M ) as follows:

R =

( |M−C(A)|
Ŝ(A)

for cDNA arrays

max(−(M−C(A))

Ŝ(A)
, 0) for ChIP-on-chip.
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Initial p-values are obtained from those scores by assuming that the
stable distribution is normal. That is,

p-val(A, M) = 1− erf(
R√
2
) .

Following Reineret al., 2003, we have adjusted thep-values in
order to control the false discovery rate of the multiple testing pro-
cedure. That is, given a false discovery rate levelq, we order the
computedp-values:p(1) ≤ . . . ≤ p(N) and set

p∗ = p-value(max{i : p(i) ≤ q · i

N
}). (2)

We identify the points withp-values less than or equalp∗ as
enriched.

Choice of Parameters
We fix the values of the following parameters:l0 := 10, n0 := 30,
nsh := 30 andc0 is the minimal constant (or almost minimal) for
whichE ⊆ Rec(Q).

The parameterα0 is important for good performance of the algo-
rithm. It describes the global expected percentage of outliers. We
have developed an algorithm for estimating this parameter (Lerman
et al., 2006, Section 4.8). The main idea is to apply the MSC algo-
rithm with different values ofα0 and identify outliers at different
fixed levels of FDR. For each value ofα0, we draw the curve of
the number of outliers detected by the algorithm as a function of
the FDR level. We then observe the jumps between the curves. We
choose the value ofα0 according to the first significant jump in the
profile curves, so that it corresponds to separating the first signifi-
cant subgroup of outliers (Lermanet al., 2006, Section 4.8). In cases
of ambiguity of first significant jump of a given replicate, we choose
the one closest to the median jump (among all replicates). We show
later that the output of our algorithm is not too sensitive to the choice
of α0, but is optimal when fixingα0 according to our method.

Complexity
The speed of the algorithm for a data set ofN points, when using
`0 levels andnsh shifts is of orderO(N · `0 · nsh) and the required
storage isO(N) (Lermanet al., 2006, Section 5.3).

Note that in the ideal situation (homoscedastic variance), the
algorithm never recurs beyond the highest levelQ0 and outputs
essentially the same constant width strip in same time complexity
as would the binding-ratio-algorithm, the most popular alternative
algorithm currently used to isolate outliers in ChIP-on-chip array
data.

In practice, the CPU time of our algorithm (written in a Matlab
code which was not optimized) was 1.11 seconds when computing
C and the stripS̃ and using a data withN = 5823 points and
a laptop with Intel Pentium processor of 1.60 GHZ and 1 Giga-
byte of RAM (the data is replicate A of Myogenin ChIP-on-chip
described in Subsection 3). When also computing the stripŜ, the
CPU time was 7.96 seconds. For comparison, the CPU times of
LOESS using the same data and pc with the bandwidths parameters
0.1, 0.3 and0.7 are8.54, 15.28 and28.05 seconds respectively.
While LOESS only normalizes the data, our algorithm also estima-
tes the local standard deviations of the stable distribution and the
significance of enriched points.

Clearly, the use of̃S instead ofŜ reduces considerably the com-
putational time. Our experience shows that for values ofα0 less than
0.2, the differences between the two functions are not significant.

3 CASE STUDIES
We demonstrate results of our algorithm for both gene expression
and ChIP-on-chip data with emphasis on the latter.

C. acetobutylicumGene Expression Data
Using our algorithm, we have analyzed cDNA array data comparing
gene expression of megaplasmid pSOL1 deficientC. acetobutyli-
cum strain M5 relative to its wild type (WT) strain (Yanget al.,
2003). The pSOL1 genes are postulated to have expression with a
broad range of levels in WT, but unexpressed in M5. Therefore,
these genes were expected to be characterized as enriched in the
WT strain versus the M5 strain.

To measure the statistical power of our algorithm, we focused
on the following quantities: the false positive rate (FPR), the true
positive rate (TPR) and the identification error (Er), all described
in Yanget al., 2003.

Yang et al., 2003 have used the same data in order to com-
pare various algorithms for identification of differentially expressed
genes, including their own algorithm: SNN-LERM (segmental
nearest neighbor method of logarithmic expression ratios). They
concluded that their algorithm performed better than the other
algorithms.

We have compared FPR, TPR and Er of both MSC and SNN-
LERM for the six glass arrays of M5 vs. WT in the supplemental
material of Yanget al., 2003. We maintained a similar ratio of
outliers and summarized our findings in Table 1. Figures S10 dis-
plays the separating strips of the two algorithms for slide 804 and
Figure S11 demonstrate the corresponding ROC curves.

Numerical Slide Slide Slide Slide Slide Slide
Results 422 424 783 784 786 805

SNN

TPR 0.093 0.087 0.059 0.257 0.202 0.176

FPR 0.089 0.073 0.069 0.046 0.057 0.058

Er 0.498 0.493 0.505 0.394 0.427 0.441

MSC

TPR 0.11 0.10 0.059 0.236 0.21 0.191

FPR 0.085 0.07 0.069 0.05 0.055 0.055

Er 0.488 0.484 0.505 0.407 0.423 0.432

Table 1. Comparison of SNN-LERM and MSC for identification of C. ace-
tobutylicum pSOL1 genes in six slides of M5 vs. WT experiments (using
data where SNN-LERM was shown to be superior to other methods (Yang
et al., 2003)).

The results indicate better identification by MSC in four out of the
six experiments, though the magnitude of improvement is arguably
small. In view of the superiority of SNN-LERM over other existing
algorithms for this particular data (as claimed by Yanget al., 2003),
we find our results noteworthy.

Mouse DNA microarray from ChIP-on-chip experiment
We have performed ChIP-on-chip experiments using the Mm4.7k
mouse promoter DNA microarray, with highly specific antibodies
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against well-characterized transcription factors. The experiments
have been replicated three times. A detailed biological analysis of
these experiments is published elsewhere (Blaiset al., 2005).

In the main data described here, the antibodies recognized Myo-
genin and the experiment was performed in myotubes. In the
supplemental material we have also analyzed ChIP-on-chip expe-
riments where antibodies recognized MyoD in both growing cells
and myotubes. Following Blais and Dynlacht, 2005, we have exclu-
ded any experiment with more than one replicate with dust speckles
on the glass slide or with low spot fluorescence intensity (65% with
respect to background).

With an aim to independently validate observed binding of a
transcription factor to a given genomic locus, we have performed
confirmatory, gene-specific PCR on immunoprecipitated chroma-
tin in the special case of the Myogenin data. This is a method that
does not involve DNA amplification, DNA labeling and microarray
hybridization, which are the most prominent sources of error and
noise in the ChIP-on-chip procedure. We have chosen microarray
spots from different levels of binding ratios. Thirty-five tested genes
were determined as unambiguously enriched (and thus considered
true targets of the transcription factor under study), while thirty-five
were considered unenriched. Original data for this comparison is
described in Blaiset al., 2005 and also provided in the supplemental
material of this paper.
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(b) BR with PCA vs. MSC
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(c) BR with LOESS vs. MSC
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(d) Chipper vs. MSC

Fig. 1. ROC Curves comparing each one of the methods: BR, BR with PCA,
BR with LOESS and Chipper with MSC. The MSC curve is described by a
solid line and the other curves by dashed lines.

In order to determine an optimal value of the parameterα0, we
have applied our method of detecting first jumps in the number of

outliers found by MSC. Figure S12 describes those jumps. Accor-
dingly we have chosenα0 = 0.2 for replicates A and C and
α0 = 0.21 for replicate B.

We have compared the MSC with the binding ratio method (BR)
as applied to this data in Blaiset al., 2005, binding ratios with
respect to the principal axis of the data, binding ratios together
with LOESS normalization and the recent Chipper algorithm (Gibb-
onset al., 2005). The binding ratio method identifies enriched sites
by selecting (according to a subjective threshold) the points with
highest ratios of IP signal to input signal (equivalently, lowestM
values). BR can be combined with LOESS by initial application of
LOESS normalization and then identifying enriched sites by selec-
ting points with lowest second coordinates. Similarly, BR can be
applied with respect to the principal axis by shifting the data so
its center of mass is zero, rotating it so thex-axis coincides with
the main principal axis and then applying BR. Other approaches for
normalization and identification of cDNA arrays yielded even less
compelling results than the four methods and are thus not presented
here.

Method MSC BR LOESS+BR PCA+BR Chipper
Area 0.913 0.895 0.905 .0.891 0.888

Table 2. Areas below ROC curves for the different methods. The LOESS
span parameter,0.3, has been chosen to maximize its area. The MSC
parameterα0 has been chosen according to first significant jumps (see
Figure S12).

α0 0.1 0.21 0.23 0.26 0.3 0.4 0.5
Area 0.900 0.913 0.915 0.913 0.909 0.907 0.902

Table 3. Areas below ROC curves for MSC with different values ofα0s.

A comparison along a full range of true positive and negative rates
is described by a ROC curve. Figure 1 presents ROC curves com-
paring MSC with the other four Methods. The ranks of the various
methods are averaged among unexcluded replicates and their sor-
ted values are used for identification. The areas below the curves
for the different methods are recorded in Table 2. We have chosen
carefully the LOESS span parameter to maximize its area below the
ROC curve. In both instances, MSC performs slightly better than
the four other algorithms over a full range of false positive rates.
However, only 1.19% of the data has been verified to be either
enriched or unenriched and therefore the differences between the
methods (in particular LOESS and MSC) are not statistically signi-
ficant. We nevertheless find those results important as we are not
aware of ChIP-on-chip experimental data with larger percentage of
confirmatory PCRs (in practice, not commonly used with large data,
since it is both a time-consuming and an expensive process).

While the ROC curve describes a full range of true positive and
negative rates, in practice, there is a specific range which is import-
ant for identification. We identify such a range by controlling the
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(a) BR vs. regular MSC (initial transformation)
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(b) BR vs. MSC without initial transformation

Fig. 2. In (a) regular MSC (with initial transformation) is compared with
BR for the three replicates of our data. In (b), we have applied MSC without
initial shift and rotation onto principal axis. BR threshold is indicated by a
straight line, while MSC strip is represented by the thicker curve We have
identified the enriched points of MSC in at least two replicates while app-
lying FDR level of 0.1 for each replicate; We identified the same number
of enriched points with a weighted BR score. Circles reveal enriched spots
that the MSC algorithm distinguished and the binding ratio method failed to
distinguish over all 3 replicates, while squares reveal enriched points identi-
fied by BR and not by MSC. Triangles reveal points which are not enriched
and were identified by BR as enriched, unlike MSC. There were no spots that
MSC failed to identify as not enriched, while BR did not. Figure S14 descri-
bes the comparison of regular MSC and BR with respect to the coordinates
obtained after applying the initial transformation. Figure S17 compares the
normalizing curves of MSC with and without initial transformation.

FDR level. We have chosen a level of 0.1. In the absence of clear
underlying models in some of the other competing methods, we
have balanced them with the same number of identified enriched
points (combining all 3 replicates by a weighted score) for the pur-
pose of fairly comparing identification rates. Figure 2(a) illustrates
such a comparison between BR and MSC. MSC has identified cor-
rectly Chrnb1, Chrng, Cited2 and Myc as enriched, whereas BR
misidentified them. However, BR has identified correctly Sema6c
as enriched whereas MSC missed it. BR has falsely identified
Hist1h2bc and Cacng1 as enriched, unlike MSC. MSC true posi-
tive rate is0.629, whereas that of BR is0.542. MSC false positive
rate is0, whereas that of BR is0.057.

Optimal performance of MSC depends on a correct choice of
the parameterα0 and our algorithm for detecting such a choice is
a distinctive advantage of our method. Nevertheless, MSC is not
highly sensitive to variations in the parameterα0. Table 3 illustra-
tes this point, by recording areas below ROC curve for different
values ofα0 (more details appear in Table S1). The variations in
areas is not significant and the optimal area is near our choice of
the optimal parameter. Similarly, in Table S4 we record identifica-
tion of true and false positives and negatives for MSC with different
values ofα0 and the corresponding identification values for the
other methods with same percentage of detected enriched points,
while maintaining an FDR level of0.1 for MSC.

Our application of MSC includes an initial rotation on principal
axis. We have compared it to BR with respect to this axis in order
to show that the initial transformation is not enough for good identi-
fication (it is worse or at least comparable to regular BR). When
applying our method without this initial transformation the area
below the ROC is0.904 (Figure S13 explains the choice ofα0 and
Figure S18 presents the corresponding ROC curves). However, the
area decreases with higher values ofα0 (see Table S2). Neverthe-
less, those differences are not statistically significant. Indeed, they
are mainly due to a single spot: Cacng1. This spot is falsely identi-
fied by MSC without initial rotation as enriched with very low false
positive rate. The other methods have identified it as enriched with
higher false positive rates (see Figures S15, S16, S19 and Table S3).

The identification for fixed FDR (we have chosen0.1 but other
values worked as well) of the MSC without the initial transformation
is good when compared with the other methods, even for a large
range ofα0 (see Table S5). Figure 2(b) illustrates such a comparison
between BR and MSC. Figure S17 demonstrates the normalizing
curves obtained by MSC with and without the initial transformation
as well as that of LOESS. The differences are noticeable only in a
very sparse region.

Our conclusion is that applying MSC without initial rotation can
also work well in identifying outliers. It is more convenient to plot
the resulted curve and strip that way, as there is no need to rotate
backward. Differences of the two implementations have also been
compared for the MyoD data (see Figures S26-S31). The good per-
formance of our method irrespective of the initial transformation is
a strong indicator of its robustness. On the other hand, LOESS did
not perform as well when rotated on the principal axis (e.g. its area
under ROC is.896).

We believe that our experimental results provide clear indication
of the attractive performance of the MSC method, as it allows inve-
stigators to extract more meaningful and reliable information from
their data sets. Figures S20 and S21 show instances of failures of
some standard techniques to the latter data. We have also applied
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our algorithm to ChIP-on-chip experiments where antibodies reco-
gnized MyoD in both growing cells and myotubes, but with no
confirmatory PCRs and report the results in Figures S22-S31. There
are several marked advantages enjoyed by our algorithm: its adapta-
bility to regions of lower or higher variance and to areas of the data
which exhibit significant nonlinearity between channels as well as
asymmetry; its model for identifying enriched points under a fixed
false discovery rate; its fast implementation; its robustness to trans-
formation of the data and to change of parameters and its ability to
choose the main parameterα0 to improve the identification results.
In the ideal case when there is no nonlinearity between channels and
the variance is relatively constant throughout the data, we expect
MSC to perform similarly to the binding ratio method. However,
MSC proves its effectiveness in analyzing many important data sets,
because one is frequently confronted with experimental results that
stray far from the ideal, as numerous types of artifacts (unequal
dye incorporation, unequal background in the two channels, diffe-
rent quantum yield of the dyes, etc) remain difficult to control and
confound the analysis in the presence of the inherent asymmetry of
ChIP-on-chip experiments.

4 BRIEF DISCUSSIONS
The approach described here fills in a substantial void in the analysis
of general DNA arrays, in particular arrays from ChIP-on-chip expe-
riments. Namely, it represents an effective method for identifying
enriched targets while handling logarithmic ratios of intensities with
asymmetric and heteroscedastic characteristics. Currently, most
standard techniques fail to analyze a large fraction of these data
and many investigators resort to the simple binding ratio method
in order to rank “outliers” (e.g. IP-enriched sites in ChIP-on-chip
experiments).

The MSC will prove most advantageous for ChIP-on-chip data
sets that display mild or pronounced non-linearity, as well as for data
sets where the proportion of enriched spots is very large. However,
when working on data sets that are close to ideality, it still performs
as well as other existing methods.
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