
Algorithmic Algebraic Model Checking II:
Decidability of Semi-Algebraic Model Checking

and its Applications to Systems Biology ?

V. Mysore1, C. Piazza2, and B. Mishra1,3

1 Courant Institute, New York University, New York, NY, U.S.A.
2 Dept. of Mathematics and Computer Science, University of Udiné, Udine, Italy

3 NYU School of Medicine, New York University, New York, NY, U.S.A.
vm40@nyu.edu, piazza@dimi.uniud.it, mishra@nyu.edu

Abstract. Motivated by applications to systems biology, and the emer-
gence of semi-algebraic hybrid systems as a natural framework for model-
ing biochemical networks, we continue exploring the decidability problem
for model-checking with TCTL (Timed Computation Tree Logic) over
this broad class of semi-algebraic hybrid systems. Previously, we had in-
troduced these models, demonstrated the close connection to the goals
of systems biology. However, we had only developed the techniques for
bounded reachability, arguing for the adequacy of such an approach in a
majority of the biological applications. Here, we present a semi-decidable
symbolic algebraic dense-time TCTL model checking algorithm, which
satisfies two desirable properties: it can be derived automatically from
the symbolic description, and it extends to and generalizes other ver-
sions of temporal logics. The main mathematical device at the core of
this approach is Tarski-Collins’ real quantifier elimination employed at
each fixpoint iteration, whose high complexity is the crux of its unfortu-
nate limitation. Along with these results, we prove the undecidability of
this problem in the more powerful “real” Turing machine formalism of
Blum, Shub and Smale. We then demonstrate a preliminary version of
our model-checker Tolque on the Delta-Notch example.

1 Prologue

It has been said4, “Biologists have generally eschewed the possibility, or even
the value, of an overarching theory of life.” Biology is considered complex and
not amenable to systematic dissection to reveal a unifying principle. However, as
complex interconnected interactions among various biological entities begin to
be cataloged from a diverse set of experiments, patterns emerge: sequences are
? The work reported in this paper was supported by grants from NSF’s ITR program,

Defense Advanced Research Projects Agency (DARPA), the US Air Force (AFRL),
National Institutes of Health (NIH) and New York State Office of Science, Technol-
ogy & Academic Research (NYSTAR). C.P. was partially supported by the MIUR
FIRB grant RBAU018RCZ and the MIUR PRIN’04 grant 2004013015.

4 Making Sense of Life, E.F. Keller, Harvard Press, MA, 2002.

aligned; genes are clustered; genes are grouped in modules; proteins are placed
in families; motifs of interaction are listed; polymorphisms are partitioned into
blocks; chromosomal aberrations and methylation patterns are segmented. The
picture, however, remains frozen in time.

On the other hand, much less has been inferred about the temporal inter-
actions of these entities. There are two problems: a mathematically precise, but
somewhat idealized description of these interactions is often presented in a form,
that is neither succinct nor easy to analyze. We lack both theoretical frameworks
and efficient implementations for developing automatic computational tools that
will allow a scientist to explore important phenomenological properties of these
models.

The subject Algorithmic Algebraic Model Checking focuses on these issues
as it examines connections between systems biology, dynamical systems, modal
logic and computability, and how they can be useful in the biological context.
Towards this aim, we began by addressing the symbolic bounded reachability
problem for a new class of hybrid models arising in systems biology – semi-
algebraic hybrid systems, introduced in the first paper of this “AAMC” (Algo-
rithmic Algebraic Model Checking) series [28]. There, we aimed to characterize
the widest range of automata that admit sound albeit expensive mathematical
techniques, as opposed to focusing on a very narrow class of systems that often
prematurely sacrifice generalizability for the sake of efficiency. It was shown that
the bounded reachability problem can be solved using real algebraic techniques
like Taylor series approximation and quantifier elimination. It was found suffi-
ciently powerful in analyzing such systems as the Delta-Notch protein interaction
example [10, 14, 19]. It was expected that, building upon this algebraic bounded
reachability algorithm [28] and other recent techniques (e.g. some of Fränzle’s
ideas [13]), we can address the algebraic model-checking problem over the dense
time logic TCTL [1]. The current paper deals with this subject.

We build upon and integrate many existing ideas: we use Henzinger et al.’s
characterization of the Until operator as a fixpoint expression involving the one-
step until operator [17]. Exploiting the power of a symbolic5 approach, we retain
all parameters as variables thus obtaining an algebraic expression representing
the possible solutions. The ability to perform an entirely symbolic analysis of
arbitrary polynomial hybrid systems over a full temporal logic, limited only by
computational power, distinguishes our approach from the other methods in
literature. Furthermore, to study decidability, we use Blum et al.’s “real” Turing
machine (or equivalently, finite-dimensional machine over a field) formalism [7]
– a more apt approach to analyzing problems involving real computations. We
find that reachability is undecidable even in this more powerful computational
model. The rest of the paper is organized as follows: the main ingredients of the
paper – semi-algebraic hybrid automata, the Blum-Shub-Smale model of “real”
computation and TCTL – are reviewed in Section 2 ; the technical proofs of
our main results along with a literature survey are provided in Section 3 ; we

5 This is in contrast to traditional symbolic model-checking where we refer to the use
of BDDs as opposed to explicit enumeration of states as being symbolic.

demonstrate our software system Tolque over the same Delta-Notch example in
Section 4 (additional results are recorded in the Appendix) and conclude with a
discussion in Section 5.

2 Technical Preliminaries

The temporal properties of a network of interacting biochemicals are typically
captured by relating two neighboring system-states at time instants t and t + δ,
and the biochemical interactions (synthesis, degradation, multimerization, etc.)
which occur in that short time interval δ. The dynamics resulting from these
interactions can be described as a set of differential equations and discrete
states [25]. Nonetheless, a direct model of transitions and flows, given through
their symbolic description, can be computationally manipulated (either numer-
ically or symbolically) to derive logical conclusions about global temporal prop-
erties, that may not have been obvious in the instantaneous description. The
exact structure of this approach depends on the complexity of the three un-
derlying frameworks: description of the dynamical system, the expressivity of
the temporal logic and the basic operations of the models of computation. In a
conventional “numerical” approach, starting with an initial system-state, succes-
sive states are chased by an integration scheme (eg. Runge-Kutta). Conclusions
about the behavior of the network are then made by tracing the trajectories
over a suitable time-frame and verifying temporal properties (eg. the Simpathica
tool [5]). The “symbolic” alternative to the numerical procedure instead uses
algebraic methods to characterize the transition of the system with time. The
appropriate frameworks for this setting consist of the following: semi-algebraic
hybrid automata which allow polynomial expressions, TCTL logic to capture
the continuous changes, and the “real” Turing machine model that computes a
semi-algebraic operation in one unit step. Their formal definitions follow.

Definition 1. Semi-Algebraic Set[26] Every quantifier-free boolean formula
composed of polynomial equations and inequalities defines a semialgebraic set
(i.e., unquantified first-order formulæ over the reals - (R,+,×,=, <)). �

Definition 2. Semi-Algebraic Hybrid Automata [28] A k-dimensional
hybrid automaton is a 7-tuple, H = (Z, V , E, Init, Inv, Flow, Jump), consist-
ing of the following components:

– Z = {Z1, . . . , Zk} and Z ′ = {Z ′
1, . . . , Z ′

k} are two finite sets of variables
ranging over the reals R

– (V,E) is a directed graph of discrete states and transitions
– Each discrete state v ∈ V is labeled by “Init”(initial), “Inv”(invariant) and

“Flow” labels of the form Initv[Z], Invv[Z], and Flowv[Z,Z ′, t, h]
– Each edge e ∈ E is labeled by a “Jump” condition of the form Jumpe[Z,Z ′] ≡

Guarde(Z) ∧ Resete(Z,Z ′)
– Init, Inv, Flow, and Jump are semi-algebraic. �

For ease of expression and clarity, we have enhanced the semantics presented
in [28].

Definition 3. Semantics of Hybrid Automata Let H = (Z, V , E, Init,
Inv, Flow, Jump) be a hybrid automaton of dimension k.

– A location ` of H is a pair 〈v, R〉, where v ∈ V is a discrete state and
R ∈ Rk is an assignment of values to the variables of Z. A location 〈v, R〉
is said to be admissible, if Invv(R) is satisfied.

– The continuous reachability transition relation h−→
C

forces the discrete state

invariant to hold at every location except the end-location, along the evolu-
tion curve determined by the flow equations during the h(> 0) time units
from the current time t0:

〈v,R〉 h−→
C
〈v, S〉 iff(

Flowv(R,S, t0, h) ∧ ∀Z ′, h′ ∈ [0, h) Flowv(R,Z ′, t0, h
′) ⇒ Invv(Z ′)

)
,

where Flowv(Z,Z ′, T, h) is the flow label of v.
– The discrete reachability transition relation 0−→

D
ensures that both parts of the

zero-time jump – the guard condition which needs to be satisfied just before
the transition is taken, and the reset condition which determines the values
after the transition, are satisfied.

〈v,R〉 0−→
D
〈u, S〉 iff 〈v, u〉 ∈ E ∧ Jumpv,u(R,S).

– The transition relation T of H connects the possible values of the system
variables before and after one step - a discrete step for a time h = 0 or a
continuous evolution for any time period h > 0:

T (` h−→ `′) = {h = 0 ∧ `
0−→
D

`′} ∨ {h > 0 ∧ `
h−→
C

`′}.

– A trace of H is a sequence `0,`1, . . ., `n, . . . of admissible locations such that

∀i ≥ 0, ∃hi ≥ 0, T (`i
hi−→ `i+1). �

Remark 1. Few remarks about this definition of trace are in order: It admits two
continuous transitions to occur consecutively, which is necessary for composition-
ality of traces. Further, two consecutive continuous transitions of time-steps h1

and h2 are not necessarily equivalent to one continuous transition of time-step
h1 + h2 in the case of non-linear approximation errors in h−→

C
.

When a semi-algebraic relation Flowv(R,S, t, h) is used between the contin-
uous states R at time t and S at time t+h in a discrete state v, it may have been
“derived” in two ways: (1) Solution Is A Polynomial : The equation describing
the continuous evolution of the variables in a discrete state is a polynomial, say

Y (t), and Flowv(Z,Z ′, t, h) ≡ { Z = Y (t) ∧ Z ′ = Y (t+h) }. Or, (2) Differential
Equation Is A Polynomial : Differential equations describing the continuous evo-
lution are approximated in Flowv using one of the symbolic integration schemes
(e.g., the Taylor series in [28] or based on a direct integration scheme such as
the linear Euler or the higher degree Runge-Kutta). The error is controlled by
an upper bound (say ∆) on the time spent in one continuous step, as we aim
for over- or under-approximating the flow equations. The Lagrange Remainder
Theorem can be used to estimate errors [23].

We now report the basic definitions of the temporal logics TCTL and Tµ-
Calculus which we use to study properties of our semi-algebraic hybrid automata.

Definition 4. TCTL[1] It has the following syntactic structure:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1∃Uφ2 | φ1∀Uφ2 | z.φ.

Its associated semantics are described below:

– z.: The freeze quantification “z.” binds the associated variable z to the cur-
rent time. Thus the formula z.φ(z) holds at time t iff φ(t) does.

– φ1∀Uφ2 and φ1 ∃U φ2: universal (on all paths) and existential (on at least
one path) “until” operators. For φ1 U φ2 to be true on a path, φ2 is required
to be true somewhere along the path, and φ1 is required to be true all along
the path up to (but not necessarily at) that location. �

Remark 2. The basic notations are often extended by the following syntactic
abbreviations [1].

1. p ∃U≤max q ≡ p ∃U (q∧ z.(z ≤ max)) and p ∀U≤max q ≡ p ∀U (q∧ z.(z ≤
max)): “subscripted” Until operators (max is the time-bound).

2. ∀F ≡ true ∀U p and ∃F ≡ true ∃U p: “eventuality” operators.
3. ∀G ≡ ¬∃F¬p and ∃G ≡ ¬∀F¬p: “invariance” operators.

Definition 5. Single-Step Until Operator, ., [17]. The formula p . q
holds if p ∨ q is true all along “one step” of the hybrid system and q is true at
the end of the transition. �

Definition 6. Tµ-Calculus Syntax: [17]. φ ::= X | p | ¬φ | φ1 ∨ φ2 | φ1 .
φ2 | z.φ | µX.φ , where µ is the least-fixpoint operator. Thus,

– The greatest-fixpoint ν can be expressed as ¬µX.(¬φ[X := ¬X]).
– Existential Until: p ∃U q = µX.(q ∨ (p . X))
– Universal Until: p∀Uq = ¬(¬q ∃U (¬p ∧ ¬q)) �

Notice that the translation of the universal until is valid only when q is “finitely
variable” over all premodels [17].

The undecidability result we will prove is based on the model of finite-
dimensional machines over a field R, which in our case will be R, and on the
undecidability of the Mandelbrot set over these machines. (We only introduce
these “real” Turing Machines here, and refer the interested reader to [7].)

Definition 7. Finite-Dimensional Machine Over R: [7]. A finite dimen-
sional machine M over R consists of a finite directed connected graph with four
types of nodes: input, computation, branch and output. The unique input node
has no incoming edges and only one outgoing edge. All other nodes have possibly
several incoming edges. Computation nodes have only one outgoing edge, branch
nodes exactly two, Yes and No, and output nodes none. In addition the machine
has three spaces: input space IM , state space SM and output space OM of the
form Rn,Rm,Rl, respectively, where n, m and l are positive integers. Associated
with each node of the graph are maps of these spaces and next node assignments.

1. Associated with the input node is a linear map I : IM → SM and a unique
next node β1.

2. Each computation node η has an associated computation map, a polyno-
mial (or rational) map gη : SM → SM given by m polynomials (or rational
functions) gj : Rm → R, j = 1, · · · ,m, and a unique next node βη. If g is a
rational map associated with a computation node (in the case R is a field),
we assume each gj is given by a fixed pair of polynomials (pj , qj), where
gj(x) = (pj(x))/(qj(x)).

3. Each branch node η has an associated branching function, a nonzero poly-
nomial function hη : SM → R. The next node along the Yes outgoing edge,
β+

η , is associated with the condition hη ≥ 0 and the next node along the No
outgoing edge, β−η , with hη(z) < 0.

4. Each output node η has an associated linear map Oη : SM → OM and no
next node. �

Definition 8. The Mandelbrot Set [24], M is the subset of the set of com-
plex numbers C that remains bounded when subject to the following iterative
procedure: f0(C) = C , fn+1(C) = fn(C)2 + C. Formally, the complement M′

of the Mandelbrot set is defined as

M′ = {C ∈ C|fn(C) →∞ as n →∞}. �

It is to be noted that fi(C) ≥ 2 implies that eventually fn(C) →∞.
In what follows, when we refer to the Mandelbrot set we mean the 2-dimensional

set of real numbers corresponding to the Mandelbrot set, i.e., the set of pairs of
the form 〈Cr, Ci〉 such that C = Cr + iCi is in the Mandelbrot set.

Theorem 1. Undecidability Of The Mandelbrot Set: [7]. The Mandel-
brot set cannot be expressed as the countable union of semi-algebraic sets over
R, and hence not decidable over R. �

3 Symbolic Algebraic Model Checking

Our main results for semi-algebraic hybrid systems may be summarized thus:
(1) Reachability is undecidable even in Blum et al.’s “real” Turing machine for-
malism. (2) The “existential” segment of TCTL (including reachability) and the

negation of the “universal” segment are semi-decidable. Further, all subscripted
operators become decidable in the absence of zeno-paths. (3) Finally, a quanti-
fier elimination tool (e.g. Qepcad [18],Redlog [12]) may be used to perform the
fixpoint iterations of a TCTL query. The technical details are presented below.

The symbolic route to model-checking TCTL-specifications of hybrid systems
is via the fixpoint expression for the until operator, which uses the standard
single-step until operator . [17] (also, see [28, 13]). The exact expression for the
. operator for semi-algebraic hybrid systems proves the basis of our approach: .
corresponds to a semi-algebraic expression and is hence decidable.

Definition 9. . for Semi-Algebraic Hybrid Systems. The expression p.q
is True at the current continuous state R if q is true now, or

– For one of the possible current discrete states v, there exists at least one
discrete state u to which a transition can be taken such that q holds at the
end, or

– For one of the possible current discrete states v, there exists a continuous
transition (of at most ∆ time units when we need to upper-bound the flow-
approximation error) all along which p ∨ q holds, with q being true at the
end6.

p . q = q(R)
∨
∀v(
{∃S

∨
∀u〈v,R〉 0−→

D
〈u, S〉 ∧ q(S)}

∨
{∃S, h (0 < h ≤ ∆) ∧ 〈v,R〉 h−→

C
〈v, S〉 ∧ q(S) ∧

∀S′, h′ ((0 ≤ h′ < h)∧〈v,R〉 h′

−→
C
〈u, S′〉) ⇒ (p(S′)∨q(S′))}

)
�

Remark 3. The upperbound ∆ on h should be omitted if there is no error in the
Flowv expression. Also, since the discrete jump is instantaneous, p(R) does not
appear in the discrete-jump expression (second line).

Theorem 2. The one-step-until operator . is decidable for semi-algebraic hy-
brid systems if p and q are also semi-algebraic.

Proof. Semi-algebraic sets are closed under boolean operations and quantifier
elimination. Since Jump, Inv and Flow are semi-algebraic, so are the expressions
t−→
C

and 0−→
D

. Thus p . q is semi-algebraic since p and q are also semi-algebraic.

Since quantifier elimination over semi-algebraic sets is decidable [32], p . q is
decidable. �

Corollary 1. For semi-algebraic hybrid systems:

1. ∃U , ∃F , ∃G and their subscripted versions ∃U≤z, ∃F≤z and ∃G≤z are semi-
decidable.

6 The last term in the formula, p(S′) ∨ q(S′), can be replaced with just p(S′) for
evaluating ∃U over semi-algebraic hybrid systems.

2. The negations of ∀U , ∀F , ∀G and their subscripted versions ∀U≤z, ∀F≤z

and ∀G≤z are semi-decidable.
3. All subscripted operators become decidable in the absence of zeno paths.

Proof. The conclusions can be drawn as follows:

– The ∃U operator can be evaluated by iterating (indefinitely) over the decid-
able “one-step-until” operator . as per the fixpoint characterization p ∃U q ≡
µX.(q ∨ (p . X)). Hence it is semi-decidable i.e. the computation procedure
is guaranteed to converge if the query is True.

– Since p∀Uq ≡ ¬(¬q ∃U (¬p ∧ ¬q)), it can be guaranteed to converge only
when it is False. Thus the negation of ∀U is semi-decidable by our procedure.

– Since ∃Fp ≡ true ∃U p, reachability is semi-decidable.
– ∀Fp ≡ true ∀U p and is not semi-decidable since ∀U is not.
– Since ∃Gp ≡ ¬∀F¬p, we can guarantee that it will converge if it is True

since ∀F is guaranteed to converge if it is False. Thus it is semi-decidable.
– Since ∀Gp ≡ ¬∃F¬p, it is guaranteed to converge only when it is False.
– A new variable time is introduced, with initial value 0, flow 1 in all discrete

states and identity resets. This allows the interpretation of freeze (z.X) and
subscripted until (U≤a) operators.

– In non-zeno systems, every path of a specified time-length can be explored
fully. Hence all subscripted operators are decidable. �

Remark 4. Purely symbolic reachability cannot be convergent as many sets (in-
cluding the Mandelbrot set) cannot be expressed as the finite union of semi-
algebraic sets [7]. Similarly, the solution of many coupled, non-linear differential
equations and simple discrete difference equations are inexpressible even using
exponential and trigonometric terms [30], let alone as a finite union of polynomial
inequalities. However, the conventional semi-decidability notion only applies to
cases where the query can be answered as True or False. It was under this default
assumption (also used by Fränzle while discussing “polynomial” hybrid systems
[13]) that the above results were derived.

3.1 General Undecidability Of Reachability

System-state (or equivalently, “location”) reachability is undecidable for hybrid
automata with just two clocks [16], as the Turing machine halting-problem can
be encoded as a reachability query. It becomes pertinent to ask if this undecid-
ability result holds for the more powerful “real” computing machines of Blum et
al.[7], where semi-algebraic sets appear naturally in the computability definition
(see Path Decomposition Theorem [7]). In the following construction, we present
a semi-algebraic hybrid system and encode the Mandelbrot set as a reachability
query. Since Blum and Smale have proved that the Mandelbrot set is undecid-
able [7], this proves that reachability over semi-algebraic hybrid systems is also
undecidable, even under the “real” Turing Machine model.

Definition 10. The Mandelbrot Hybrid Automaton Let C = 〈Cr, Ci〉
be a pair of real numbers. The Mandelbrot Hybrid Automaton MC consists of

– One discrete state s0 with invariant False and two continuous variables Z1

and Z2.
– Flow1 : { Z ′

1 = Z1 ∧ Z ′
2 = Z2 } (no continuous evolution).

– One Discrete State Transition: 1 → 1 with Jump1 : (Z ′
1 = Z2

1 − Z2
2 + Cr) ∧

(Z ′
2 = 2Z1Z2 + Ci). �

Notice that in MC the only possible trace is the infinite zeno path of self-loops.

Theorem 3. General Undecidability Of Reachability For semi-algebraic
hybrid systems, reachability is undecidable even in Blum et al.’s “real” Turing
machine formalism.

Proof. Consider the Mandelbrot hybrid automaton MC defined above. Let S(t) =
(Z1(t), Z2(t)) be the point reached after t discrete transitions from the initial lo-
cation 〈s0, (0, 0)〉. After one more discrete transition (self-loop), we get

S(t + 1) = S′(t) = {Z1(t)2 − Z2(t)2 + Cr}+ ı.{2Z1(t)Z2(t) + Ci}
= {Z1(t) + ı.Z2(t)}2 + {Cr + ı.Ci}

In other words, if we consider the pairs of real numbers as complex numbers,
we have S′(t) = S2(t) + C which is the defining equation of the Mandelbrot Set.
Clearly, there exists an evolution where |S(t)| ≥ 2 if and only if C = Cr + iCi

does not belong to the Mandelbrot set, i.e., the decidability of the reachability
query7 (Z2

1 + Z2
2 ≥ 4) would imply the decidability of the Mandelbrot set, thus

resulting in a contradiction. �

3.2 Literature Review

While semi-algebraic hybrid systems have been suggested in one form on another
before [20, 4, 13, 22], the full potential of this formalization is only beginning to be
appreciated [28]. Beyond timed, multirate and initialized rectangular automata
[2, 29], the linearity of continuous dynamics is another extensively studied re-
striction [3, 6]. Controllable linear systems [31], some families of linear vector
fields [22] and o-minimal hybrid automata [21] have also been shown to be de-
cidable for the reachability query. In the case of o-minimal hybrid automata, the
decidability is guaranteed by the decidability of the underlying theory and by
the fact that the resets are constant. In semi-algebraic hybrid automata, we do
not have any restriction on the resets. However, o-minimal systems admit more
complex functions (beyond polynomials) in the flows, invariants and guards.

While the above methods find efficient solutions by restricting the dynamics,
over- or under-approximating methods assume that the reachable region has a
(mathematically) convenient geometric shape such as a polyhedron, a level set
or an ellipsoid [6, 8, 9]. Bisimulation on the other hand is an intelligent partition-
ing of the concrete system-state space of the hybrid system into fewer abstract
discrete-states such that the properties of interest continue to hold in the simpler

7 Reachable(p) ≡ ∃F(p).

smaller model [15]. Predicate abstraction has also been frequently used to map
a hybrid automaton into a discrete one [33, 3].

On the algebraic side, Jirstrand [20] demonstrated the use of Qepcad for
problems in control system design. Anai [4] and Fränzle [13] independently
suggested the use of quantifier elimination for the verification of polynomial
(semi-algebraic) hybrid systems, while Lafferiere et al. [22] have described a
quantifier-elimination-centric method for symbolic reachability computation of
linear vector fields.

4 Tolque: A Symbolic Algebraic TCTL Model Checker

A preliminary version of a symbolic algebraic model checker that uses the TCTL
model-checking approach outlined in the previous section has been implemented.
This quantifier-elimination-centric model checker, christened Tolque, takes as
input a semi-algebraic hybrid automaton specification (with the flow equations
already approximated if necessary) and an Existential Until (p ∃U q) query. It
then computes the fixpoint p ∃U q = µX.(q∨ (p.X)) [17] by using Qepcad [18]
to perform the quantifier elimination in p . X. The entire process is automated
in this C/C++ implementation that runs in Linux.

A Case Study: The Delta-Notch Protein Signaling

Here we examine the Delta-Notch protein interaction system, the primary basis
of biological pattern formation. Ghosh et al. [14, 19] analyzed a simplified piece-
wise linear hybrid automaton model (derived from Collier et al.’s work [10])
with the following properties: (1) The Delta (concentration vD) production is
turned on by low Notch concentration (vN) in the same cell i.e. when −vN >
hD; (2) The Notch production is turned on by high Delta concentration in the
cell environment (neighbors) i.e. when Σiu

i
D > hN . Here, hD and hN are the

thresholds, and ui
D denotes the Delta concentration in each (i-th) neighbor.

In this section, we show how some interesting properties of the one-cell and
two-cell Delta-Notch model of Ghosh et al. [14, 19] can be formulated as temporal
logic queries, that Tolque can answer. Unfortunately, Qepcad cannot support
the queries necessary to analyze system properties more complex than those
documented here. Approximate methods (such as those discussed in AAMC-
III [27]), reduction in the computational complexity of quantifier elimination,
and greater computing power will help overcome this computational bottleneck.
Rather than providing new insight about the model, at this point, Tolque is
only seen to support a more elegant and general way of thinking about system
properties. (Please see the appendix for a complete list of results.)

One-Cell System In the hybrid automaton modeling the one-cell system [14],
there are 2 dynamic variables vD and vN corresponding to the Delta and Notch
concentration in the cell, 4 discrete states corresponding to the 2×2 possibilities
resulting from Delta and Notch production being switched “on” or “off”. The

external variable uN is assumed to be static. We will denote the upper bound
on the continuous time-step by ∆.

1. Pruned Transition Map When the state invariants are non-overlapping,
an evolution path from discrete state i to j is possible iff Inv i ∧ {Inv i ∃U Inv j}.
Notice that invariants can be made non-overlapping by introducing a new en-
vironmental variable “discrete-state” that is reset to the destination discrete
state number during discrete state transitions, with flow always 0.

– Discrete Transition 1 0−→
D

2

[−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN ≥ hD ∧ uN ≤ hN]
After k iterations, we get the requirement vN ≤ −hD/(1−∆lN)k which
is True when k (≥ − log (hD/vN)/ log (1−∆lN)). Thus the transition
from 1 to 2 is possible.

– Discrete Transition 2 0−→
D

1

[−vN ≥ hD ∧ uN ≤ hN] ∃U [−vN < hD ∧ uN < hN] converges after two
iterations to False. Thus, it is not possible to jump to state 1 from state
2.

2. Estimating Continuous-State Equilibrium Concentrations When
the state invariants are non-overlapping, an equilibrium of the continuous
state exists in state i iff Inv i ∧ ¬{Inv i ∃U (v′D 6= vD ∨ v′N 6= vN)}, where
v′D and v′N are the values after one step of the hybrid automaton.

Remark 5. We have extended the TCTL notation to allow more complex
temporal queries that can describe the values of the variables before and
after one step of evolution. The semi-algebraic quantifier elimination based
model-checking supports this without any additional work.

State 1: ¬{[−vN ≤ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to
False – implying the non-existence of an equilibrium in this state.

State 2: ¬{[−vN ≥ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to
vDlD − rD = 0∧ vN ≤ 0. Thus we get the equilibrium concentrations as
v∗D = rD/lD, v∗N = 0.

3. Discrete State Equilibria When the invariants are non-overlapping, a
system can stay forever in the discrete state i iff Inv i ∧ ¬ {Inv i ∃U ¬Inv i}.

State 1: [−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN > hD ∨ uN > hN] returns
vN ≤ −hD/(1−∆lN)k after k iterations, effectively evaluating to True.
Thus the system always evolves out of state 1 and hence it does not
correspond to any equilibrium.

State 3: [−vN ≤ hD ∧ uN ≥ hN] ∃U [−vN < hD ∨ uN > hN] is non-
convergent and returns vN ≤ (−hD−∆rN)/(1−∆lN) after one iteration.
So, for such a path out of state 3 to not exist, there should be no way
of satisfying the above inequality when −vN < hD. So we get (−hD −
∆rN)/(1−∆lN) < −hD which simplifies to hD > −rN/lN .

Two-Cell System The above exercise can be repeated for a two cell model,
where there are 4 dynamic variables n1, d1, n2 and d2, which stand for the Notch
and Delta concentrations in cell 1 and 2 respectively. Due to the limitations of
Qepcad, we use the numerical parameter values courtesy Hwang et al. [19] to
demonstrate our approach. In particular, we set λN = λD = rN = rD = 1, hD =
− 1

2 , hN = 1
5 ,∆ = 1

2 .

1. Equilibrium Concentration Estimation
State q10 (3,2): ¬{[−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=

d1∨n′1 6= n1∨d′2 6= d2∨n′2 6= n2]} converges to [n1 ≤ 0∧d2 ≤ 0∧d1−1 =
0 ∧ n2 − 1 = 0]. Thus n∗1 = d∗2 = 0 and d∗1 = n∗2 = 1.

State q15 (4,3): ¬{[−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=
d1 ∨ n′1 6= n1 ∨ d′2 6= d2 ∨ n′2 6= n2]} converges to False, implying that in
this discrete state the variables can never be in equilibrium.

2. Are Equilibria Reversible?
State q7 (2,3): [−2n1 > −1∧ 5d2 < 1∧−2n2 < −1∧ 5d1 > 1] ∃U [−2n1 =

−1∨5d2 = 1∨−2n2 = −1∨5d1 = 1] converges to False after 2 iterations
implying that this is an irreversible discrete state equilibrium.

State q16 (4,4): [−2n1 > −1∧5d2 > 1∧−2n2 > −1∧5d1 > 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] converges to True implying that
the two-cell Delta-Notch system will always leave this discrete state.

3. Choice Of Equilibrium We can “verify” that the wrong equilibrium can-
not be reached from a given initial relation between n1 and n2, and d1

and d2. When the invariants are non-overlapping, the initial conditions that
allow a path to discrete state i but not to discrete state j are given by
{True ∃U Inv i} ∧ ¬{True ∃U Inv j}.
State q7 (2,3): At iteration 2 of True ∃U [−2n1 > −1 ∧ 5d2 < 1 ∧−2n2 <

−1∧5d1 > 1], we get: n1−1 ≤ 0∧[[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−
3 ≥ 0∧n2 +n1−1 = 0]∨ [8n1−5d1−3 ≤ 0∧4d2 +d1−1 = 0∧2n2−1 ≥
0 ∧ 8n2 + 5d1 − 5 ≥ 0] ∨ [5d1 − 1 ≥ 0 ∧ 2n1 − 5d1 ≤ 0 ∧ 5d2 + 2n1 − 2 ≤
0∧2n2−1 ≥ 0]∨ [5d1−1 ≥ 0∧2n1−1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−3 ≥
0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤ 0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥
0]∨ [2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧2n2−1 ≥ 0∧8n2 +5d1−5 ≥ 0]] ≡ f7.

State q10 (3,2): At iteration 2 of True ∃U [−2n1 < −1∧ 5d2 > 1∧−2n2 >
−1 ∧ 5d1 < 1], we get: n2 − 1 ≤ 0 ∧ [[2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥
0∧ d2 +4d1− 1 = 0∧ 2n2 +5d1− 2 ≤ 0]∨ [2n1− 1 < 0∧ 8n1− 5d1− 3 ≥
0∧5d2+8n1−5 ≥ 0∧n2+n1−1 = 0]∨[8n1−5d1−3 ≥ 0∧5d2+8n1−5 <
0∧5d2 +2n1−2 ≥ 0∧n2 +n1−1 = 0]∨ [2n1−1 ≥ 0∧5d2−1 ≥ 0∧2n2 +
5d1−2 ≤ 0∧n2+n1−1 < 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥
0∧2n2−5d2 ≤ 0]∨[5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥ 0∧2n2−1 ≤
0]∨[8n1−5d1−3 ≥ 0∧5d2−1 ≥ 0∧2n2+5d1−2 ≤ 0∧2n2−1 ≤ 0]] ≡ f10.

State q7 and not State q10: The initial conditions that lead only to q7

and not q10 are thus given by f7∧¬f10. Since we have assumed no upper
bound on the initial values and since we have been able to compute only
two iterations, this formula does not evaluate to True given the correct
initial partition n1 < n2 ∧ d1 > d2. However, when Qepcad simplifies the
above formula assuming that n1 > n2 ∧ d1 < d2, it evaluates to False.

5 Conclusion

The real limitation of this quantifier-elimination-based model-checking comes
from the computational complexity of Collins’ cylindrical algebraic decomposi-
tion (CAD) algorithm, with its double-exponential dependence on the number
of variables [11]. In our experience, Qepcad failed to support fully symbolic anal-
ysis of the two-cell Delta-Notch system. However, it is to be noted that even
this preliminary version of Tolque was able to support a very uniform way of
asking about a good spectrum of interesting temporal properties of a biolog-
ically significant hybrid system. We are in the process of rewriting Tolque in
Lisp and integrating it with Simpathica[5]. These modifications will allow bio-
chemical networks to be easily represented, stored and analyzed in keeping with
our initial “Systems Biology” motivation. Based on the results of this paper,
we can focus on complexity improvement through other meaningful approxima-
tions. The next paper in the AAMC series focuses on approximate methods like
bisimulation-partitioning, space discretization (using grids and polyhedra) and
time discretization [27]. Eventually, we plan to implement our own symbolic al-
gebra system to work hand in hand with the different quantifier elimination,
Gröbner basis and characteristic set tools that can systematically simplify the
formulæ at each fixpoint iteration.

To summarize, the “semi-algebraic” method, outlined here, enables sophisti-
cated symbolic algebraic model checking of a large class of hybrid automata, well
beyond the capabilities of current applications of symbolic methods in this area.
The semi-decidability results for the TCTL operators and the introduction of
the Blum-Shub-Smale model are expected to spark further investigations of the
relations between dynamical systems, topology and complexity. Our approach is
general: it can be extended beyond TCTL model-checking to dense-time LTL;
and it can be further enhanced by allowing non-linear (but polynomial) expres-
sions in the temporal queries that can involve the values before and after one
step of the hybrid system.

Finally, although the state of the art of algebraic hybrid systems model-
checking can only be compared to that of boolean finite-state model-checking
in the early 80s, we believe that the approach will make quick and important
strides, and yield deep insights in biological areas before the end of this decade.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems. In
International Symposium on Logic in Computer Science, 5, pages 414–425. IEEE
Computer Press, 1990.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

3. R. Alur, T. Dang, and F. Ivancic. Progress on Reachability Analysis of Hybrid
Systems Using Predicate Abstraction. In O. Maler and A. Pnueli, editors, Hybrid
Systems: Computation and Control (HSCC’03), volume 2623 of LNCS, pages 4–19.
Springer-Verlag, 2003.

4. Hirokazu Anai. Algebraic approach to analysis of discrete-time polynomial systems.
In ECC Karlsure (Germany), 1999.

5. M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra. Reasoning about Biochemical
Processes. Cell Biochemistry and Biophysics, 38:271–286, 2003.

6. E. Asarin, T. Dang, O. Maler, and O. Bournez. Approximate Reachability Analysis
of Piecewise-Linear Dynamical Systems. In B. Krogh and N. Lynch, editors, Hybrid
Systems: Computation and Control (HSCC’00), volume 1790 of LNCS, pages 20–
31. Springer-Verlag, 2000.

7. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1997.

8. O. Bournez, O. Maler, and A. Pnueli. Orthogonal Polyhedra: Representation and
Computation. In F. Vaadrager and J. van Schuppen, editors, Hybrid Systems: Com-
putation and Control (HSCC 1999), volume 1596 of LNCS, pages 19–30. Springer-
Verlag, 1999.

9. A. Chutinan and B. Krogh. Verification of Polyhedral-Invariant Hybrid Automata
Using Polygonal Flow Pipe Approximations. In F. W. Vaandrager and J. H. van
Schuppen, editors, Hybrid Systems: Computation and Control (HSCC’99), volume
1569 of LNCS, pages 76–90. Springer-Verlag, 1999.

10. J. R. Collier, N. A. M. Monk, P. K. Maini, and J. H. Lewis. Pattern Forma-
tion by Lateral Inhibition with Feedback: a Mathematical Model of Delta-Notch
Intercellular Signalling. Journal of Theor. Biology, 183:429–446, 1996.

11. G. E. Collins. Quantifier Elimination for the Elementary Theory of Real Closed
Fields by Cylindrical Algebraic Decomposition. In Proceedings of the Second GI
Conference on Automata Theory and Formal Languages, volume 33 of LNCS, pages
134–183. Springer-Verlag, 1975.

12. Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets com-
puter logic. SIGSAM Bulletin (ACM Special Interest Group on Symbolic and Al-
gebraic Manipulation), 31(2):2–9, 1997.

13. Martin Fränzle. What will be eventually true of polynomial hybrid automata? In
Naoki Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Computer
Software, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-
31, 2001, Proceedings, volume 2215 of Lecture Notes in Computer Science, pages
340–359. Springer, 2001.

14. R. Ghosh and C. Tomlin. Lateral Inhibition through Delta-Notch signaling: A
Piecewise Affine Hybrid Model. In M. D. D. Benedetto and A. Sangiovanni-
Vincentelli, editors, Int.l Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of LNCS, pages 232–246. Springer-Verlag, 2001.

15. Esfandiar Haghverdi, Paulo Tabuada, and George J. Pappas. Bisimulation rela-
tions for dynamical, control, and hybrid systems. Theoretical Computer Science,
November 2003.

16. T. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable about
Hybrid Automata. In Symposium on the Theory of Computing (STOC), pages
373–382, 1995.

17. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking
for Real-time Systems. In 7th Annual IEEE Symposium on Logic in Computer
Science, pages 394–406. IEEE, IEEE Computer Society Press, June 1992.

18. H. Hong. Quantifier elimination in elementary algebra and geometry
by partial cylindrical algebraic decomposition, version 13. WWW site
www.eecis.udel.edu/∼saclib, 1995.

19. Inseok Hwang, Hamsa Balakrishnan, Ronojoy Ghosh, and Claire Tomlin. Reacha-
bility analysis of delta-notch lateral inhibition using predicate abstraction. Lecture
Notes in Computer Science, 2552:715–724, Jan 2002.

20. Mats Jirstrand. Nonlinear control system design by quantifier elimination. J.
Symb. Comput., 24(2):137–152, 1997.

21. G. Lafferiere, G. J. Pappas, and S. Sastry. O-minimal Hybrid Systems. Mathemat-
ics of Control, Signals, and Systems, 13(1):1–21, March 2000.

22. Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic reachability
computation for families of linear vector fields. J. Symb. Comput., 32(3):231–253,
2001.

23. R. Lanotte and S.Tini. Taylor approximation for hybrid systems. In HSCC. LNCS,
2005.

24. B. Mandelbrot. The Fractal Geometry of Nature. Freeman Co., San Francisco,
1982.

25. B. Mishra. A Symbolic Approach to Modeling Cellular Behavior. In S. Sahni,
V. K. Prasanna, and U. Shukla, editors, High Performance Computing (HiPC’02),
volume 2552 of LNCS, pages 725–732. Springer-Verlag, 2002.

26. B. Mishra. Computational Real Algebraic Geometry. CRC Press, Boca Raton, FL,
2004.

27. V. Mysore and B. Mishra. Algorithmic Algebraic Model Checking III: Approxi-
mate Methods. In Third International Symposium on Automated Technology for
Verification and Analysis (ATVA), 2005.

28. C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, and B. Mishra.
Algorithmic Algebraic Model Checking I: The Case of Biochemical Systems and
their Reachability Analysis. In 17th International Conference on Computer Aided
Verification (CAV), 2005.

29. A. Puri and P. Varaiya. Decidebility of hybrid systems with rectangular differential
inclusions. Computer Aided Verification, pages 95–104, 1994.

30. C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC
Press, Boca Raton, 1995.

31. Paulo Tabuada and George J. Pappas. Model checking ltl over controllable linear
systems is decidable. Hybrid Systems : Computation and Control, Lecture Notes
in Computer Science, 2623, April 2003.

32. A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, second edition, 1948.

33. A. Tiwari and G. Khanna. Series of Abstraction for Hybrid Automata. In C. J.
Tomlin and M. Greenstreet, editors, Hybrid Systems: Computation and Control
(HSCC’02), volume 2289 of LNCS, pages 465–478. Springer-Verlag, 2002.

Appendix

One-Cell Delta-Notch Analysis in Tolque

1. Pruned Transition Map
– Discrete Transition 1 0−→

D
2

[−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN ≥ hD ∧ uN ≤ hN]
After k iterations, we get the requirement vN ≤ −hD/(1−∆lN)k which
is True when k (≥ − log (hD/vN)/ log (1−∆lN)). Thus the transition
from 1 to 2 is possible.

– Discrete Transition 2 0−→
D

1

[−vN ≥ hD ∧ uN ≤ hN] ∃U [−vN < hD ∧ uN < hN] converges after two
iterations to False. Thus, it is not possible to jump to state 1 from state
2.

2. Estimating Continuous-State Equilibrium Concentrations
State 1: ¬{[−vN ≤ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

False – implying the non-existence of an equilibrium in this state.
State 2: ¬{[−vN ≥ hD ∧ uN ≤ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to

vDlD − rD = 0∧ vN ≤ 0. Thus we get the equilibrium concentrations as
v∗D = rD/lD, v∗N = 0.

State 3: ¬{[−vN ≤ hD ∧ uN ≥ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to
vD ≤ 0 ∧ vN lN − rN = 0. Thus v∗D = 0, v∗N = rN/lN are the equilibrium
values.

State 4: ¬{[−vN ≥ hD ∧ uN ≥ hN] ∃U [v′D 6= vD ∨ v′N 6= vN]} converges to
the equilibrium condition v∗N lN − rN = 0 ∧ hD + v∗N 6= 0 ∧ v∗DlD − rD =
0 ∧ hN − uN 6= 0.

3. Discrete State Equilibria
State 1: [−vN ≤ hD ∧ uN ≤ hN] ∃U [−vN > hD ∨ uN > hN] returns

vN ≤ −hD/(1−∆lN)k after k iterations, effectively evaluating to True.
Thus the system always evolves out of state 1 and hence it does not
correspond to any equilibrium.

State 2: [−vN ≥ hD ∧ uN ≤ hN] ∃U [−vN < hD ∨ uN > hN] converges to
False. Thus there is no path out of state 2 and hence it corresponds to
an equilibrium. Note that the transition from 2 to 4 recorded in [14] is
not possible in a one-cell model where uN is not modeled as a dynamic
variable.

State 3: [−vN ≤ hD ∧ uN ≥ hN] ∃U [−vN < hD ∨ uN > hN] is non-
convergent and returns vN ≤ (−hD−∆rN)/(1−∆lN) after one iteration.
So, for such a path out of state 3 to not exist, there should be no way
of satisfying the above inequality when −vN < hD. So we get (−hD −
∆rN)/(1−∆lN) < −hD which simplifies to hD > −rN/lN .

State 4: [−vN ≥ hD ∧ uN ≥ hN] ∃U [−vN < hD ∨ uN < hN] is non-
convergent and returns lNhD + rN > 0 ∧ hD −∆vN lN + ∆rN + vN ≥ 0
after the second iteration. The second term is just a lower bound on
the starting value of vN which continues to drop with each iteration -
effectively being True. Hence, for an equilibrium to exist in State 4, the
first term must not be satisfiable i.e. lNhD + rN ≤ 0 which is equivalent
to hD ≤ −rN/lN .

Two-Cell Delta-Notch Analysis in Tolque

1. Equilibrium Concentration Estimation
State q10 (3,2): ¬{[−2n1 > −1 ∧ 5d2 < 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=

d1∨n′1 6= n1∨d′2 6= d2∨n′2 6= n2]} converges to [n1 ≤ 0∧d2 ≤ 0∧d1−1 =
0 ∧ n2 − 1 = 0]. Thus n∗1 = d∗2 = 0 and d∗1 = n∗2 = 1.

State q7 (2,3): ¬{[−2n1 < −1 ∧ 5d2 > 1 ∧ −2n2 > −1 ∧ 5d1 < 1]∃U [d′1 6=
d1∨n′1 6= n1∨d′2 6= d2∨n′2 6= n2]} converges to [n2 ≤ 0∧d1 ≤ 0∧d2−1 =
0 ∧ n1 − 1 = 0]. Thus n∗2 = d∗1 = 0 and d∗2 = n∗1 = 1.

State q15 (4,3): ¬{[−2n1 > −1 ∧ 5d2 > 1 ∧ −2n2 < −1 ∧ 5d1 > 1]∃U [d′1 6=
d1 ∨ n′1 6= n1 ∨ d′2 6= d2 ∨ n′2 6= n2]} converges to False, implying that in
this discrete state the variables can never be in equilibrium.

2. Are Equilibria Reversible?
State q7 (2,3): [−2n1 > −1∧ 5d2 < 1∧−2n2 < −1∧ 5d1 > 1] ∃U [−2n1 =

−1∨5d2 = 1∨−2n2 = −1∨5d1 = 1] converges to False after 2 iterations
implying that this is an irreversible discrete state equilibrium.

State q10 (3,2): [−2n1 < −1∧5d2 > 1∧−2n2 > −1∧5d1 < 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] also converges to False after 2
iterations implying that the equilibrium is irreversible.

State q16 (4,4): [−2n1 > −1∧5d2 > 1∧−2n2 > −1∧5d1 > 1] ∃U [−2n1 =
−1 ∨ 5d2 = 1 ∨ −2n2 = −1 ∨ 5d1 = 1] converges to True implying that
the two-cell Delta-Notch system will always leave this discrete state.

3. Choice Of Equilibrium
State q7 (2,3): At iteration 2 of True ∃U [−2n1 > −1 ∧ 5d2 < 1 ∧−2n2 <

−1∧5d1 > 1], we get: n1−1 ≤ 0∧[[2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−
3 ≥ 0∧n2 +n1−1 = 0]∨ [8n1−5d1−3 ≤ 0∧4d2 +d1−1 = 0∧2n2−1 ≥
0 ∧ 8n2 + 5d1 − 5 ≥ 0] ∨ [5d1 − 1 ≥ 0 ∧ 2n1 − 5d1 ≤ 0 ∧ 5d2 + 2n1 − 2 ≤
0∧2n2−1 ≥ 0]∨ [5d1−1 ≥ 0∧2n1−1 ≤ 0∧5d2−1 ≤ 0∧8n2−5d2−3 ≥
0] ∨ [2n1 − 1 ≤ 0 ∧ 5d2 − 1 ≤ 0 ∧ 8n2 − 5d2 − 3 ≥ 0 ∧ 8n2 + 5d1 − 5 ≥
0]∨ [2n1−5d1 ≤ 0∧5d2−1 ≤ 0∧2n2−1 ≥ 0∧8n2 +5d1−5 ≥ 0]] ≡ f7.

State q10 (3,2): At iteration 2 of True ∃U [−2n1 < −1∧ 5d2 > 1∧−2n2 >
−1 ∧ 5d1 < 1], we get: n2 − 1 ≤ 0 ∧ [[2n1 − 1 ≥ 0 ∧ 5d2 + 8n1 − 5 ≥
0∧ d2 +4d1− 1 = 0∧ 2n2 +5d1− 2 ≤ 0]∨ [2n1− 1 < 0∧ 8n1− 5d1− 3 ≥
0∧5d2+8n1−5 ≥ 0∧n2+n1−1 = 0]∨[8n1−5d1−3 ≥ 0∧5d2+8n1−5 <
0∧5d2 +2n1−2 ≥ 0∧n2 +n1−1 = 0]∨ [2n1−1 ≥ 0∧5d2−1 ≥ 0∧2n2 +
5d1−2 ≤ 0∧n2+n1−1 < 0]∨ [5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥
0∧2n2−5d2 ≤ 0]∨[5d1−1 ≤ 0∧2n1−1 ≥ 0∧5d2+8n1−5 ≥ 0∧2n2−1 ≤
0]∨[8n1−5d1−3 ≥ 0∧5d2−1 ≥ 0∧2n2+5d1−2 ≤ 0∧2n2−1 ≤ 0]] ≡ f10.

State q7 and not State q10: The initial conditions that lead only to q7

and not q10 are thus given by f7∧¬f10. Since we have assumed no upper
bound on the initial values and since we have been able to compute only
two iterations, this formula does not evaluate to True given the correct
initial partition n1 < n2 ∧ d1 > d2. However, when Qepcad simplifies the
above formula assuming that n1 > n2 ∧ d1 < d2, it evaluates to False.

State q10 and not State q7 Similarly, ¬f7 ∧ f10 evaluates to False
assuming n1 < n2 ∧ d1 > d2.

